mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			630 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			630 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include "internal/numbers.h"
 | |
| #include <limits.h>
 | |
| #include <openssl/asn1.h>
 | |
| #include <openssl/bn.h>
 | |
| #include "asn1_local.h"
 | |
| 
 | |
| ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
 | |
| {
 | |
|     return ASN1_STRING_dup(x);
 | |
| }
 | |
| 
 | |
| int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
 | |
| {
 | |
|     int neg, ret;
 | |
|     /* Compare signs */
 | |
|     neg = x->type & V_ASN1_NEG;
 | |
|     if (neg != (y->type & V_ASN1_NEG)) {
 | |
|         if (neg)
 | |
|             return -1;
 | |
|         else
 | |
|             return 1;
 | |
|     }
 | |
| 
 | |
|     ret = ASN1_STRING_cmp(x, y);
 | |
| 
 | |
|     if (neg)
 | |
|         return -ret;
 | |
|     else
 | |
|         return ret;
 | |
| }
 | |
| 
 | |
| /*-
 | |
|  * This converts a big endian buffer and sign into its content encoding.
 | |
|  * This is used for INTEGER and ENUMERATED types.
 | |
|  * The internal representation is an ASN1_STRING whose data is a big endian
 | |
|  * representation of the value, ignoring the sign. The sign is determined by
 | |
|  * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
 | |
|  *
 | |
|  * Positive integers are no problem: they are almost the same as the DER
 | |
|  * encoding, except if the first byte is >= 0x80 we need to add a zero pad.
 | |
|  *
 | |
|  * Negative integers are a bit trickier...
 | |
|  * The DER representation of negative integers is in 2s complement form.
 | |
|  * The internal form is converted by complementing each octet and finally
 | |
|  * adding one to the result. This can be done less messily with a little trick.
 | |
|  * If the internal form has trailing zeroes then they will become FF by the
 | |
|  * complement and 0 by the add one (due to carry) so just copy as many trailing
 | |
|  * zeros to the destination as there are in the source. The carry will add one
 | |
|  * to the last none zero octet: so complement this octet and add one and finally
 | |
|  * complement any left over until you get to the start of the string.
 | |
|  *
 | |
|  * Padding is a little trickier too. If the first bytes is > 0x80 then we pad
 | |
|  * with 0xff. However if the first byte is 0x80 and one of the following bytes
 | |
|  * is non-zero we pad with 0xff. The reason for this distinction is that 0x80
 | |
|  * followed by optional zeros isn't padded.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * If |pad| is zero, the operation is effectively reduced to memcpy,
 | |
|  * and if |pad| is 0xff, then it performs two's complement, ~dst + 1.
 | |
|  * Note that in latter case sequence of zeros yields itself, and so
 | |
|  * does 0x80 followed by any number of zeros. These properties are
 | |
|  * used elsewhere below...
 | |
|  */
 | |
| static void twos_complement(unsigned char *dst, const unsigned char *src,
 | |
|                             size_t len, unsigned char pad)
 | |
| {
 | |
|     unsigned int carry = pad & 1;
 | |
| 
 | |
|     /* Begin at the end of the encoding */
 | |
|     dst += len;
 | |
|     src += len;
 | |
|     /* two's complement value: ~value + 1 */
 | |
|     while (len-- != 0) {
 | |
|         *(--dst) = (unsigned char)(carry += *(--src) ^ pad);
 | |
|         carry >>= 8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
 | |
|                        unsigned char **pp)
 | |
| {
 | |
|     unsigned int pad = 0;
 | |
|     size_t ret, i;
 | |
|     unsigned char *p, pb = 0;
 | |
| 
 | |
|     if (b != NULL && blen) {
 | |
|         ret = blen;
 | |
|         i = b[0];
 | |
|         if (!neg && (i > 127)) {
 | |
|             pad = 1;
 | |
|             pb = 0;
 | |
|         } else if (neg) {
 | |
|             pb = 0xFF;
 | |
|             if (i > 128) {
 | |
|                 pad = 1;
 | |
|             } else if (i == 128) {
 | |
|                 /*
 | |
|                  * Special case [of minimal negative for given length]:
 | |
|                  * if any other bytes non zero we pad, otherwise we don't.
 | |
|                  */
 | |
|                 for (pad = 0, i = 1; i < blen; i++)
 | |
|                     pad |= b[i];
 | |
|                 pb = pad != 0 ? 0xffU : 0;
 | |
|                 pad = pb & 1;
 | |
|             }
 | |
|         }
 | |
|         ret += pad;
 | |
|     } else {
 | |
|         ret = 1;
 | |
|         blen = 0;   /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */
 | |
|     }
 | |
| 
 | |
|     if (pp == NULL || (p = *pp) == NULL)
 | |
|         return ret;
 | |
| 
 | |
|     /*
 | |
|      * This magically handles all corner cases, such as '(b == NULL ||
 | |
|      * blen == 0)', non-negative value, "negative" zero, 0x80 followed
 | |
|      * by any number of zeros...
 | |
|      */
 | |
|     *p = pb;
 | |
|     p += pad;       /* yes, p[0] can be written twice, but it's little
 | |
|                      * price to pay for eliminated branches */
 | |
|     twos_complement(p, b, blen, pb);
 | |
| 
 | |
|     *pp += ret;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * convert content octets into a big endian buffer. Returns the length
 | |
|  * of buffer or 0 on error: for malformed INTEGER. If output buffer is
 | |
|  * NULL just return length.
 | |
|  */
 | |
| 
 | |
| static size_t c2i_ibuf(unsigned char *b, int *pneg,
 | |
|                        const unsigned char *p, size_t plen)
 | |
| {
 | |
|     int neg, pad;
 | |
|     /* Zero content length is illegal */
 | |
|     if (plen == 0) {
 | |
|         ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
 | |
|         return 0;
 | |
|     }
 | |
|     neg = p[0] & 0x80;
 | |
|     if (pneg)
 | |
|         *pneg = neg;
 | |
|     /* Handle common case where length is 1 octet separately */
 | |
|     if (plen == 1) {
 | |
|         if (b != NULL) {
 | |
|             if (neg)
 | |
|                 b[0] = (p[0] ^ 0xFF) + 1;
 | |
|             else
 | |
|                 b[0] = p[0];
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     pad = 0;
 | |
|     if (p[0] == 0) {
 | |
|         pad = 1;
 | |
|     } else if (p[0] == 0xFF) {
 | |
|         size_t i;
 | |
| 
 | |
|         /*
 | |
|          * Special case [of "one less minimal negative" for given length]:
 | |
|          * if any other bytes non zero it was padded, otherwise not.
 | |
|          */
 | |
|         for (pad = 0, i = 1; i < plen; i++)
 | |
|             pad |= p[i];
 | |
|         pad = pad != 0 ? 1 : 0;
 | |
|     }
 | |
|     /* reject illegal padding: first two octets MSB can't match */
 | |
|     if (pad && (neg == (p[1] & 0x80))) {
 | |
|         ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* skip over pad */
 | |
|     p += pad;
 | |
|     plen -= pad;
 | |
| 
 | |
|     if (b != NULL)
 | |
|         twos_complement(b, p, plen, neg ? 0xffU : 0);
 | |
| 
 | |
|     return plen;
 | |
| }
 | |
| 
 | |
| int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
 | |
| {
 | |
|     return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
 | |
| }
 | |
| 
 | |
| /* Convert big endian buffer into uint64_t, return 0 on error */
 | |
| static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
 | |
| {
 | |
|     size_t i;
 | |
|     uint64_t r;
 | |
| 
 | |
|     if (blen > sizeof(*pr)) {
 | |
|         ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
 | |
|         return 0;
 | |
|     }
 | |
|     if (b == NULL)
 | |
|         return 0;
 | |
|     for (r = 0, i = 0; i < blen; i++) {
 | |
|         r <<= 8;
 | |
|         r |= b[i];
 | |
|     }
 | |
|     *pr = r;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write uint64_t to big endian buffer and return offset to first
 | |
|  * written octet. In other words it returns offset in range from 0
 | |
|  * to 7, with 0 denoting 8 written octets and 7 - one.
 | |
|  */
 | |
| static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r)
 | |
| {
 | |
|     size_t off = sizeof(uint64_t);
 | |
| 
 | |
|     do {
 | |
|         b[--off] = (unsigned char)r;
 | |
|     } while (r >>= 8);
 | |
| 
 | |
|     return off;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces
 | |
|  * overflow warnings.
 | |
|  */
 | |
| #define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX)))
 | |
| 
 | |
| /* signed version of asn1_get_uint64 */
 | |
| static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
 | |
|                           int neg)
 | |
| {
 | |
|     uint64_t r;
 | |
|     if (asn1_get_uint64(&r, b, blen) == 0)
 | |
|         return 0;
 | |
|     if (neg) {
 | |
|         if (r <= INT64_MAX) {
 | |
|             /* Most significant bit is guaranteed to be clear, negation
 | |
|              * is guaranteed to be meaningful in platform-neutral sense. */
 | |
|             *pr = -(int64_t)r;
 | |
|         } else if (r == ABS_INT64_MIN) {
 | |
|             /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g.
 | |
|              * on ones'-complement system. */
 | |
|             *pr = (int64_t)(0 - r);
 | |
|         } else {
 | |
|             ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
 | |
|             return 0;
 | |
|         }
 | |
|     } else {
 | |
|         if (r <= INT64_MAX) {
 | |
|             *pr = (int64_t)r;
 | |
|         } else {
 | |
|             ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
 | |
| ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
 | |
|                                long len)
 | |
| {
 | |
|     ASN1_INTEGER *ret = NULL;
 | |
|     size_t r;
 | |
|     int neg;
 | |
| 
 | |
|     r = c2i_ibuf(NULL, NULL, *pp, len);
 | |
| 
 | |
|     if (r == 0)
 | |
|         return NULL;
 | |
| 
 | |
|     if ((a == NULL) || ((*a) == NULL)) {
 | |
|         ret = ASN1_INTEGER_new();
 | |
|         if (ret == NULL)
 | |
|             return NULL;
 | |
|         ret->type = V_ASN1_INTEGER;
 | |
|     } else
 | |
|         ret = *a;
 | |
| 
 | |
|     if (ASN1_STRING_set(ret, NULL, r) == 0)
 | |
|         goto err;
 | |
| 
 | |
|     c2i_ibuf(ret->data, &neg, *pp, len);
 | |
| 
 | |
|     if (neg)
 | |
|         ret->type |= V_ASN1_NEG;
 | |
| 
 | |
|     *pp += len;
 | |
|     if (a != NULL)
 | |
|         (*a) = ret;
 | |
|     return ret;
 | |
|  err:
 | |
|     ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
 | |
|     if ((a == NULL) || (*a != ret))
 | |
|         ASN1_INTEGER_free(ret);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
 | |
| {
 | |
|     if (a == NULL) {
 | |
|         ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
 | |
|         return 0;
 | |
|     }
 | |
|     if ((a->type & ~V_ASN1_NEG) != itype) {
 | |
|         ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
|     return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
 | |
| }
 | |
| 
 | |
| static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
 | |
| {
 | |
|     unsigned char tbuf[sizeof(r)];
 | |
|     size_t off;
 | |
| 
 | |
|     a->type = itype;
 | |
|     if (r < 0) {
 | |
|         /* Most obvious '-r' triggers undefined behaviour for most
 | |
|          * common INT64_MIN. Even though below '0 - (uint64_t)r' can
 | |
|          * appear two's-complement centric, it does produce correct/
 | |
|          * expected result even on one's-complement. This is because
 | |
|          * cast to unsigned has to change bit pattern... */
 | |
|         off = asn1_put_uint64(tbuf, 0 - (uint64_t)r);
 | |
|         a->type |= V_ASN1_NEG;
 | |
|     } else {
 | |
|         off = asn1_put_uint64(tbuf, r);
 | |
|         a->type &= ~V_ASN1_NEG;
 | |
|     }
 | |
|     return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
 | |
| }
 | |
| 
 | |
| static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
 | |
|                                   int itype)
 | |
| {
 | |
|     if (a == NULL) {
 | |
|         ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER);
 | |
|         return 0;
 | |
|     }
 | |
|     if ((a->type & ~V_ASN1_NEG) != itype) {
 | |
|         ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
|     if (a->type & V_ASN1_NEG) {
 | |
|         ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
 | |
|         return 0;
 | |
|     }
 | |
|     return asn1_get_uint64(pr, a->data, a->length);
 | |
| }
 | |
| 
 | |
| static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
 | |
| {
 | |
|     unsigned char tbuf[sizeof(r)];
 | |
|     size_t off;
 | |
| 
 | |
|     a->type = itype;
 | |
|     off = asn1_put_uint64(tbuf, r);
 | |
|     return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
 | |
|  * integers: some broken software can encode a positive INTEGER with its MSB
 | |
|  * set as negative (it doesn't add a padding zero).
 | |
|  */
 | |
| 
 | |
| ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
 | |
|                                 long length)
 | |
| {
 | |
|     ASN1_INTEGER *ret = NULL;
 | |
|     const unsigned char *p;
 | |
|     unsigned char *s;
 | |
|     long len;
 | |
|     int inf, tag, xclass;
 | |
|     int i;
 | |
| 
 | |
|     if ((a == NULL) || ((*a) == NULL)) {
 | |
|         if ((ret = ASN1_INTEGER_new()) == NULL)
 | |
|             return NULL;
 | |
|         ret->type = V_ASN1_INTEGER;
 | |
|     } else
 | |
|         ret = (*a);
 | |
| 
 | |
|     p = *pp;
 | |
|     inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
 | |
|     if (inf & 0x80) {
 | |
|         i = ASN1_R_BAD_OBJECT_HEADER;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (tag != V_ASN1_INTEGER) {
 | |
|         i = ASN1_R_EXPECTING_AN_INTEGER;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
 | |
|      * a missing NULL parameter.
 | |
|      */
 | |
|     s = OPENSSL_malloc((int)len + 1);
 | |
|     if (s == NULL) {
 | |
|         i = ERR_R_MALLOC_FAILURE;
 | |
|         goto err;
 | |
|     }
 | |
|     ret->type = V_ASN1_INTEGER;
 | |
|     if (len) {
 | |
|         if ((*p == 0) && (len != 1)) {
 | |
|             p++;
 | |
|             len--;
 | |
|         }
 | |
|         memcpy(s, p, (int)len);
 | |
|         p += len;
 | |
|     }
 | |
| 
 | |
|     OPENSSL_free(ret->data);
 | |
|     ret->data = s;
 | |
|     ret->length = (int)len;
 | |
|     if (a != NULL)
 | |
|         (*a) = ret;
 | |
|     *pp = p;
 | |
|     return ret;
 | |
|  err:
 | |
|     ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i);
 | |
|     if ((a == NULL) || (*a != ret))
 | |
|         ASN1_INTEGER_free(ret);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
 | |
|                                       int atype)
 | |
| {
 | |
|     ASN1_INTEGER *ret;
 | |
|     int len;
 | |
| 
 | |
|     if (ai == NULL) {
 | |
|         ret = ASN1_STRING_type_new(atype);
 | |
|     } else {
 | |
|         ret = ai;
 | |
|         ret->type = atype;
 | |
|     }
 | |
| 
 | |
|     if (ret == NULL) {
 | |
|         ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (BN_is_negative(bn) && !BN_is_zero(bn))
 | |
|         ret->type |= V_ASN1_NEG_INTEGER;
 | |
| 
 | |
|     len = BN_num_bytes(bn);
 | |
| 
 | |
|     if (len == 0)
 | |
|         len = 1;
 | |
| 
 | |
|     if (ASN1_STRING_set(ret, NULL, len) == 0) {
 | |
|         ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     /* Correct zero case */
 | |
|     if (BN_is_zero(bn))
 | |
|         ret->data[0] = 0;
 | |
|     else
 | |
|         len = BN_bn2bin(bn, ret->data);
 | |
|     ret->length = len;
 | |
|     return ret;
 | |
|  err:
 | |
|     if (ret != ai)
 | |
|         ASN1_INTEGER_free(ret);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
 | |
|                                  int itype)
 | |
| {
 | |
|     BIGNUM *ret;
 | |
| 
 | |
|     if ((ai->type & ~V_ASN1_NEG) != itype) {
 | |
|         ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ret = BN_bin2bn(ai->data, ai->length, bn);
 | |
|     if (ret == NULL) {
 | |
|         ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
 | |
|         return NULL;
 | |
|     }
 | |
|     if (ai->type & V_ASN1_NEG)
 | |
|         BN_set_negative(ret, 1);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
 | |
| {
 | |
|     return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
 | |
| }
 | |
| 
 | |
| int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
 | |
| {
 | |
|     return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
 | |
| }
 | |
| 
 | |
| int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
 | |
| {
 | |
|     return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
 | |
| }
 | |
| 
 | |
| int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
 | |
| {
 | |
|     return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
 | |
| }
 | |
| 
 | |
| int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
 | |
| {
 | |
|     return ASN1_INTEGER_set_int64(a, v);
 | |
| }
 | |
| 
 | |
| long ASN1_INTEGER_get(const ASN1_INTEGER *a)
 | |
| {
 | |
|     int i;
 | |
|     int64_t r;
 | |
|     if (a == NULL)
 | |
|         return 0;
 | |
|     i = ASN1_INTEGER_get_int64(&r, a);
 | |
|     if (i == 0)
 | |
|         return -1;
 | |
|     if (r > LONG_MAX || r < LONG_MIN)
 | |
|         return -1;
 | |
|     return (long)r;
 | |
| }
 | |
| 
 | |
| ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
 | |
| {
 | |
|     return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
 | |
| }
 | |
| 
 | |
| BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
 | |
| {
 | |
|     return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
 | |
| }
 | |
| 
 | |
| int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
 | |
| {
 | |
|     return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
 | |
| }
 | |
| 
 | |
| int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
 | |
| {
 | |
|     return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
 | |
| }
 | |
| 
 | |
| int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
 | |
| {
 | |
|     return ASN1_ENUMERATED_set_int64(a, v);
 | |
| }
 | |
| 
 | |
| long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a)
 | |
| {
 | |
|     int i;
 | |
|     int64_t r;
 | |
|     if (a == NULL)
 | |
|         return 0;
 | |
|     if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
 | |
|         return -1;
 | |
|     if (a->length > (int)sizeof(long))
 | |
|         return 0xffffffffL;
 | |
|     i = ASN1_ENUMERATED_get_int64(&r, a);
 | |
|     if (i == 0)
 | |
|         return -1;
 | |
|     if (r > LONG_MAX || r < LONG_MIN)
 | |
|         return -1;
 | |
|     return (long)r;
 | |
| }
 | |
| 
 | |
| ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
 | |
| {
 | |
|     return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
 | |
| }
 | |
| 
 | |
| BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
 | |
| {
 | |
|     return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
 | |
| }
 | |
| 
 | |
| /* Internal functions used by x_int64.c */
 | |
| int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len)
 | |
| {
 | |
|     unsigned char buf[sizeof(uint64_t)];
 | |
|     size_t buflen;
 | |
| 
 | |
|     buflen = c2i_ibuf(NULL, NULL, *pp, len);
 | |
|     if (buflen == 0)
 | |
|         return 0;
 | |
|     if (buflen > sizeof(uint64_t)) {
 | |
|         ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE);
 | |
|         return 0;
 | |
|     }
 | |
|     (void)c2i_ibuf(buf, neg, *pp, len);
 | |
|     return asn1_get_uint64(ret, buf, buflen);
 | |
| }
 | |
| 
 | |
| int i2c_uint64_int(unsigned char *p, uint64_t r, int neg)
 | |
| {
 | |
|     unsigned char buf[sizeof(uint64_t)];
 | |
|     size_t off;
 | |
| 
 | |
|     off = asn1_put_uint64(buf, r);
 | |
|     return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p);
 | |
| }
 | |
| 
 |