1
0
Fork 0
mirror of https://github.com/ossrs/srs.git synced 2025-03-09 15:49:59 +00:00
srs/trunk/src/protocol/srs_protocol_http_client.cpp
2022-10-12 20:21:23 +08:00

498 lines
15 KiB
C++

//
// Copyright (c) 2013-2022 The SRS Authors
//
// SPDX-License-Identifier: MIT or MulanPSL-2.0
//
#include <srs_protocol_http_client.hpp>
#include <arpa/inet.h>
#include <sstream>
using namespace std;
#include <srs_protocol_kbps.hpp>
#include <srs_kernel_utility.hpp>
#include <srs_kernel_consts.hpp>
#include <srs_kernel_error.hpp>
#include <srs_kernel_log.hpp>
#include <srs_core_autofree.hpp>
#include <srs_protocol_http_conn.hpp>
// The return value of verify_callback controls the strategy of the further verification process. If verify_callback
// returns 0, the verification process is immediately stopped with "verification failed" state. If SSL_VERIFY_PEER is
// set, a verification failure alert is sent to the peer and the TLS/SSL handshake is terminated. If verify_callback
// returns 1, the verification process is continued. If verify_callback always returns 1, the TLS/SSL handshake will
// not be terminated with respect to verification failures and the connection will be established. The calling process
// can however retrieve the error code of the last verification error using SSL_get_verify_result(3) or by maintaining
// its own error storage managed by verify_callback.
// @see https://www.openssl.org/docs/man1.0.2/man3/SSL_CTX_set_verify.html
int srs_verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
{
// Always OK, we don't check the certificate of client,
// because we allow client self-sign certificate.
return 1;
}
SrsSslClient::SrsSslClient(SrsTcpClient* tcp)
{
transport = tcp;
ssl_ctx = NULL;
ssl = NULL;
}
SrsSslClient::~SrsSslClient()
{
if (ssl) {
// this function will free bio_in and bio_out
SSL_free(ssl);
ssl = NULL;
}
if (ssl_ctx) {
SSL_CTX_free(ssl_ctx);
ssl_ctx = NULL;
}
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
srs_error_t SrsSslClient::handshake()
{
srs_error_t err = srs_success;
// For HTTPS, try to connect over security transport.
#if (OPENSSL_VERSION_NUMBER < 0x10002000L) // v1.0.2
ssl_ctx = SSL_CTX_new(TLS_method());
#else
ssl_ctx = SSL_CTX_new(TLSv1_2_method());
#endif
SSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER, srs_verify_callback);
srs_assert(SSL_CTX_set_cipher_list(ssl_ctx, "ALL") == 1);
// TODO: Setup callback, see SSL_set_ex_data and SSL_set_info_callback
if ((ssl = SSL_new(ssl_ctx)) == NULL) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "SSL_new ssl");
}
if ((bio_in = BIO_new(BIO_s_mem())) == NULL) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "BIO_new in");
}
if ((bio_out = BIO_new(BIO_s_mem())) == NULL) {
BIO_free(bio_in);
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "BIO_new out");
}
SSL_set_bio(ssl, bio_in, bio_out);
// SSL setup active, as client role.
SSL_set_connect_state(ssl);
SSL_set_mode(ssl, SSL_MODE_ENABLE_PARTIAL_WRITE);
// Send ClientHello.
int r0 = SSL_do_handshake(ssl); int r1 = SSL_get_error(ssl, r0);
if (r0 != -1 || r1 != SSL_ERROR_WANT_READ) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "handshake r0=%d, r1=%d", r0, r1);
}
uint8_t* data = NULL;
int size = BIO_get_mem_data(bio_out, &data);
if (!data || size <= 0) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "handshake data=%p, size=%d", data, size);
}
if ((err = transport->write(data, size, NULL)) != srs_success) {
return srs_error_wrap(err, "handshake: write data=%p, size=%d", data, size);
}
if ((r0 = BIO_reset(bio_out)) != 1) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "BIO_reset r0=%d", r0);
}
srs_info("https: ClientHello done");
// Receive ServerHello, Certificate, Server Key Exchange, Server Hello Done
while (true) {
char buf[512]; ssize_t nn = 0;
if ((err = transport->read(buf, sizeof(buf), &nn)) != srs_success) {
return srs_error_wrap(err, "handshake: read");
}
if ((r0 = BIO_write(bio_in, buf, nn)) <= 0) {
// TODO: 0 or -1 maybe block, use BIO_should_retry to check.
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "BIO_write r0=%d, data=%p, size=%d", r0, buf, nn);
}
if ((r0 = SSL_do_handshake(ssl)) != -1 || (r1 = SSL_get_error(ssl, r0)) != SSL_ERROR_WANT_READ) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "handshake r0=%d, r1=%d", r0, r1);
}
if ((size = BIO_get_mem_data(bio_out, &data)) > 0) {
// OK, reset it for the next write.
if ((r0 = BIO_reset(bio_in)) != 1) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "BIO_reset r0=%d", r0);
}
break;
}
}
srs_info("https: ServerHello done");
// Send Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
if ((err = transport->write(data, size, NULL)) != srs_success) {
return srs_error_wrap(err, "handshake: write data=%p, size=%d", data, size);
}
if ((r0 = BIO_reset(bio_out)) != 1) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "BIO_reset r0=%d", r0);
}
srs_info("https: Client done");
// Receive New Session Ticket, Change Cipher Spec, Encrypted Handshake Message
while (true) {
char buf[128];
ssize_t nn = 0;
if ((err = transport->read(buf, sizeof(buf), &nn)) != srs_success) {
return srs_error_wrap(err, "handshake: read");
}
if ((r0 = BIO_write(bio_in, buf, nn)) <= 0) {
// TODO: 0 or -1 maybe block, use BIO_should_retry to check.
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "BIO_write r0=%d, data=%p, size=%d", r0, buf, nn);
}
r0 = SSL_do_handshake(ssl); r1 = SSL_get_error(ssl, r0);
if (r0 == 1 && r1 == SSL_ERROR_NONE) {
break;
}
if (r0 != -1 || r1 != SSL_ERROR_WANT_READ) {
return srs_error_new(ERROR_HTTPS_HANDSHAKE, "handshake r0=%d, r1=%d", r0, r1);
}
}
srs_info("https: Server done");
return err;
}
#pragma GCC diagnostic pop
srs_error_t SrsSslClient::read(void* plaintext, size_t nn_plaintext, ssize_t* nread)
{
srs_error_t err = srs_success;
while (true) {
int r0 = SSL_read(ssl, plaintext, nn_plaintext); int r1 = SSL_get_error(ssl, r0);
int r2 = BIO_ctrl_pending(bio_in); int r3 = SSL_is_init_finished(ssl);
// OK, got data.
if (r0 > 0) {
srs_assert(r0 <= (int)nn_plaintext);
if (nread) {
*nread = r0;
}
return err;
}
// Need to read more data to feed SSL.
if (r0 == -1 && r1 == SSL_ERROR_WANT_READ) {
// TODO: Can we avoid copy?
int nn_cipher = nn_plaintext;
char* cipher = new char[nn_cipher];
SrsAutoFreeA(char, cipher);
// Read the cipher from SSL.
ssize_t nn = 0;
if ((err = transport->read(cipher, nn_cipher, &nn)) != srs_success) {
return srs_error_wrap(err, "https: read");
}
int r0 = BIO_write(bio_in, cipher, nn);
if (r0 <= 0) {
// TODO: 0 or -1 maybe block, use BIO_should_retry to check.
return srs_error_new(ERROR_HTTPS_READ, "BIO_write r0=%d, cipher=%p, size=%d", r0, cipher, nn);
}
continue;
}
// Fail for error.
if (r0 <= 0) {
return srs_error_new(ERROR_HTTPS_READ, "SSL_read r0=%d, r1=%d, r2=%d, r3=%d",
r0, r1, r2, r3);
}
}
}
srs_error_t SrsSslClient::write(void* plaintext, size_t nn_plaintext, ssize_t* nwrite)
{
srs_error_t err = srs_success;
for (char* p = (char*)plaintext; p < (char*)plaintext + nn_plaintext;) {
int left = (int)nn_plaintext - (p - (char*)plaintext);
int r0 = SSL_write(ssl, (const void*)p, left);
int r1 = SSL_get_error(ssl, r0);
if (r0 <= 0) {
return srs_error_new(ERROR_HTTPS_WRITE, "https: write data=%p, size=%d, r0=%d, r1=%d", p, left, r0, r1);
}
// Move p to the next writing position.
p += r0;
if (nwrite) {
*nwrite += (ssize_t)r0;
}
uint8_t* data = NULL;
int size = BIO_get_mem_data(bio_out, &data);
if ((err = transport->write(data, size, NULL)) != srs_success) {
return srs_error_wrap(err, "https: write data=%p, size=%d", data, size);
}
if ((r0 = BIO_reset(bio_out)) != 1) {
return srs_error_new(ERROR_HTTPS_WRITE, "BIO_reset r0=%d", r0);
}
}
return err;
}
SrsHttpClient::SrsHttpClient()
{
transport = NULL;
ssl_transport = NULL;
kbps = new SrsNetworkKbps();
parser = NULL;
recv_timeout = timeout = SRS_UTIME_NO_TIMEOUT;
port = 0;
}
SrsHttpClient::~SrsHttpClient()
{
disconnect();
srs_freep(kbps);
srs_freep(parser);
}
srs_error_t SrsHttpClient::initialize(string schema, string h, int p, srs_utime_t tm)
{
srs_error_t err = srs_success;
srs_freep(parser);
parser = new SrsHttpParser();
if ((err = parser->initialize(HTTP_RESPONSE)) != srs_success) {
return srs_error_wrap(err, "http: init parser");
}
// Always disconnect the transport.
schema_ = schema;
host = h;
port = p;
recv_timeout = timeout = tm;
disconnect();
// ep used for host in header.
string ep = host;
if (port > 0 && port != SRS_CONSTS_HTTP_DEFAULT_PORT) {
ep += ":" + srs_int2str(port);
}
// Set default value for headers.
headers["Host"] = ep;
headers["Connection"] = "Keep-Alive";
headers["User-Agent"] = RTMP_SIG_SRS_SERVER;
headers["Content-Type"] = "application/json";
return err;
}
SrsHttpClient* SrsHttpClient::set_header(string k, string v)
{
headers[k] = v;
return this;
}
srs_error_t SrsHttpClient::post(string path, string req, ISrsHttpMessage** ppmsg)
{
*ppmsg = NULL;
srs_error_t err = srs_success;
// always set the content length.
headers["Content-Length"] = srs_int2str(req.length());
if ((err = connect()) != srs_success) {
return srs_error_wrap(err, "http: connect server");
}
if (path.size() == 0) {
path = "/";
}
// TODO: FIXME: Use SrsHttpMessageWriter, never use stringstream and headers.
// send POST request to uri
// POST %s HTTP/1.1\r\nHost: %s\r\nContent-Length: %d\r\n\r\n%s
std::stringstream ss;
ss << "POST " << path << " " << "HTTP/1.1" << SRS_HTTP_CRLF;
for (map<string, string>::iterator it = headers.begin(); it != headers.end(); ++it) {
string key = it->first;
string value = it->second;
ss << key << ": " << value << SRS_HTTP_CRLF;
}
ss << SRS_HTTP_CRLF << req;
std::string data = ss.str();
if ((err = writer()->write((void*)data.c_str(), data.length(), NULL)) != srs_success) {
// Disconnect the transport when channel error, reconnect for next operation.
disconnect();
return srs_error_wrap(err, "http: write");
}
ISrsHttpMessage* msg = NULL;
if ((err = parser->parse_message(reader(), &msg)) != srs_success) {
return srs_error_wrap(err, "http: parse response");
}
srs_assert(msg);
if (ppmsg) {
*ppmsg = msg;
} else {
srs_freep(msg);
}
return err;
}
srs_error_t SrsHttpClient::get(string path, string req, ISrsHttpMessage** ppmsg)
{
*ppmsg = NULL;
srs_error_t err = srs_success;
// always set the content length.
headers["Content-Length"] = srs_int2str(req.length());
if ((err = connect()) != srs_success) {
return srs_error_wrap(err, "http: connect server");
}
// send POST request to uri
// GET %s HTTP/1.1\r\nHost: %s\r\nContent-Length: %d\r\n\r\n%s
std::stringstream ss;
ss << "GET " << path << " " << "HTTP/1.1" << SRS_HTTP_CRLF;
for (map<string, string>::iterator it = headers.begin(); it != headers.end(); ++it) {
string key = it->first;
string value = it->second;
ss << key << ": " << value << SRS_HTTP_CRLF;
}
ss << SRS_HTTP_CRLF << req;
std::string data = ss.str();
if ((err = writer()->write((void*)data.c_str(), data.length(), NULL)) != srs_success) {
// Disconnect the transport when channel error, reconnect for next operation.
disconnect();
return srs_error_wrap(err, "http: write");
}
ISrsHttpMessage* msg = NULL;
if ((err = parser->parse_message(reader(), &msg)) != srs_success) {
return srs_error_wrap(err, "http: parse response");
}
srs_assert(msg);
if (ppmsg) {
*ppmsg = msg;
} else {
srs_freep(msg);
}
return err;
}
void SrsHttpClient::set_recv_timeout(srs_utime_t tm)
{
recv_timeout = tm;
}
void SrsHttpClient::kbps_sample(const char* label, srs_utime_t age)
{
kbps->sample();
int sr = kbps->get_send_kbps();
int sr30s = kbps->get_send_kbps_30s();
int sr5m = kbps->get_send_kbps_5m();
int rr = kbps->get_recv_kbps();
int rr30s = kbps->get_recv_kbps_30s();
int rr5m = kbps->get_recv_kbps_5m();
srs_trace("<- %s time=%" PRId64 ", okbps=%d,%d,%d, ikbps=%d,%d,%d", label, srsu2ms(age), sr, sr30s, sr5m, rr, rr30s, rr5m);
}
void SrsHttpClient::disconnect()
{
kbps->set_io(NULL, NULL);
srs_freep(ssl_transport);
srs_freep(transport);
}
srs_error_t SrsHttpClient::connect()
{
srs_error_t err = srs_success;
// When transport connected, ignore.
if (transport) {
return err;
}
transport = new SrsTcpClient(host, port, timeout);
if ((err = transport->connect()) != srs_success) {
disconnect();
return srs_error_wrap(err, "http: tcp connect %s %s:%d to=%dms, rto=%dms",
schema_.c_str(), host.c_str(), port, srsu2msi(timeout), srsu2msi(recv_timeout));
}
// Set the recv/send timeout in srs_utime_t.
transport->set_recv_timeout(recv_timeout);
transport->set_send_timeout(timeout);
kbps->set_io(transport, transport);
if (schema_ != "https") {
return err;
}
#if !defined(SRS_HTTPS)
return srs_error_new(ERROR_HTTPS_NOT_SUPPORTED, "should configure with --https=on");
#else
srs_assert(!ssl_transport);
ssl_transport = new SrsSslClient(transport);
srs_utime_t starttime = srs_update_system_time();
if ((err = ssl_transport->handshake()) != srs_success) {
disconnect();
return srs_error_wrap(err, "http: ssl connect %s %s:%d to=%dms, rto=%dms",
schema_.c_str(), host.c_str(), port, srsu2msi(timeout), srsu2msi(recv_timeout));
}
int cost = srsu2msi(srs_update_system_time() - starttime);
srs_trace("https: connected to %s://%s:%d, cost=%dms", schema_.c_str(), host.c_str(), port, cost);
return err;
#endif
}
ISrsStreamWriter* SrsHttpClient::writer()
{
if (ssl_transport) {
return ssl_transport;
}
return transport;
}
ISrsReader* SrsHttpClient::reader()
{
if (ssl_transport) {
return ssl_transport;
}
return transport;
}