mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1894 lines
		
	
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1894 lines
		
	
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <openssl/crypto.h>
 | |
| #include "modes_local.h"
 | |
| #include <string.h>
 | |
| 
 | |
| #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
 | |
| typedef size_t size_t_aX __attribute((__aligned__(1)));
 | |
| #else
 | |
| typedef size_t size_t_aX;
 | |
| #endif
 | |
| 
 | |
| #if defined(BSWAP4) && defined(STRICT_ALIGNMENT)
 | |
| /* redefine, because alignment is ensured */
 | |
| # undef  GETU32
 | |
| # define GETU32(p)       BSWAP4(*(const u32 *)(p))
 | |
| # undef  PUTU32
 | |
| # define PUTU32(p,v)     *(u32 *)(p) = BSWAP4(v)
 | |
| #endif
 | |
| 
 | |
| #define PACK(s)         ((size_t)(s)<<(sizeof(size_t)*8-16))
 | |
| #define REDUCE1BIT(V)   do { \
 | |
|         if (sizeof(size_t)==8) { \
 | |
|                 u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
 | |
|                 V.lo  = (V.hi<<63)|(V.lo>>1); \
 | |
|                 V.hi  = (V.hi>>1 )^T; \
 | |
|         } \
 | |
|         else { \
 | |
|                 u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
 | |
|                 V.lo  = (V.hi<<63)|(V.lo>>1); \
 | |
|                 V.hi  = (V.hi>>1 )^((u64)T<<32); \
 | |
|         } \
 | |
| } while(0)
 | |
| 
 | |
| /*-
 | |
|  * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
 | |
|  * never be set to 8. 8 is effectively reserved for testing purposes.
 | |
|  * TABLE_BITS>1 are lookup-table-driven implementations referred to as
 | |
|  * "Shoup's" in GCM specification. In other words OpenSSL does not cover
 | |
|  * whole spectrum of possible table driven implementations. Why? In
 | |
|  * non-"Shoup's" case memory access pattern is segmented in such manner,
 | |
|  * that it's trivial to see that cache timing information can reveal
 | |
|  * fair portion of intermediate hash value. Given that ciphertext is
 | |
|  * always available to attacker, it's possible for him to attempt to
 | |
|  * deduce secret parameter H and if successful, tamper with messages
 | |
|  * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
 | |
|  * not as trivial, but there is no reason to believe that it's resistant
 | |
|  * to cache-timing attack. And the thing about "8-bit" implementation is
 | |
|  * that it consumes 16 (sixteen) times more memory, 4KB per individual
 | |
|  * key + 1KB shared. Well, on pros side it should be twice as fast as
 | |
|  * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
 | |
|  * was observed to run ~75% faster, closer to 100% for commercial
 | |
|  * compilers... Yet "4-bit" procedure is preferred, because it's
 | |
|  * believed to provide better security-performance balance and adequate
 | |
|  * all-round performance. "All-round" refers to things like:
 | |
|  *
 | |
|  * - shorter setup time effectively improves overall timing for
 | |
|  *   handling short messages;
 | |
|  * - larger table allocation can become unbearable because of VM
 | |
|  *   subsystem penalties (for example on Windows large enough free
 | |
|  *   results in VM working set trimming, meaning that consequent
 | |
|  *   malloc would immediately incur working set expansion);
 | |
|  * - larger table has larger cache footprint, which can affect
 | |
|  *   performance of other code paths (not necessarily even from same
 | |
|  *   thread in Hyper-Threading world);
 | |
|  *
 | |
|  * Value of 1 is not appropriate for performance reasons.
 | |
|  */
 | |
| #if     TABLE_BITS==8
 | |
| 
 | |
| static void gcm_init_8bit(u128 Htable[256], u64 H[2])
 | |
| {
 | |
|     int i, j;
 | |
|     u128 V;
 | |
| 
 | |
|     Htable[0].hi = 0;
 | |
|     Htable[0].lo = 0;
 | |
|     V.hi = H[0];
 | |
|     V.lo = H[1];
 | |
| 
 | |
|     for (Htable[128] = V, i = 64; i > 0; i >>= 1) {
 | |
|         REDUCE1BIT(V);
 | |
|         Htable[i] = V;
 | |
|     }
 | |
| 
 | |
|     for (i = 2; i < 256; i <<= 1) {
 | |
|         u128 *Hi = Htable + i, H0 = *Hi;
 | |
|         for (j = 1; j < i; ++j) {
 | |
|             Hi[j].hi = H0.hi ^ Htable[j].hi;
 | |
|             Hi[j].lo = H0.lo ^ Htable[j].lo;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256])
 | |
| {
 | |
|     u128 Z = { 0, 0 };
 | |
|     const u8 *xi = (const u8 *)Xi + 15;
 | |
|     size_t rem, n = *xi;
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
|     static const size_t rem_8bit[256] = {
 | |
|         PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246),
 | |
|         PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E),
 | |
|         PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56),
 | |
|         PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E),
 | |
|         PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66),
 | |
|         PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E),
 | |
|         PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076),
 | |
|         PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E),
 | |
|         PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06),
 | |
|         PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E),
 | |
|         PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416),
 | |
|         PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E),
 | |
|         PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626),
 | |
|         PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E),
 | |
|         PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836),
 | |
|         PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E),
 | |
|         PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6),
 | |
|         PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE),
 | |
|         PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6),
 | |
|         PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE),
 | |
|         PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6),
 | |
|         PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE),
 | |
|         PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6),
 | |
|         PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE),
 | |
|         PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86),
 | |
|         PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E),
 | |
|         PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496),
 | |
|         PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E),
 | |
|         PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6),
 | |
|         PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE),
 | |
|         PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6),
 | |
|         PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE),
 | |
|         PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346),
 | |
|         PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E),
 | |
|         PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56),
 | |
|         PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E),
 | |
|         PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66),
 | |
|         PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E),
 | |
|         PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176),
 | |
|         PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E),
 | |
|         PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06),
 | |
|         PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E),
 | |
|         PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516),
 | |
|         PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E),
 | |
|         PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726),
 | |
|         PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E),
 | |
|         PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936),
 | |
|         PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E),
 | |
|         PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6),
 | |
|         PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE),
 | |
|         PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6),
 | |
|         PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE),
 | |
|         PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6),
 | |
|         PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE),
 | |
|         PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6),
 | |
|         PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE),
 | |
|         PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86),
 | |
|         PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E),
 | |
|         PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596),
 | |
|         PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E),
 | |
|         PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6),
 | |
|         PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE),
 | |
|         PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6),
 | |
|         PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE)
 | |
|     };
 | |
| 
 | |
|     while (1) {
 | |
|         Z.hi ^= Htable[n].hi;
 | |
|         Z.lo ^= Htable[n].lo;
 | |
| 
 | |
|         if ((u8 *)Xi == xi)
 | |
|             break;
 | |
| 
 | |
|         n = *(--xi);
 | |
| 
 | |
|         rem = (size_t)Z.lo & 0xff;
 | |
|         Z.lo = (Z.hi << 56) | (Z.lo >> 8);
 | |
|         Z.hi = (Z.hi >> 8);
 | |
|         if (sizeof(size_t) == 8)
 | |
|             Z.hi ^= rem_8bit[rem];
 | |
|         else
 | |
|             Z.hi ^= (u64)rem_8bit[rem] << 32;
 | |
|     }
 | |
| 
 | |
|     if (is_endian.little) {
 | |
| # ifdef BSWAP8
 | |
|         Xi[0] = BSWAP8(Z.hi);
 | |
|         Xi[1] = BSWAP8(Z.lo);
 | |
| # else
 | |
|         u8 *p = (u8 *)Xi;
 | |
|         u32 v;
 | |
|         v = (u32)(Z.hi >> 32);
 | |
|         PUTU32(p, v);
 | |
|         v = (u32)(Z.hi);
 | |
|         PUTU32(p + 4, v);
 | |
|         v = (u32)(Z.lo >> 32);
 | |
|         PUTU32(p + 8, v);
 | |
|         v = (u32)(Z.lo);
 | |
|         PUTU32(p + 12, v);
 | |
| # endif
 | |
|     } else {
 | |
|         Xi[0] = Z.hi;
 | |
|         Xi[1] = Z.lo;
 | |
|     }
 | |
| }
 | |
| 
 | |
| # define GCM_MUL(ctx)      gcm_gmult_8bit(ctx->Xi.u,ctx->Htable)
 | |
| 
 | |
| #elif   TABLE_BITS==4
 | |
| 
 | |
| static void gcm_init_4bit(u128 Htable[16], u64 H[2])
 | |
| {
 | |
|     u128 V;
 | |
| # if defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     int i;
 | |
| # endif
 | |
| 
 | |
|     Htable[0].hi = 0;
 | |
|     Htable[0].lo = 0;
 | |
|     V.hi = H[0];
 | |
|     V.lo = H[1];
 | |
| 
 | |
| # if defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     for (Htable[8] = V, i = 4; i > 0; i >>= 1) {
 | |
|         REDUCE1BIT(V);
 | |
|         Htable[i] = V;
 | |
|     }
 | |
| 
 | |
|     for (i = 2; i < 16; i <<= 1) {
 | |
|         u128 *Hi = Htable + i;
 | |
|         int j;
 | |
|         for (V = *Hi, j = 1; j < i; ++j) {
 | |
|             Hi[j].hi = V.hi ^ Htable[j].hi;
 | |
|             Hi[j].lo = V.lo ^ Htable[j].lo;
 | |
|         }
 | |
|     }
 | |
| # else
 | |
|     Htable[8] = V;
 | |
|     REDUCE1BIT(V);
 | |
|     Htable[4] = V;
 | |
|     REDUCE1BIT(V);
 | |
|     Htable[2] = V;
 | |
|     REDUCE1BIT(V);
 | |
|     Htable[1] = V;
 | |
|     Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
 | |
|     V = Htable[4];
 | |
|     Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
 | |
|     Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
 | |
|     Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
 | |
|     V = Htable[8];
 | |
|     Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
 | |
|     Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
 | |
|     Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
 | |
|     Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
 | |
|     Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
 | |
|     Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
 | |
|     Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
 | |
| # endif
 | |
| # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))
 | |
|     /*
 | |
|      * ARM assembler expects specific dword order in Htable.
 | |
|      */
 | |
|     {
 | |
|         int j;
 | |
|         const union {
 | |
|             long one;
 | |
|             char little;
 | |
|         } is_endian = { 1 };
 | |
| 
 | |
|         if (is_endian.little)
 | |
|             for (j = 0; j < 16; ++j) {
 | |
|                 V = Htable[j];
 | |
|                 Htable[j].hi = V.lo;
 | |
|                 Htable[j].lo = V.hi;
 | |
|         } else
 | |
|             for (j = 0; j < 16; ++j) {
 | |
|                 V = Htable[j];
 | |
|                 Htable[j].hi = V.lo << 32 | V.lo >> 32;
 | |
|                 Htable[j].lo = V.hi << 32 | V.hi >> 32;
 | |
|             }
 | |
|     }
 | |
| # endif
 | |
| }
 | |
| 
 | |
| # ifndef GHASH_ASM
 | |
| static const size_t rem_4bit[16] = {
 | |
|     PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
 | |
|     PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
 | |
|     PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
 | |
|     PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)
 | |
| };
 | |
| 
 | |
| static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16])
 | |
| {
 | |
|     u128 Z;
 | |
|     int cnt = 15;
 | |
|     size_t rem, nlo, nhi;
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
| 
 | |
|     nlo = ((const u8 *)Xi)[15];
 | |
|     nhi = nlo >> 4;
 | |
|     nlo &= 0xf;
 | |
| 
 | |
|     Z.hi = Htable[nlo].hi;
 | |
|     Z.lo = Htable[nlo].lo;
 | |
| 
 | |
|     while (1) {
 | |
|         rem = (size_t)Z.lo & 0xf;
 | |
|         Z.lo = (Z.hi << 60) | (Z.lo >> 4);
 | |
|         Z.hi = (Z.hi >> 4);
 | |
|         if (sizeof(size_t) == 8)
 | |
|             Z.hi ^= rem_4bit[rem];
 | |
|         else
 | |
|             Z.hi ^= (u64)rem_4bit[rem] << 32;
 | |
| 
 | |
|         Z.hi ^= Htable[nhi].hi;
 | |
|         Z.lo ^= Htable[nhi].lo;
 | |
| 
 | |
|         if (--cnt < 0)
 | |
|             break;
 | |
| 
 | |
|         nlo = ((const u8 *)Xi)[cnt];
 | |
|         nhi = nlo >> 4;
 | |
|         nlo &= 0xf;
 | |
| 
 | |
|         rem = (size_t)Z.lo & 0xf;
 | |
|         Z.lo = (Z.hi << 60) | (Z.lo >> 4);
 | |
|         Z.hi = (Z.hi >> 4);
 | |
|         if (sizeof(size_t) == 8)
 | |
|             Z.hi ^= rem_4bit[rem];
 | |
|         else
 | |
|             Z.hi ^= (u64)rem_4bit[rem] << 32;
 | |
| 
 | |
|         Z.hi ^= Htable[nlo].hi;
 | |
|         Z.lo ^= Htable[nlo].lo;
 | |
|     }
 | |
| 
 | |
|     if (is_endian.little) {
 | |
| #  ifdef BSWAP8
 | |
|         Xi[0] = BSWAP8(Z.hi);
 | |
|         Xi[1] = BSWAP8(Z.lo);
 | |
| #  else
 | |
|         u8 *p = (u8 *)Xi;
 | |
|         u32 v;
 | |
|         v = (u32)(Z.hi >> 32);
 | |
|         PUTU32(p, v);
 | |
|         v = (u32)(Z.hi);
 | |
|         PUTU32(p + 4, v);
 | |
|         v = (u32)(Z.lo >> 32);
 | |
|         PUTU32(p + 8, v);
 | |
|         v = (u32)(Z.lo);
 | |
|         PUTU32(p + 12, v);
 | |
| #  endif
 | |
|     } else {
 | |
|         Xi[0] = Z.hi;
 | |
|         Xi[1] = Z.lo;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #  if !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
| /*
 | |
|  * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
 | |
|  * details... Compiler-generated code doesn't seem to give any
 | |
|  * performance improvement, at least not on x86[_64]. It's here
 | |
|  * mostly as reference and a placeholder for possible future
 | |
|  * non-trivial optimization[s]...
 | |
|  */
 | |
| static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16],
 | |
|                            const u8 *inp, size_t len)
 | |
| {
 | |
|     u128 Z;
 | |
|     int cnt;
 | |
|     size_t rem, nlo, nhi;
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
| 
 | |
| #   if 1
 | |
|     do {
 | |
|         cnt = 15;
 | |
|         nlo = ((const u8 *)Xi)[15];
 | |
|         nlo ^= inp[15];
 | |
|         nhi = nlo >> 4;
 | |
|         nlo &= 0xf;
 | |
| 
 | |
|         Z.hi = Htable[nlo].hi;
 | |
|         Z.lo = Htable[nlo].lo;
 | |
| 
 | |
|         while (1) {
 | |
|             rem = (size_t)Z.lo & 0xf;
 | |
|             Z.lo = (Z.hi << 60) | (Z.lo >> 4);
 | |
|             Z.hi = (Z.hi >> 4);
 | |
|             if (sizeof(size_t) == 8)
 | |
|                 Z.hi ^= rem_4bit[rem];
 | |
|             else
 | |
|                 Z.hi ^= (u64)rem_4bit[rem] << 32;
 | |
| 
 | |
|             Z.hi ^= Htable[nhi].hi;
 | |
|             Z.lo ^= Htable[nhi].lo;
 | |
| 
 | |
|             if (--cnt < 0)
 | |
|                 break;
 | |
| 
 | |
|             nlo = ((const u8 *)Xi)[cnt];
 | |
|             nlo ^= inp[cnt];
 | |
|             nhi = nlo >> 4;
 | |
|             nlo &= 0xf;
 | |
| 
 | |
|             rem = (size_t)Z.lo & 0xf;
 | |
|             Z.lo = (Z.hi << 60) | (Z.lo >> 4);
 | |
|             Z.hi = (Z.hi >> 4);
 | |
|             if (sizeof(size_t) == 8)
 | |
|                 Z.hi ^= rem_4bit[rem];
 | |
|             else
 | |
|                 Z.hi ^= (u64)rem_4bit[rem] << 32;
 | |
| 
 | |
|             Z.hi ^= Htable[nlo].hi;
 | |
|             Z.lo ^= Htable[nlo].lo;
 | |
|         }
 | |
| #   else
 | |
|     /*
 | |
|      * Extra 256+16 bytes per-key plus 512 bytes shared tables
 | |
|      * [should] give ~50% improvement... One could have PACK()-ed
 | |
|      * the rem_8bit even here, but the priority is to minimize
 | |
|      * cache footprint...
 | |
|      */
 | |
|     u128 Hshr4[16];             /* Htable shifted right by 4 bits */
 | |
|     u8 Hshl4[16];               /* Htable shifted left by 4 bits */
 | |
|     static const unsigned short rem_8bit[256] = {
 | |
|         0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E,
 | |
|         0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E,
 | |
|         0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E,
 | |
|         0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E,
 | |
|         0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E,
 | |
|         0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E,
 | |
|         0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E,
 | |
|         0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E,
 | |
|         0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE,
 | |
|         0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE,
 | |
|         0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE,
 | |
|         0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE,
 | |
|         0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E,
 | |
|         0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E,
 | |
|         0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE,
 | |
|         0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE,
 | |
|         0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E,
 | |
|         0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E,
 | |
|         0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E,
 | |
|         0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E,
 | |
|         0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E,
 | |
|         0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E,
 | |
|         0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E,
 | |
|         0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E,
 | |
|         0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE,
 | |
|         0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE,
 | |
|         0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE,
 | |
|         0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE,
 | |
|         0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E,
 | |
|         0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E,
 | |
|         0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE,
 | |
|         0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE
 | |
|     };
 | |
|     /*
 | |
|      * This pre-processing phase slows down procedure by approximately
 | |
|      * same time as it makes each loop spin faster. In other words
 | |
|      * single block performance is approximately same as straightforward
 | |
|      * "4-bit" implementation, and then it goes only faster...
 | |
|      */
 | |
|     for (cnt = 0; cnt < 16; ++cnt) {
 | |
|         Z.hi = Htable[cnt].hi;
 | |
|         Z.lo = Htable[cnt].lo;
 | |
|         Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4);
 | |
|         Hshr4[cnt].hi = (Z.hi >> 4);
 | |
|         Hshl4[cnt] = (u8)(Z.lo << 4);
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) {
 | |
|             nlo = ((const u8 *)Xi)[cnt];
 | |
|             nlo ^= inp[cnt];
 | |
|             nhi = nlo >> 4;
 | |
|             nlo &= 0xf;
 | |
| 
 | |
|             Z.hi ^= Htable[nlo].hi;
 | |
|             Z.lo ^= Htable[nlo].lo;
 | |
| 
 | |
|             rem = (size_t)Z.lo & 0xff;
 | |
| 
 | |
|             Z.lo = (Z.hi << 56) | (Z.lo >> 8);
 | |
|             Z.hi = (Z.hi >> 8);
 | |
| 
 | |
|             Z.hi ^= Hshr4[nhi].hi;
 | |
|             Z.lo ^= Hshr4[nhi].lo;
 | |
|             Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48;
 | |
|         }
 | |
| 
 | |
|         nlo = ((const u8 *)Xi)[0];
 | |
|         nlo ^= inp[0];
 | |
|         nhi = nlo >> 4;
 | |
|         nlo &= 0xf;
 | |
| 
 | |
|         Z.hi ^= Htable[nlo].hi;
 | |
|         Z.lo ^= Htable[nlo].lo;
 | |
| 
 | |
|         rem = (size_t)Z.lo & 0xf;
 | |
| 
 | |
|         Z.lo = (Z.hi << 60) | (Z.lo >> 4);
 | |
|         Z.hi = (Z.hi >> 4);
 | |
| 
 | |
|         Z.hi ^= Htable[nhi].hi;
 | |
|         Z.lo ^= Htable[nhi].lo;
 | |
|         Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48;
 | |
| #   endif
 | |
| 
 | |
|         if (is_endian.little) {
 | |
| #   ifdef BSWAP8
 | |
|             Xi[0] = BSWAP8(Z.hi);
 | |
|             Xi[1] = BSWAP8(Z.lo);
 | |
| #   else
 | |
|             u8 *p = (u8 *)Xi;
 | |
|             u32 v;
 | |
|             v = (u32)(Z.hi >> 32);
 | |
|             PUTU32(p, v);
 | |
|             v = (u32)(Z.hi);
 | |
|             PUTU32(p + 4, v);
 | |
|             v = (u32)(Z.lo >> 32);
 | |
|             PUTU32(p + 8, v);
 | |
|             v = (u32)(Z.lo);
 | |
|             PUTU32(p + 12, v);
 | |
| #   endif
 | |
|         } else {
 | |
|             Xi[0] = Z.hi;
 | |
|             Xi[1] = Z.lo;
 | |
|         }
 | |
|     } while (inp += 16, len -= 16);
 | |
| }
 | |
| #  endif
 | |
| # else
 | |
| void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                     size_t len);
 | |
| # endif
 | |
| 
 | |
| # define GCM_MUL(ctx)      gcm_gmult_4bit(ctx->Xi.u,ctx->Htable)
 | |
| # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
| #  define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
 | |
| /*
 | |
|  * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing
 | |
|  * effect. In other words idea is to hash data while it's still in L1 cache
 | |
|  * after encryption pass...
 | |
|  */
 | |
| #  define GHASH_CHUNK       (3*1024)
 | |
| # endif
 | |
| 
 | |
| #else                           /* TABLE_BITS */
 | |
| 
 | |
| static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2])
 | |
| {
 | |
|     u128 V, Z = { 0, 0 };
 | |
|     long X;
 | |
|     int i, j;
 | |
|     const long *xi = (const long *)Xi;
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
| 
 | |
|     V.hi = H[0];                /* H is in host byte order, no byte swapping */
 | |
|     V.lo = H[1];
 | |
| 
 | |
|     for (j = 0; j < 16 / sizeof(long); ++j) {
 | |
|         if (is_endian.little) {
 | |
|             if (sizeof(long) == 8) {
 | |
| # ifdef BSWAP8
 | |
|                 X = (long)(BSWAP8(xi[j]));
 | |
| # else
 | |
|                 const u8 *p = (const u8 *)(xi + j);
 | |
|                 X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4));
 | |
| # endif
 | |
|             } else {
 | |
|                 const u8 *p = (const u8 *)(xi + j);
 | |
|                 X = (long)GETU32(p);
 | |
|             }
 | |
|         } else
 | |
|             X = xi[j];
 | |
| 
 | |
|         for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) {
 | |
|             u64 M = (u64)(X >> (8 * sizeof(long) - 1));
 | |
|             Z.hi ^= V.hi & M;
 | |
|             Z.lo ^= V.lo & M;
 | |
| 
 | |
|             REDUCE1BIT(V);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (is_endian.little) {
 | |
| # ifdef BSWAP8
 | |
|         Xi[0] = BSWAP8(Z.hi);
 | |
|         Xi[1] = BSWAP8(Z.lo);
 | |
| # else
 | |
|         u8 *p = (u8 *)Xi;
 | |
|         u32 v;
 | |
|         v = (u32)(Z.hi >> 32);
 | |
|         PUTU32(p, v);
 | |
|         v = (u32)(Z.hi);
 | |
|         PUTU32(p + 4, v);
 | |
|         v = (u32)(Z.lo >> 32);
 | |
|         PUTU32(p + 8, v);
 | |
|         v = (u32)(Z.lo);
 | |
|         PUTU32(p + 12, v);
 | |
| # endif
 | |
|     } else {
 | |
|         Xi[0] = Z.hi;
 | |
|         Xi[1] = Z.lo;
 | |
|     }
 | |
| }
 | |
| 
 | |
| # define GCM_MUL(ctx)      gcm_gmult_1bit(ctx->Xi.u,ctx->H.u)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if     TABLE_BITS==4 && (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ))
 | |
| # if    !defined(I386_ONLY) && \
 | |
|         (defined(__i386)        || defined(__i386__)    || \
 | |
|          defined(__x86_64)      || defined(__x86_64__)  || \
 | |
|          defined(_M_IX86)       || defined(_M_AMD64)    || defined(_M_X64))
 | |
| #  define GHASH_ASM_X86_OR_64
 | |
| #  define GCM_FUNCREF_4BIT
 | |
| extern unsigned int OPENSSL_ia32cap_P[];
 | |
| 
 | |
| void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]);
 | |
| void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                      size_t len);
 | |
| 
 | |
| #  if defined(__i386) || defined(__i386__) || defined(_M_IX86)
 | |
| #   define gcm_init_avx   gcm_init_clmul
 | |
| #   define gcm_gmult_avx  gcm_gmult_clmul
 | |
| #   define gcm_ghash_avx  gcm_ghash_clmul
 | |
| #  else
 | |
| void gcm_init_avx(u128 Htable[16], const u64 Xi[2]);
 | |
| void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                    size_t len);
 | |
| #  endif
 | |
| 
 | |
| #  if   defined(__i386) || defined(__i386__) || defined(_M_IX86)
 | |
| #   define GHASH_ASM_X86
 | |
| void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                         size_t len);
 | |
| 
 | |
| void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                         size_t len);
 | |
| #  endif
 | |
| # elif defined(__arm__) || defined(__arm) || defined(__aarch64__)
 | |
| #  include "arm_arch.h"
 | |
| #  if __ARM_MAX_ARCH__>=7
 | |
| #   define GHASH_ASM_ARM
 | |
| #   define GCM_FUNCREF_4BIT
 | |
| #   define PMULL_CAPABLE        (OPENSSL_armcap_P & ARMV8_PMULL)
 | |
| #   if defined(__arm__) || defined(__arm)
 | |
| #    define NEON_CAPABLE        (OPENSSL_armcap_P & ARMV7_NEON)
 | |
| #   endif
 | |
| void gcm_init_neon(u128 Htable[16], const u64 Xi[2]);
 | |
| void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                     size_t len);
 | |
| void gcm_init_v8(u128 Htable[16], const u64 Xi[2]);
 | |
| void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                   size_t len);
 | |
| #  endif
 | |
| # elif defined(__sparc__) || defined(__sparc)
 | |
| #  include "sparc_arch.h"
 | |
| #  define GHASH_ASM_SPARC
 | |
| #  define GCM_FUNCREF_4BIT
 | |
| extern unsigned int OPENSSL_sparcv9cap_P[];
 | |
| void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]);
 | |
| void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                     size_t len);
 | |
| # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
 | |
| #  include "ppc_arch.h"
 | |
| #  define GHASH_ASM_PPC
 | |
| #  define GCM_FUNCREF_4BIT
 | |
| void gcm_init_p8(u128 Htable[16], const u64 Xi[2]);
 | |
| void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]);
 | |
| void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp,
 | |
|                   size_t len);
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #ifdef GCM_FUNCREF_4BIT
 | |
| # undef  GCM_MUL
 | |
| # define GCM_MUL(ctx)           (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable)
 | |
| # ifdef GHASH
 | |
| #  undef  GHASH
 | |
| #  define GHASH(ctx,in,len)     (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len)
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block)
 | |
| {
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
| 
 | |
|     memset(ctx, 0, sizeof(*ctx));
 | |
|     ctx->block = block;
 | |
|     ctx->key = key;
 | |
| 
 | |
|     (*block) (ctx->H.c, ctx->H.c, key);
 | |
| 
 | |
|     if (is_endian.little) {
 | |
|         /* H is stored in host byte order */
 | |
| #ifdef BSWAP8
 | |
|         ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
 | |
|         ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
 | |
| #else
 | |
|         u8 *p = ctx->H.c;
 | |
|         u64 hi, lo;
 | |
|         hi = (u64)GETU32(p) << 32 | GETU32(p + 4);
 | |
|         lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
 | |
|         ctx->H.u[0] = hi;
 | |
|         ctx->H.u[1] = lo;
 | |
| #endif
 | |
|     }
 | |
| #if     TABLE_BITS==8
 | |
|     gcm_init_8bit(ctx->Htable, ctx->H.u);
 | |
| #elif   TABLE_BITS==4
 | |
| # if    defined(GHASH)
 | |
| #  define CTX__GHASH(f) (ctx->ghash = (f))
 | |
| # else
 | |
| #  define CTX__GHASH(f) (ctx->ghash = NULL)
 | |
| # endif
 | |
| # if    defined(GHASH_ASM_X86_OR_64)
 | |
| #  if   !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
 | |
|     if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */
 | |
|         if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */
 | |
|             gcm_init_avx(ctx->Htable, ctx->H.u);
 | |
|             ctx->gmult = gcm_gmult_avx;
 | |
|             CTX__GHASH(gcm_ghash_avx);
 | |
|         } else {
 | |
|             gcm_init_clmul(ctx->Htable, ctx->H.u);
 | |
|             ctx->gmult = gcm_gmult_clmul;
 | |
|             CTX__GHASH(gcm_ghash_clmul);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| #  endif
 | |
|     gcm_init_4bit(ctx->Htable, ctx->H.u);
 | |
| #  if   defined(GHASH_ASM_X86)  /* x86 only */
 | |
| #   if  defined(OPENSSL_IA32_SSE2)
 | |
|     if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */
 | |
| #   else
 | |
|     if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */
 | |
| #   endif
 | |
|         ctx->gmult = gcm_gmult_4bit_mmx;
 | |
|         CTX__GHASH(gcm_ghash_4bit_mmx);
 | |
|     } else {
 | |
|         ctx->gmult = gcm_gmult_4bit_x86;
 | |
|         CTX__GHASH(gcm_ghash_4bit_x86);
 | |
|     }
 | |
| #  else
 | |
|     ctx->gmult = gcm_gmult_4bit;
 | |
|     CTX__GHASH(gcm_ghash_4bit);
 | |
| #  endif
 | |
| # elif  defined(GHASH_ASM_ARM)
 | |
| #  ifdef PMULL_CAPABLE
 | |
|     if (PMULL_CAPABLE) {
 | |
|         gcm_init_v8(ctx->Htable, ctx->H.u);
 | |
|         ctx->gmult = gcm_gmult_v8;
 | |
|         CTX__GHASH(gcm_ghash_v8);
 | |
|     } else
 | |
| #  endif
 | |
| #  ifdef NEON_CAPABLE
 | |
|     if (NEON_CAPABLE) {
 | |
|         gcm_init_neon(ctx->Htable, ctx->H.u);
 | |
|         ctx->gmult = gcm_gmult_neon;
 | |
|         CTX__GHASH(gcm_ghash_neon);
 | |
|     } else
 | |
| #  endif
 | |
|     {
 | |
|         gcm_init_4bit(ctx->Htable, ctx->H.u);
 | |
|         ctx->gmult = gcm_gmult_4bit;
 | |
|         CTX__GHASH(gcm_ghash_4bit);
 | |
|     }
 | |
| # elif  defined(GHASH_ASM_SPARC)
 | |
|     if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) {
 | |
|         gcm_init_vis3(ctx->Htable, ctx->H.u);
 | |
|         ctx->gmult = gcm_gmult_vis3;
 | |
|         CTX__GHASH(gcm_ghash_vis3);
 | |
|     } else {
 | |
|         gcm_init_4bit(ctx->Htable, ctx->H.u);
 | |
|         ctx->gmult = gcm_gmult_4bit;
 | |
|         CTX__GHASH(gcm_ghash_4bit);
 | |
|     }
 | |
| # elif  defined(GHASH_ASM_PPC)
 | |
|     if (OPENSSL_ppccap_P & PPC_CRYPTO207) {
 | |
|         gcm_init_p8(ctx->Htable, ctx->H.u);
 | |
|         ctx->gmult = gcm_gmult_p8;
 | |
|         CTX__GHASH(gcm_ghash_p8);
 | |
|     } else {
 | |
|         gcm_init_4bit(ctx->Htable, ctx->H.u);
 | |
|         ctx->gmult = gcm_gmult_4bit;
 | |
|         CTX__GHASH(gcm_ghash_4bit);
 | |
|     }
 | |
| # else
 | |
|     gcm_init_4bit(ctx->Htable, ctx->H.u);
 | |
| # endif
 | |
| # undef CTX__GHASH
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv,
 | |
|                          size_t len)
 | |
| {
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
|     unsigned int ctr;
 | |
| #ifdef GCM_FUNCREF_4BIT
 | |
|     void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
 | |
| #endif
 | |
| 
 | |
|     ctx->len.u[0] = 0;          /* AAD length */
 | |
|     ctx->len.u[1] = 0;          /* message length */
 | |
|     ctx->ares = 0;
 | |
|     ctx->mres = 0;
 | |
| 
 | |
|     if (len == 12) {
 | |
|         memcpy(ctx->Yi.c, iv, 12);
 | |
|         ctx->Yi.c[12] = 0;
 | |
|         ctx->Yi.c[13] = 0;
 | |
|         ctx->Yi.c[14] = 0;
 | |
|         ctx->Yi.c[15] = 1;
 | |
|         ctr = 1;
 | |
|     } else {
 | |
|         size_t i;
 | |
|         u64 len0 = len;
 | |
| 
 | |
|         /* Borrow ctx->Xi to calculate initial Yi */
 | |
|         ctx->Xi.u[0] = 0;
 | |
|         ctx->Xi.u[1] = 0;
 | |
| 
 | |
|         while (len >= 16) {
 | |
|             for (i = 0; i < 16; ++i)
 | |
|                 ctx->Xi.c[i] ^= iv[i];
 | |
|             GCM_MUL(ctx);
 | |
|             iv += 16;
 | |
|             len -= 16;
 | |
|         }
 | |
|         if (len) {
 | |
|             for (i = 0; i < len; ++i)
 | |
|                 ctx->Xi.c[i] ^= iv[i];
 | |
|             GCM_MUL(ctx);
 | |
|         }
 | |
|         len0 <<= 3;
 | |
|         if (is_endian.little) {
 | |
| #ifdef BSWAP8
 | |
|             ctx->Xi.u[1] ^= BSWAP8(len0);
 | |
| #else
 | |
|             ctx->Xi.c[8] ^= (u8)(len0 >> 56);
 | |
|             ctx->Xi.c[9] ^= (u8)(len0 >> 48);
 | |
|             ctx->Xi.c[10] ^= (u8)(len0 >> 40);
 | |
|             ctx->Xi.c[11] ^= (u8)(len0 >> 32);
 | |
|             ctx->Xi.c[12] ^= (u8)(len0 >> 24);
 | |
|             ctx->Xi.c[13] ^= (u8)(len0 >> 16);
 | |
|             ctx->Xi.c[14] ^= (u8)(len0 >> 8);
 | |
|             ctx->Xi.c[15] ^= (u8)(len0);
 | |
| #endif
 | |
|         } else {
 | |
|             ctx->Xi.u[1] ^= len0;
 | |
|         }
 | |
| 
 | |
|         GCM_MUL(ctx);
 | |
| 
 | |
|         if (is_endian.little)
 | |
| #ifdef BSWAP4
 | |
|             ctr = BSWAP4(ctx->Xi.d[3]);
 | |
| #else
 | |
|             ctr = GETU32(ctx->Xi.c + 12);
 | |
| #endif
 | |
|         else
 | |
|             ctr = ctx->Xi.d[3];
 | |
| 
 | |
|         /* Copy borrowed Xi to Yi */
 | |
|         ctx->Yi.u[0] = ctx->Xi.u[0];
 | |
|         ctx->Yi.u[1] = ctx->Xi.u[1];
 | |
|     }
 | |
| 
 | |
|     ctx->Xi.u[0] = 0;
 | |
|     ctx->Xi.u[1] = 0;
 | |
| 
 | |
|     (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key);
 | |
|     ++ctr;
 | |
|     if (is_endian.little)
 | |
| #ifdef BSWAP4
 | |
|         ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #else
 | |
|         PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #endif
 | |
|     else
 | |
|         ctx->Yi.d[3] = ctr;
 | |
| }
 | |
| 
 | |
| int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad,
 | |
|                       size_t len)
 | |
| {
 | |
|     size_t i;
 | |
|     unsigned int n;
 | |
|     u64 alen = ctx->len.u[0];
 | |
| #ifdef GCM_FUNCREF_4BIT
 | |
|     void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
 | |
| # ifdef GHASH
 | |
|     void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
 | |
|                          const u8 *inp, size_t len) = ctx->ghash;
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
|     if (ctx->len.u[1])
 | |
|         return -2;
 | |
| 
 | |
|     alen += len;
 | |
|     if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
 | |
|         return -1;
 | |
|     ctx->len.u[0] = alen;
 | |
| 
 | |
|     n = ctx->ares;
 | |
|     if (n) {
 | |
|         while (n && len) {
 | |
|             ctx->Xi.c[n] ^= *(aad++);
 | |
|             --len;
 | |
|             n = (n + 1) % 16;
 | |
|         }
 | |
|         if (n == 0)
 | |
|             GCM_MUL(ctx);
 | |
|         else {
 | |
|             ctx->ares = n;
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| #ifdef GHASH
 | |
|     if ((i = (len & (size_t)-16))) {
 | |
|         GHASH(ctx, aad, i);
 | |
|         aad += i;
 | |
|         len -= i;
 | |
|     }
 | |
| #else
 | |
|     while (len >= 16) {
 | |
|         for (i = 0; i < 16; ++i)
 | |
|             ctx->Xi.c[i] ^= aad[i];
 | |
|         GCM_MUL(ctx);
 | |
|         aad += 16;
 | |
|         len -= 16;
 | |
|     }
 | |
| #endif
 | |
|     if (len) {
 | |
|         n = (unsigned int)len;
 | |
|         for (i = 0; i < len; ++i)
 | |
|             ctx->Xi.c[i] ^= aad[i];
 | |
|     }
 | |
| 
 | |
|     ctx->ares = n;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
 | |
|                           const unsigned char *in, unsigned char *out,
 | |
|                           size_t len)
 | |
| {
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
|     unsigned int n, ctr, mres;
 | |
|     size_t i;
 | |
|     u64 mlen = ctx->len.u[1];
 | |
|     block128_f block = ctx->block;
 | |
|     void *key = ctx->key;
 | |
| #ifdef GCM_FUNCREF_4BIT
 | |
|     void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
 | |
| # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
 | |
|                          const u8 *inp, size_t len) = ctx->ghash;
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
|     mlen += len;
 | |
|     if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
 | |
|         return -1;
 | |
|     ctx->len.u[1] = mlen;
 | |
| 
 | |
|     mres = ctx->mres;
 | |
| 
 | |
|     if (ctx->ares) {
 | |
|         /* First call to encrypt finalizes GHASH(AAD) */
 | |
| #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|         if (len == 0) {
 | |
|             GCM_MUL(ctx);
 | |
|             ctx->ares = 0;
 | |
|             return 0;
 | |
|         }
 | |
|         memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
 | |
|         ctx->Xi.u[0] = 0;
 | |
|         ctx->Xi.u[1] = 0;
 | |
|         mres = sizeof(ctx->Xi);
 | |
| #else
 | |
|         GCM_MUL(ctx);
 | |
| #endif
 | |
|         ctx->ares = 0;
 | |
|     }
 | |
| 
 | |
|     if (is_endian.little)
 | |
| #ifdef BSWAP4
 | |
|         ctr = BSWAP4(ctx->Yi.d[3]);
 | |
| #else
 | |
|         ctr = GETU32(ctx->Yi.c + 12);
 | |
| #endif
 | |
|     else
 | |
|         ctr = ctx->Yi.d[3];
 | |
| 
 | |
|     n = mres % 16;
 | |
| #if !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     if (16 % sizeof(size_t) == 0) { /* always true actually */
 | |
|         do {
 | |
|             if (n) {
 | |
| # if defined(GHASH)
 | |
|                 while (n && len) {
 | |
|                     ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n];
 | |
|                     --len;
 | |
|                     n = (n + 1) % 16;
 | |
|                 }
 | |
|                 if (n == 0) {
 | |
|                     GHASH(ctx, ctx->Xn, mres);
 | |
|                     mres = 0;
 | |
|                 } else {
 | |
|                     ctx->mres = mres;
 | |
|                     return 0;
 | |
|                 }
 | |
| # else
 | |
|                 while (n && len) {
 | |
|                     ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
 | |
|                     --len;
 | |
|                     n = (n + 1) % 16;
 | |
|                 }
 | |
|                 if (n == 0) {
 | |
|                     GCM_MUL(ctx);
 | |
|                     mres = 0;
 | |
|                 } else {
 | |
|                     ctx->mres = n;
 | |
|                     return 0;
 | |
|                 }
 | |
| # endif
 | |
|             }
 | |
| # if defined(STRICT_ALIGNMENT)
 | |
|             if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
 | |
|                 break;
 | |
| # endif
 | |
| # if defined(GHASH)
 | |
|             if (len >= 16 && mres) {
 | |
|                 GHASH(ctx, ctx->Xn, mres);
 | |
|                 mres = 0;
 | |
|             }
 | |
| #  if defined(GHASH_CHUNK)
 | |
|             while (len >= GHASH_CHUNK) {
 | |
|                 size_t j = GHASH_CHUNK;
 | |
| 
 | |
|                 while (j) {
 | |
|                     size_t_aX *out_t = (size_t_aX *)out;
 | |
|                     const size_t_aX *in_t = (const size_t_aX *)in;
 | |
| 
 | |
|                     (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|                     ++ctr;
 | |
|                     if (is_endian.little)
 | |
| #   ifdef BSWAP4
 | |
|                         ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #   else
 | |
|                         PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #   endif
 | |
|                     else
 | |
|                         ctx->Yi.d[3] = ctr;
 | |
|                     for (i = 0; i < 16 / sizeof(size_t); ++i)
 | |
|                         out_t[i] = in_t[i] ^ ctx->EKi.t[i];
 | |
|                     out += 16;
 | |
|                     in += 16;
 | |
|                     j -= 16;
 | |
|                 }
 | |
|                 GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
 | |
|                 len -= GHASH_CHUNK;
 | |
|             }
 | |
| #  endif
 | |
|             if ((i = (len & (size_t)-16))) {
 | |
|                 size_t j = i;
 | |
| 
 | |
|                 while (len >= 16) {
 | |
|                     size_t_aX *out_t = (size_t_aX *)out;
 | |
|                     const size_t_aX *in_t = (const size_t_aX *)in;
 | |
| 
 | |
|                     (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|                     ++ctr;
 | |
|                     if (is_endian.little)
 | |
| #  ifdef BSWAP4
 | |
|                         ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #  else
 | |
|                         PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #  endif
 | |
|                     else
 | |
|                         ctx->Yi.d[3] = ctr;
 | |
|                     for (i = 0; i < 16 / sizeof(size_t); ++i)
 | |
|                         out_t[i] = in_t[i] ^ ctx->EKi.t[i];
 | |
|                     out += 16;
 | |
|                     in += 16;
 | |
|                     len -= 16;
 | |
|                 }
 | |
|                 GHASH(ctx, out - j, j);
 | |
|             }
 | |
| # else
 | |
|             while (len >= 16) {
 | |
|                 size_t *out_t = (size_t *)out;
 | |
|                 const size_t *in_t = (const size_t *)in;
 | |
| 
 | |
|                 (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|                 ++ctr;
 | |
|                 if (is_endian.little)
 | |
| #  ifdef BSWAP4
 | |
|                     ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #  else
 | |
|                     PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #  endif
 | |
|                 else
 | |
|                     ctx->Yi.d[3] = ctr;
 | |
|                 for (i = 0; i < 16 / sizeof(size_t); ++i)
 | |
|                     ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i];
 | |
|                 GCM_MUL(ctx);
 | |
|                 out += 16;
 | |
|                 in += 16;
 | |
|                 len -= 16;
 | |
|             }
 | |
| # endif
 | |
|             if (len) {
 | |
|                 (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|                 ++ctr;
 | |
|                 if (is_endian.little)
 | |
| # ifdef BSWAP4
 | |
|                     ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| # else
 | |
|                     PUTU32(ctx->Yi.c + 12, ctr);
 | |
| # endif
 | |
|                 else
 | |
|                     ctx->Yi.d[3] = ctr;
 | |
| # if defined(GHASH)
 | |
|                 while (len--) {
 | |
|                     ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n];
 | |
|                     ++n;
 | |
|                 }
 | |
| # else
 | |
|                 while (len--) {
 | |
|                     ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
 | |
|                     ++n;
 | |
|                 }
 | |
|                 mres = n;
 | |
| # endif
 | |
|             }
 | |
| 
 | |
|             ctx->mres = mres;
 | |
|             return 0;
 | |
|         } while (0);
 | |
|     }
 | |
| #endif
 | |
|     for (i = 0; i < len; ++i) {
 | |
|         if (n == 0) {
 | |
|             (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|             ++ctr;
 | |
|             if (is_endian.little)
 | |
| #ifdef BSWAP4
 | |
|                 ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #else
 | |
|                 PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #endif
 | |
|             else
 | |
|                 ctx->Yi.d[3] = ctr;
 | |
|         }
 | |
| #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|         ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n];
 | |
|         n = (n + 1) % 16;
 | |
|         if (mres == sizeof(ctx->Xn)) {
 | |
|             GHASH(ctx,ctx->Xn,sizeof(ctx->Xn));
 | |
|             mres = 0;
 | |
|         }
 | |
| #else
 | |
|         ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];
 | |
|         mres = n = (n + 1) % 16;
 | |
|         if (n == 0)
 | |
|             GCM_MUL(ctx);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     ctx->mres = mres;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
 | |
|                           const unsigned char *in, unsigned char *out,
 | |
|                           size_t len)
 | |
| {
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
|     unsigned int n, ctr, mres;
 | |
|     size_t i;
 | |
|     u64 mlen = ctx->len.u[1];
 | |
|     block128_f block = ctx->block;
 | |
|     void *key = ctx->key;
 | |
| #ifdef GCM_FUNCREF_4BIT
 | |
|     void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
 | |
| # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
 | |
|                          const u8 *inp, size_t len) = ctx->ghash;
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
|     mlen += len;
 | |
|     if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
 | |
|         return -1;
 | |
|     ctx->len.u[1] = mlen;
 | |
| 
 | |
|     mres = ctx->mres;
 | |
| 
 | |
|     if (ctx->ares) {
 | |
|         /* First call to decrypt finalizes GHASH(AAD) */
 | |
| #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|         if (len == 0) {
 | |
|             GCM_MUL(ctx);
 | |
|             ctx->ares = 0;
 | |
|             return 0;
 | |
|         }
 | |
|         memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
 | |
|         ctx->Xi.u[0] = 0;
 | |
|         ctx->Xi.u[1] = 0;
 | |
|         mres = sizeof(ctx->Xi);
 | |
| #else
 | |
|         GCM_MUL(ctx);
 | |
| #endif
 | |
|         ctx->ares = 0;
 | |
|     }
 | |
| 
 | |
|     if (is_endian.little)
 | |
| #ifdef BSWAP4
 | |
|         ctr = BSWAP4(ctx->Yi.d[3]);
 | |
| #else
 | |
|         ctr = GETU32(ctx->Yi.c + 12);
 | |
| #endif
 | |
|     else
 | |
|         ctr = ctx->Yi.d[3];
 | |
| 
 | |
|     n = mres % 16;
 | |
| #if !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     if (16 % sizeof(size_t) == 0) { /* always true actually */
 | |
|         do {
 | |
|             if (n) {
 | |
| # if defined(GHASH)
 | |
|                 while (n && len) {
 | |
|                     *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n];
 | |
|                     --len;
 | |
|                     n = (n + 1) % 16;
 | |
|                 }
 | |
|                 if (n == 0) {
 | |
|                     GHASH(ctx, ctx->Xn, mres);
 | |
|                     mres = 0;
 | |
|                 } else {
 | |
|                     ctx->mres = mres;
 | |
|                     return 0;
 | |
|                 }
 | |
| # else
 | |
|                 while (n && len) {
 | |
|                     u8 c = *(in++);
 | |
|                     *(out++) = c ^ ctx->EKi.c[n];
 | |
|                     ctx->Xi.c[n] ^= c;
 | |
|                     --len;
 | |
|                     n = (n + 1) % 16;
 | |
|                 }
 | |
|                 if (n == 0) {
 | |
|                     GCM_MUL(ctx);
 | |
|                     mres = 0;
 | |
|                 } else {
 | |
|                     ctx->mres = n;
 | |
|                     return 0;
 | |
|                 }
 | |
| # endif
 | |
|             }
 | |
| # if defined(STRICT_ALIGNMENT)
 | |
|             if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)
 | |
|                 break;
 | |
| # endif
 | |
| # if defined(GHASH)
 | |
|             if (len >= 16 && mres) {
 | |
|                 GHASH(ctx, ctx->Xn, mres);
 | |
|                 mres = 0;
 | |
|             }
 | |
| #  if defined(GHASH_CHUNK)
 | |
|             while (len >= GHASH_CHUNK) {
 | |
|                 size_t j = GHASH_CHUNK;
 | |
| 
 | |
|                 GHASH(ctx, in, GHASH_CHUNK);
 | |
|                 while (j) {
 | |
|                     size_t_aX *out_t = (size_t_aX *)out;
 | |
|                     const size_t_aX *in_t = (const size_t_aX *)in;
 | |
| 
 | |
|                     (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|                     ++ctr;
 | |
|                     if (is_endian.little)
 | |
| #   ifdef BSWAP4
 | |
|                         ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #   else
 | |
|                         PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #   endif
 | |
|                     else
 | |
|                         ctx->Yi.d[3] = ctr;
 | |
|                     for (i = 0; i < 16 / sizeof(size_t); ++i)
 | |
|                         out_t[i] = in_t[i] ^ ctx->EKi.t[i];
 | |
|                     out += 16;
 | |
|                     in += 16;
 | |
|                     j -= 16;
 | |
|                 }
 | |
|                 len -= GHASH_CHUNK;
 | |
|             }
 | |
| #  endif
 | |
|             if ((i = (len & (size_t)-16))) {
 | |
|                 GHASH(ctx, in, i);
 | |
|                 while (len >= 16) {
 | |
|                     size_t_aX *out_t = (size_t_aX *)out;
 | |
|                     const size_t_aX *in_t = (const size_t_aX *)in;
 | |
| 
 | |
|                     (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|                     ++ctr;
 | |
|                     if (is_endian.little)
 | |
| #  ifdef BSWAP4
 | |
|                         ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #  else
 | |
|                         PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #  endif
 | |
|                     else
 | |
|                         ctx->Yi.d[3] = ctr;
 | |
|                     for (i = 0; i < 16 / sizeof(size_t); ++i)
 | |
|                         out_t[i] = in_t[i] ^ ctx->EKi.t[i];
 | |
|                     out += 16;
 | |
|                     in += 16;
 | |
|                     len -= 16;
 | |
|                 }
 | |
|             }
 | |
| # else
 | |
|             while (len >= 16) {
 | |
|                 size_t *out_t = (size_t *)out;
 | |
|                 const size_t *in_t = (const size_t *)in;
 | |
| 
 | |
|                 (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|                 ++ctr;
 | |
|                 if (is_endian.little)
 | |
| #  ifdef BSWAP4
 | |
|                     ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #  else
 | |
|                     PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #  endif
 | |
|                 else
 | |
|                     ctx->Yi.d[3] = ctr;
 | |
|                 for (i = 0; i < 16 / sizeof(size_t); ++i) {
 | |
|                     size_t c = in_t[i];
 | |
|                     out_t[i] = c ^ ctx->EKi.t[i];
 | |
|                     ctx->Xi.t[i] ^= c;
 | |
|                 }
 | |
|                 GCM_MUL(ctx);
 | |
|                 out += 16;
 | |
|                 in += 16;
 | |
|                 len -= 16;
 | |
|             }
 | |
| # endif
 | |
|             if (len) {
 | |
|                 (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|                 ++ctr;
 | |
|                 if (is_endian.little)
 | |
| # ifdef BSWAP4
 | |
|                     ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| # else
 | |
|                     PUTU32(ctx->Yi.c + 12, ctr);
 | |
| # endif
 | |
|                 else
 | |
|                     ctx->Yi.d[3] = ctr;
 | |
| # if defined(GHASH)
 | |
|                 while (len--) {
 | |
|                     out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n];
 | |
|                     ++n;
 | |
|                 }
 | |
| # else
 | |
|                 while (len--) {
 | |
|                     u8 c = in[n];
 | |
|                     ctx->Xi.c[n] ^= c;
 | |
|                     out[n] = c ^ ctx->EKi.c[n];
 | |
|                     ++n;
 | |
|                 }
 | |
|                 mres = n;
 | |
| # endif
 | |
|             }
 | |
| 
 | |
|             ctx->mres = mres;
 | |
|             return 0;
 | |
|         } while (0);
 | |
|     }
 | |
| #endif
 | |
|     for (i = 0; i < len; ++i) {
 | |
|         u8 c;
 | |
|         if (n == 0) {
 | |
|             (*block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|             ++ctr;
 | |
|             if (is_endian.little)
 | |
| #ifdef BSWAP4
 | |
|                 ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #else
 | |
|                 PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #endif
 | |
|             else
 | |
|                 ctx->Yi.d[3] = ctr;
 | |
|         }
 | |
| #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|         out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n];
 | |
|         n = (n + 1) % 16;
 | |
|         if (mres == sizeof(ctx->Xn)) {
 | |
|             GHASH(ctx,ctx->Xn,sizeof(ctx->Xn));
 | |
|             mres = 0;
 | |
|         }
 | |
| #else
 | |
|         c = in[i];
 | |
|         out[i] = c ^ ctx->EKi.c[n];
 | |
|         ctx->Xi.c[n] ^= c;
 | |
|         mres = n = (n + 1) % 16;
 | |
|         if (n == 0)
 | |
|             GCM_MUL(ctx);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     ctx->mres = mres;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
 | |
|                                 const unsigned char *in, unsigned char *out,
 | |
|                                 size_t len, ctr128_f stream)
 | |
| {
 | |
| #if defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     return CRYPTO_gcm128_encrypt(ctx, in, out, len);
 | |
| #else
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
|     unsigned int n, ctr, mres;
 | |
|     size_t i;
 | |
|     u64 mlen = ctx->len.u[1];
 | |
|     void *key = ctx->key;
 | |
| # ifdef GCM_FUNCREF_4BIT
 | |
|     void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
 | |
| #  ifdef GHASH
 | |
|     void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
 | |
|                          const u8 *inp, size_t len) = ctx->ghash;
 | |
| #  endif
 | |
| # endif
 | |
| 
 | |
|     mlen += len;
 | |
|     if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
 | |
|         return -1;
 | |
|     ctx->len.u[1] = mlen;
 | |
| 
 | |
|     mres = ctx->mres;
 | |
| 
 | |
|     if (ctx->ares) {
 | |
|         /* First call to encrypt finalizes GHASH(AAD) */
 | |
| #if defined(GHASH)
 | |
|         if (len == 0) {
 | |
|             GCM_MUL(ctx);
 | |
|             ctx->ares = 0;
 | |
|             return 0;
 | |
|         }
 | |
|         memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
 | |
|         ctx->Xi.u[0] = 0;
 | |
|         ctx->Xi.u[1] = 0;
 | |
|         mres = sizeof(ctx->Xi);
 | |
| #else
 | |
|         GCM_MUL(ctx);
 | |
| #endif
 | |
|         ctx->ares = 0;
 | |
|     }
 | |
| 
 | |
|     if (is_endian.little)
 | |
| # ifdef BSWAP4
 | |
|         ctr = BSWAP4(ctx->Yi.d[3]);
 | |
| # else
 | |
|         ctr = GETU32(ctx->Yi.c + 12);
 | |
| # endif
 | |
|     else
 | |
|         ctr = ctx->Yi.d[3];
 | |
| 
 | |
|     n = mres % 16;
 | |
|     if (n) {
 | |
| # if defined(GHASH)
 | |
|         while (n && len) {
 | |
|             ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n];
 | |
|             --len;
 | |
|             n = (n + 1) % 16;
 | |
|         }
 | |
|         if (n == 0) {
 | |
|             GHASH(ctx, ctx->Xn, mres);
 | |
|             mres = 0;
 | |
|         } else {
 | |
|             ctx->mres = mres;
 | |
|             return 0;
 | |
|         }
 | |
| # else
 | |
|         while (n && len) {
 | |
|             ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
 | |
|             --len;
 | |
|             n = (n + 1) % 16;
 | |
|         }
 | |
|         if (n == 0) {
 | |
|             GCM_MUL(ctx);
 | |
|             mres = 0;
 | |
|         } else {
 | |
|             ctx->mres = n;
 | |
|             return 0;
 | |
|         }
 | |
| # endif
 | |
|     }
 | |
| # if defined(GHASH)
 | |
|         if (len >= 16 && mres) {
 | |
|             GHASH(ctx, ctx->Xn, mres);
 | |
|             mres = 0;
 | |
|         }
 | |
| #  if defined(GHASH_CHUNK)
 | |
|     while (len >= GHASH_CHUNK) {
 | |
|         (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
 | |
|         ctr += GHASH_CHUNK / 16;
 | |
|         if (is_endian.little)
 | |
| #   ifdef BSWAP4
 | |
|             ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #   else
 | |
|             PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #   endif
 | |
|         else
 | |
|             ctx->Yi.d[3] = ctr;
 | |
|         GHASH(ctx, out, GHASH_CHUNK);
 | |
|         out += GHASH_CHUNK;
 | |
|         in += GHASH_CHUNK;
 | |
|         len -= GHASH_CHUNK;
 | |
|     }
 | |
| #  endif
 | |
| # endif
 | |
|     if ((i = (len & (size_t)-16))) {
 | |
|         size_t j = i / 16;
 | |
| 
 | |
|         (*stream) (in, out, j, key, ctx->Yi.c);
 | |
|         ctr += (unsigned int)j;
 | |
|         if (is_endian.little)
 | |
| # ifdef BSWAP4
 | |
|             ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| # else
 | |
|             PUTU32(ctx->Yi.c + 12, ctr);
 | |
| # endif
 | |
|         else
 | |
|             ctx->Yi.d[3] = ctr;
 | |
|         in += i;
 | |
|         len -= i;
 | |
| # if defined(GHASH)
 | |
|         GHASH(ctx, out, i);
 | |
|         out += i;
 | |
| # else
 | |
|         while (j--) {
 | |
|             for (i = 0; i < 16; ++i)
 | |
|                 ctx->Xi.c[i] ^= out[i];
 | |
|             GCM_MUL(ctx);
 | |
|             out += 16;
 | |
|         }
 | |
| # endif
 | |
|     }
 | |
|     if (len) {
 | |
|         (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|         ++ctr;
 | |
|         if (is_endian.little)
 | |
| # ifdef BSWAP4
 | |
|             ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| # else
 | |
|             PUTU32(ctx->Yi.c + 12, ctr);
 | |
| # endif
 | |
|         else
 | |
|             ctx->Yi.d[3] = ctr;
 | |
|         while (len--) {
 | |
| # if defined(GHASH)
 | |
|             ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n];
 | |
| # else
 | |
|             ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n];
 | |
| # endif
 | |
|             ++n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ctx->mres = mres;
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
 | |
|                                 const unsigned char *in, unsigned char *out,
 | |
|                                 size_t len, ctr128_f stream)
 | |
| {
 | |
| #if defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     return CRYPTO_gcm128_decrypt(ctx, in, out, len);
 | |
| #else
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
|     unsigned int n, ctr, mres;
 | |
|     size_t i;
 | |
|     u64 mlen = ctx->len.u[1];
 | |
|     void *key = ctx->key;
 | |
| # ifdef GCM_FUNCREF_4BIT
 | |
|     void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
 | |
| #  ifdef GHASH
 | |
|     void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
 | |
|                          const u8 *inp, size_t len) = ctx->ghash;
 | |
| #  endif
 | |
| # endif
 | |
| 
 | |
|     mlen += len;
 | |
|     if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
 | |
|         return -1;
 | |
|     ctx->len.u[1] = mlen;
 | |
| 
 | |
|     mres = ctx->mres;
 | |
| 
 | |
|     if (ctx->ares) {
 | |
|         /* First call to decrypt finalizes GHASH(AAD) */
 | |
| # if defined(GHASH)
 | |
|         if (len == 0) {
 | |
|             GCM_MUL(ctx);
 | |
|             ctx->ares = 0;
 | |
|             return 0;
 | |
|         }
 | |
|         memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));
 | |
|         ctx->Xi.u[0] = 0;
 | |
|         ctx->Xi.u[1] = 0;
 | |
|         mres = sizeof(ctx->Xi);
 | |
| # else
 | |
|         GCM_MUL(ctx);
 | |
| # endif
 | |
|         ctx->ares = 0;
 | |
|     }
 | |
| 
 | |
|     if (is_endian.little)
 | |
| # ifdef BSWAP4
 | |
|         ctr = BSWAP4(ctx->Yi.d[3]);
 | |
| # else
 | |
|         ctr = GETU32(ctx->Yi.c + 12);
 | |
| # endif
 | |
|     else
 | |
|         ctr = ctx->Yi.d[3];
 | |
| 
 | |
|     n = mres % 16;
 | |
|     if (n) {
 | |
| # if defined(GHASH)
 | |
|         while (n && len) {
 | |
|             *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n];
 | |
|             --len;
 | |
|             n = (n + 1) % 16;
 | |
|         }
 | |
|         if (n == 0) {
 | |
|             GHASH(ctx, ctx->Xn, mres);
 | |
|             mres = 0;
 | |
|         } else {
 | |
|             ctx->mres = mres;
 | |
|             return 0;
 | |
|         }
 | |
| # else
 | |
|         while (n && len) {
 | |
|             u8 c = *(in++);
 | |
|             *(out++) = c ^ ctx->EKi.c[n];
 | |
|             ctx->Xi.c[n] ^= c;
 | |
|             --len;
 | |
|             n = (n + 1) % 16;
 | |
|         }
 | |
|         if (n == 0) {
 | |
|             GCM_MUL(ctx);
 | |
|             mres = 0;
 | |
|         } else {
 | |
|             ctx->mres = n;
 | |
|             return 0;
 | |
|         }
 | |
| # endif
 | |
|     }
 | |
| # if defined(GHASH)
 | |
|     if (len >= 16 && mres) {
 | |
|         GHASH(ctx, ctx->Xn, mres);
 | |
|         mres = 0;
 | |
|     }
 | |
| #  if defined(GHASH_CHUNK)
 | |
|     while (len >= GHASH_CHUNK) {
 | |
|         GHASH(ctx, in, GHASH_CHUNK);
 | |
|         (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
 | |
|         ctr += GHASH_CHUNK / 16;
 | |
|         if (is_endian.little)
 | |
| #   ifdef BSWAP4
 | |
|             ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| #   else
 | |
|             PUTU32(ctx->Yi.c + 12, ctr);
 | |
| #   endif
 | |
|         else
 | |
|             ctx->Yi.d[3] = ctr;
 | |
|         out += GHASH_CHUNK;
 | |
|         in += GHASH_CHUNK;
 | |
|         len -= GHASH_CHUNK;
 | |
|     }
 | |
| #  endif
 | |
| # endif
 | |
|     if ((i = (len & (size_t)-16))) {
 | |
|         size_t j = i / 16;
 | |
| 
 | |
| # if defined(GHASH)
 | |
|         GHASH(ctx, in, i);
 | |
| # else
 | |
|         while (j--) {
 | |
|             size_t k;
 | |
|             for (k = 0; k < 16; ++k)
 | |
|                 ctx->Xi.c[k] ^= in[k];
 | |
|             GCM_MUL(ctx);
 | |
|             in += 16;
 | |
|         }
 | |
|         j = i / 16;
 | |
|         in -= i;
 | |
| # endif
 | |
|         (*stream) (in, out, j, key, ctx->Yi.c);
 | |
|         ctr += (unsigned int)j;
 | |
|         if (is_endian.little)
 | |
| # ifdef BSWAP4
 | |
|             ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| # else
 | |
|             PUTU32(ctx->Yi.c + 12, ctr);
 | |
| # endif
 | |
|         else
 | |
|             ctx->Yi.d[3] = ctr;
 | |
|         out += i;
 | |
|         in += i;
 | |
|         len -= i;
 | |
|     }
 | |
|     if (len) {
 | |
|         (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);
 | |
|         ++ctr;
 | |
|         if (is_endian.little)
 | |
| # ifdef BSWAP4
 | |
|             ctx->Yi.d[3] = BSWAP4(ctr);
 | |
| # else
 | |
|             PUTU32(ctx->Yi.c + 12, ctr);
 | |
| # endif
 | |
|         else
 | |
|             ctx->Yi.d[3] = ctr;
 | |
|         while (len--) {
 | |
| # if defined(GHASH)
 | |
|             out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n];
 | |
| # else
 | |
|             u8 c = in[n];
 | |
|             ctx->Xi.c[mres++] ^= c;
 | |
|             out[n] = c ^ ctx->EKi.c[n];
 | |
| # endif
 | |
|             ++n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ctx->mres = mres;
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag,
 | |
|                          size_t len)
 | |
| {
 | |
|     const union {
 | |
|         long one;
 | |
|         char little;
 | |
|     } is_endian = { 1 };
 | |
|     u64 alen = ctx->len.u[0] << 3;
 | |
|     u64 clen = ctx->len.u[1] << 3;
 | |
| #ifdef GCM_FUNCREF_4BIT
 | |
|     void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult;
 | |
| # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16],
 | |
|                          const u8 *inp, size_t len) = ctx->ghash;
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     u128 bitlen;
 | |
|     unsigned int mres = ctx->mres;
 | |
| 
 | |
|     if (mres) {
 | |
|         unsigned blocks = (mres + 15) & -16;
 | |
| 
 | |
|         memset(ctx->Xn + mres, 0, blocks - mres);
 | |
|         mres = blocks;
 | |
|         if (mres == sizeof(ctx->Xn)) {
 | |
|             GHASH(ctx, ctx->Xn, mres);
 | |
|             mres = 0;
 | |
|         }
 | |
|     } else if (ctx->ares) {
 | |
|         GCM_MUL(ctx);
 | |
|     }
 | |
| #else
 | |
|     if (ctx->mres || ctx->ares)
 | |
|         GCM_MUL(ctx);
 | |
| #endif
 | |
| 
 | |
|     if (is_endian.little) {
 | |
| #ifdef BSWAP8
 | |
|         alen = BSWAP8(alen);
 | |
|         clen = BSWAP8(clen);
 | |
| #else
 | |
|         u8 *p = ctx->len.c;
 | |
| 
 | |
|         ctx->len.u[0] = alen;
 | |
|         ctx->len.u[1] = clen;
 | |
| 
 | |
|         alen = (u64)GETU32(p) << 32 | GETU32(p + 4);
 | |
|         clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
 | |
|     bitlen.hi = alen;
 | |
|     bitlen.lo = clen;
 | |
|     memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen));
 | |
|     mres += sizeof(bitlen);
 | |
|     GHASH(ctx, ctx->Xn, mres);
 | |
| #else
 | |
|     ctx->Xi.u[0] ^= alen;
 | |
|     ctx->Xi.u[1] ^= clen;
 | |
|     GCM_MUL(ctx);
 | |
| #endif
 | |
| 
 | |
|     ctx->Xi.u[0] ^= ctx->EK0.u[0];
 | |
|     ctx->Xi.u[1] ^= ctx->EK0.u[1];
 | |
| 
 | |
|     if (tag && len <= sizeof(ctx->Xi))
 | |
|         return CRYPTO_memcmp(ctx->Xi.c, tag, len);
 | |
|     else
 | |
|         return -1;
 | |
| }
 | |
| 
 | |
| void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len)
 | |
| {
 | |
|     CRYPTO_gcm128_finish(ctx, NULL, 0);
 | |
|     memcpy(tag, ctx->Xi.c,
 | |
|            len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));
 | |
| }
 | |
| 
 | |
| GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block)
 | |
| {
 | |
|     GCM128_CONTEXT *ret;
 | |
| 
 | |
|     if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL)
 | |
|         CRYPTO_gcm128_init(ret, key, block);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx)
 | |
| {
 | |
|     OPENSSL_clear_free(ctx, sizeof(*ctx));
 | |
| }
 |