mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			140 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 *
 | 
						|
 * Licensed under the OpenSSL license (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 */
 | 
						|
 | 
						|
#include "internal/cryptlib.h"
 | 
						|
#include "bn_lcl.h"
 | 
						|
 | 
						|
/* least significant word */
 | 
						|
#define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
 | 
						|
 | 
						|
/* Returns -2 for errors because both -1 and 0 are valid results. */
 | 
						|
int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int ret = -2;               /* avoid 'uninitialized' warning */
 | 
						|
    int err = 0;
 | 
						|
    BIGNUM *A, *B, *tmp;
 | 
						|
    /*-
 | 
						|
     * In 'tab', only odd-indexed entries are relevant:
 | 
						|
     * For any odd BIGNUM n,
 | 
						|
     *     tab[BN_lsw(n) & 7]
 | 
						|
     * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
 | 
						|
     * Note that the sign of n does not matter.
 | 
						|
     */
 | 
						|
    static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 };
 | 
						|
 | 
						|
    bn_check_top(a);
 | 
						|
    bn_check_top(b);
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    A = BN_CTX_get(ctx);
 | 
						|
    B = BN_CTX_get(ctx);
 | 
						|
    if (B == NULL)
 | 
						|
        goto end;
 | 
						|
 | 
						|
    err = !BN_copy(A, a);
 | 
						|
    if (err)
 | 
						|
        goto end;
 | 
						|
    err = !BN_copy(B, b);
 | 
						|
    if (err)
 | 
						|
        goto end;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Kronecker symbol, implemented according to Henri Cohen,
 | 
						|
     * "A Course in Computational Algebraic Number Theory"
 | 
						|
     * (algorithm 1.4.10).
 | 
						|
     */
 | 
						|
 | 
						|
    /* Cohen's step 1: */
 | 
						|
 | 
						|
    if (BN_is_zero(B)) {
 | 
						|
        ret = BN_abs_is_word(A, 1);
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Cohen's step 2: */
 | 
						|
 | 
						|
    if (!BN_is_odd(A) && !BN_is_odd(B)) {
 | 
						|
        ret = 0;
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
 | 
						|
    /* now  B  is non-zero */
 | 
						|
    i = 0;
 | 
						|
    while (!BN_is_bit_set(B, i))
 | 
						|
        i++;
 | 
						|
    err = !BN_rshift(B, B, i);
 | 
						|
    if (err)
 | 
						|
        goto end;
 | 
						|
    if (i & 1) {
 | 
						|
        /* i is odd */
 | 
						|
        /* (thus  B  was even, thus  A  must be odd!)  */
 | 
						|
 | 
						|
        /* set 'ret' to $(-1)^{(A^2-1)/8}$ */
 | 
						|
        ret = tab[BN_lsw(A) & 7];
 | 
						|
    } else {
 | 
						|
        /* i is even */
 | 
						|
        ret = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (B->neg) {
 | 
						|
        B->neg = 0;
 | 
						|
        if (A->neg)
 | 
						|
            ret = -ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * now B is positive and odd, so what remains to be done is to compute
 | 
						|
     * the Jacobi symbol (A/B) and multiply it by 'ret'
 | 
						|
     */
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        /* Cohen's step 3: */
 | 
						|
 | 
						|
        /*  B  is positive and odd */
 | 
						|
 | 
						|
        if (BN_is_zero(A)) {
 | 
						|
            ret = BN_is_one(B) ? ret : 0;
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
 | 
						|
        /* now  A  is non-zero */
 | 
						|
        i = 0;
 | 
						|
        while (!BN_is_bit_set(A, i))
 | 
						|
            i++;
 | 
						|
        err = !BN_rshift(A, A, i);
 | 
						|
        if (err)
 | 
						|
            goto end;
 | 
						|
        if (i & 1) {
 | 
						|
            /* i is odd */
 | 
						|
            /* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */
 | 
						|
            ret = ret * tab[BN_lsw(B) & 7];
 | 
						|
        }
 | 
						|
 | 
						|
        /* Cohen's step 4: */
 | 
						|
        /* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */
 | 
						|
        if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
 | 
						|
            ret = -ret;
 | 
						|
 | 
						|
        /* (A, B) := (B mod |A|, |A|) */
 | 
						|
        err = !BN_nnmod(B, B, A, ctx);
 | 
						|
        if (err)
 | 
						|
            goto end;
 | 
						|
        tmp = A;
 | 
						|
        A = B;
 | 
						|
        B = tmp;
 | 
						|
        tmp->neg = 0;
 | 
						|
    }
 | 
						|
 end:
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    if (err)
 | 
						|
        return -2;
 | 
						|
    else
 | 
						|
        return ret;
 | 
						|
}
 |