mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			394 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * NB: these functions have been "upgraded", the deprecated versions (which
 | |
|  * are compatibility wrappers using these functions) are in rsa_depr.c. -
 | |
|  * Geoff
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <time.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include <openssl/bn.h>
 | |
| #include "rsa_locl.h"
 | |
| 
 | |
| static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
 | |
|                               BN_GENCB *cb);
 | |
| 
 | |
| /*
 | |
|  * NB: this wrapper would normally be placed in rsa_lib.c and the static
 | |
|  * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
 | |
|  * so that we don't introduce a new linker dependency. Eg. any application
 | |
|  * that wasn't previously linking object code related to key-generation won't
 | |
|  * have to now just because key-generation is part of RSA_METHOD.
 | |
|  */
 | |
| int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
 | |
| {
 | |
|     if (rsa->meth->rsa_keygen != NULL)
 | |
|         return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
 | |
| 
 | |
|     return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
 | |
|                                         e_value, cb);
 | |
| }
 | |
| 
 | |
| int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
 | |
|                                  BIGNUM *e_value, BN_GENCB *cb)
 | |
| {
 | |
|     /* multi-prime is only supported with the builtin key generation */
 | |
|     if (rsa->meth->rsa_multi_prime_keygen != NULL) {
 | |
|         return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
 | |
|                                                  e_value, cb);
 | |
|     } else if (rsa->meth->rsa_keygen != NULL) {
 | |
|         /*
 | |
|          * However, if rsa->meth implements only rsa_keygen, then we
 | |
|          * have to honour it in 2-prime case and assume that it wouldn't
 | |
|          * know what to do with multi-prime key generated by builtin
 | |
|          * subroutine...
 | |
|          */
 | |
|         if (primes == 2)
 | |
|             return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
 | |
|         else
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
 | |
| }
 | |
| 
 | |
| static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
 | |
|                               BN_GENCB *cb)
 | |
| {
 | |
|     BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
 | |
|     int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
 | |
|     int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
 | |
|     RSA_PRIME_INFO *pinfo = NULL;
 | |
|     STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
 | |
|     BN_CTX *ctx = NULL;
 | |
|     BN_ULONG bitst = 0;
 | |
|     unsigned long error = 0;
 | |
| 
 | |
|     if (bits < RSA_MIN_MODULUS_BITS) {
 | |
|         ok = 0;             /* we set our own err */
 | |
|         RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
 | |
|         ok = 0;             /* we set our own err */
 | |
|         RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ctx = BN_CTX_new();
 | |
|     if (ctx == NULL)
 | |
|         goto err;
 | |
|     BN_CTX_start(ctx);
 | |
|     r0 = BN_CTX_get(ctx);
 | |
|     r1 = BN_CTX_get(ctx);
 | |
|     r2 = BN_CTX_get(ctx);
 | |
|     if (r2 == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /* divide bits into 'primes' pieces evenly */
 | |
|     quo = bits / primes;
 | |
|     rmd = bits % primes;
 | |
| 
 | |
|     for (i = 0; i < primes; i++)
 | |
|         bitsr[i] = (i < rmd) ? quo + 1 : quo;
 | |
| 
 | |
|     /* We need the RSA components non-NULL */
 | |
|     if (!rsa->n && ((rsa->n = BN_new()) == NULL))
 | |
|         goto err;
 | |
|     if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
 | |
|         goto err;
 | |
|     if (!rsa->e && ((rsa->e = BN_new()) == NULL))
 | |
|         goto err;
 | |
|     if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
 | |
|         goto err;
 | |
|     if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
 | |
|         goto err;
 | |
|     if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
 | |
|         goto err;
 | |
|     if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
 | |
|         goto err;
 | |
|     if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
 | |
|         goto err;
 | |
| 
 | |
|     /* initialize multi-prime components */
 | |
|     if (primes > RSA_DEFAULT_PRIME_NUM) {
 | |
|         rsa->version = RSA_ASN1_VERSION_MULTI;
 | |
|         prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
 | |
|         if (prime_infos == NULL)
 | |
|             goto err;
 | |
|         if (rsa->prime_infos != NULL) {
 | |
|             /* could this happen? */
 | |
|             sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
 | |
|         }
 | |
|         rsa->prime_infos = prime_infos;
 | |
| 
 | |
|         /* prime_info from 2 to |primes| -1 */
 | |
|         for (i = 2; i < primes; i++) {
 | |
|             pinfo = rsa_multip_info_new();
 | |
|             if (pinfo == NULL)
 | |
|                 goto err;
 | |
|             (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (BN_copy(rsa->e, e_value) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /* generate p, q and other primes (if any) */
 | |
|     for (i = 0; i < primes; i++) {
 | |
|         adj = 0;
 | |
|         retries = 0;
 | |
| 
 | |
|         if (i == 0) {
 | |
|             prime = rsa->p;
 | |
|         } else if (i == 1) {
 | |
|             prime = rsa->q;
 | |
|         } else {
 | |
|             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
 | |
|             prime = pinfo->r;
 | |
|         }
 | |
|         BN_set_flags(prime, BN_FLG_CONSTTIME);
 | |
| 
 | |
|         for (;;) {
 | |
|  redo:
 | |
|             if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
 | |
|                 goto err;
 | |
|             /*
 | |
|              * prime should not be equal to p, q, r_3...
 | |
|              * (those primes prior to this one)
 | |
|              */
 | |
|             {
 | |
|                 int j;
 | |
| 
 | |
|                 for (j = 0; j < i; j++) {
 | |
|                     BIGNUM *prev_prime;
 | |
| 
 | |
|                     if (j == 0)
 | |
|                         prev_prime = rsa->p;
 | |
|                     else if (j == 1)
 | |
|                         prev_prime = rsa->q;
 | |
|                     else
 | |
|                         prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
 | |
|                                                              j - 2)->r;
 | |
| 
 | |
|                     if (!BN_cmp(prime, prev_prime)) {
 | |
|                         goto redo;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (!BN_sub(r2, prime, BN_value_one()))
 | |
|                 goto err;
 | |
|             ERR_set_mark();
 | |
|             BN_set_flags(r2, BN_FLG_CONSTTIME);
 | |
|             if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
 | |
|                /* GCD == 1 since inverse exists */
 | |
|                 break;
 | |
|             }
 | |
|             error = ERR_peek_last_error();
 | |
|             if (ERR_GET_LIB(error) == ERR_LIB_BN
 | |
|                 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
 | |
|                 /* GCD != 1 */
 | |
|                 ERR_pop_to_mark();
 | |
|             } else {
 | |
|                 goto err;
 | |
|             }
 | |
|             if (!BN_GENCB_call(cb, 2, n++))
 | |
|                 goto err;
 | |
|         }
 | |
| 
 | |
|         bitse += bitsr[i];
 | |
| 
 | |
|         /* calculate n immediately to see if it's sufficient */
 | |
|         if (i == 1) {
 | |
|             /* we get at least 2 primes */
 | |
|             if (!BN_mul(r1, rsa->p, rsa->q, ctx))
 | |
|                 goto err;
 | |
|         } else if (i != 0) {
 | |
|             /* modulus n = p * q * r_3 * r_4 ... */
 | |
|             if (!BN_mul(r1, rsa->n, prime, ctx))
 | |
|                 goto err;
 | |
|         } else {
 | |
|             /* i == 0, do nothing */
 | |
|             if (!BN_GENCB_call(cb, 3, i))
 | |
|                 goto err;
 | |
|             continue;
 | |
|         }
 | |
|         /*
 | |
|          * if |r1|, product of factors so far, is not as long as expected
 | |
|          * (by checking the first 4 bits are less than 0x9 or greater than
 | |
|          * 0xF). If so, re-generate the last prime.
 | |
|          *
 | |
|          * NOTE: This actually can't happen in two-prime case, because of
 | |
|          * the way factors are generated.
 | |
|          *
 | |
|          * Besides, another consideration is, for multi-prime case, even the
 | |
|          * length modulus is as long as expected, the modulus could start at
 | |
|          * 0x8, which could be utilized to distinguish a multi-prime private
 | |
|          * key by using the modulus in a certificate. This is also covered
 | |
|          * by checking the length should not be less than 0x9.
 | |
|          */
 | |
|         if (!BN_rshift(r2, r1, bitse - 4))
 | |
|             goto err;
 | |
|         bitst = BN_get_word(r2);
 | |
| 
 | |
|         if (bitst < 0x9 || bitst > 0xF) {
 | |
|             /*
 | |
|              * For keys with more than 4 primes, we attempt longer factor to
 | |
|              * meet length requirement.
 | |
|              *
 | |
|              * Otherwise, we just re-generate the prime with the same length.
 | |
|              *
 | |
|              * This strategy has the following goals:
 | |
|              *
 | |
|              * 1. 1024-bit factors are effcient when using 3072 and 4096-bit key
 | |
|              * 2. stay the same logic with normal 2-prime key
 | |
|              */
 | |
|             bitse -= bitsr[i];
 | |
|             if (!BN_GENCB_call(cb, 2, n++))
 | |
|                 goto err;
 | |
|             if (primes > 4) {
 | |
|                 if (bitst < 0x9)
 | |
|                     adj++;
 | |
|                 else
 | |
|                     adj--;
 | |
|             } else if (retries == 4) {
 | |
|                 /*
 | |
|                  * re-generate all primes from scratch, mainly used
 | |
|                  * in 4 prime case to avoid long loop. Max retry times
 | |
|                  * is set to 4.
 | |
|                  */
 | |
|                 i = -1;
 | |
|                 bitse = 0;
 | |
|                 continue;
 | |
|             }
 | |
|             retries++;
 | |
|             goto redo;
 | |
|         }
 | |
|         /* save product of primes for further use, for multi-prime only */
 | |
|         if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
 | |
|             goto err;
 | |
|         if (BN_copy(rsa->n, r1) == NULL)
 | |
|             goto err;
 | |
|         if (!BN_GENCB_call(cb, 3, i))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (BN_cmp(rsa->p, rsa->q) < 0) {
 | |
|         tmp = rsa->p;
 | |
|         rsa->p = rsa->q;
 | |
|         rsa->q = tmp;
 | |
|     }
 | |
| 
 | |
|     /* calculate d */
 | |
| 
 | |
|     /* p - 1 */
 | |
|     if (!BN_sub(r1, rsa->p, BN_value_one()))
 | |
|         goto err;
 | |
|     /* q - 1 */
 | |
|     if (!BN_sub(r2, rsa->q, BN_value_one()))
 | |
|         goto err;
 | |
|     /* (p - 1)(q - 1) */
 | |
|     if (!BN_mul(r0, r1, r2, ctx))
 | |
|         goto err;
 | |
|     /* multi-prime */
 | |
|     for (i = 2; i < primes; i++) {
 | |
|         pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
 | |
|         /* save r_i - 1 to pinfo->d temporarily */
 | |
|         if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
 | |
|             goto err;
 | |
|         if (!BN_mul(r0, r0, pinfo->d, ctx))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         BIGNUM *pr0 = BN_new();
 | |
| 
 | |
|         if (pr0 == NULL)
 | |
|             goto err;
 | |
| 
 | |
|         BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
 | |
|         if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
 | |
|             BN_free(pr0);
 | |
|             goto err;               /* d */
 | |
|         }
 | |
|         /* We MUST free pr0 before any further use of r0 */
 | |
|         BN_free(pr0);
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         BIGNUM *d = BN_new();
 | |
| 
 | |
|         if (d == NULL)
 | |
|             goto err;
 | |
| 
 | |
|         BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
 | |
| 
 | |
|         /* calculate d mod (p-1) and d mod (q - 1) */
 | |
|         if (!BN_mod(rsa->dmp1, d, r1, ctx)
 | |
|             || !BN_mod(rsa->dmq1, d, r2, ctx)) {
 | |
|             BN_free(d);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         /* calculate CRT exponents */
 | |
|         for (i = 2; i < primes; i++) {
 | |
|             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
 | |
|             /* pinfo->d == r_i - 1 */
 | |
|             if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
 | |
|                 BN_free(d);
 | |
|                 goto err;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* We MUST free d before any further use of rsa->d */
 | |
|         BN_free(d);
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         BIGNUM *p = BN_new();
 | |
| 
 | |
|         if (p == NULL)
 | |
|             goto err;
 | |
|         BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
 | |
| 
 | |
|         /* calculate inverse of q mod p */
 | |
|         if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
 | |
|             BN_free(p);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         /* calculate CRT coefficient for other primes */
 | |
|         for (i = 2; i < primes; i++) {
 | |
|             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
 | |
|             BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
 | |
|             if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
 | |
|                 BN_free(p);
 | |
|                 goto err;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* We MUST free p before any further use of rsa->p */
 | |
|         BN_free(p);
 | |
|     }
 | |
| 
 | |
|     ok = 1;
 | |
|  err:
 | |
|     if (ok == -1) {
 | |
|         RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN);
 | |
|         ok = 0;
 | |
|     }
 | |
|     if (ctx != NULL)
 | |
|         BN_CTX_end(ctx);
 | |
|     BN_CTX_free(ctx);
 | |
|     return ok;
 | |
| }
 |