mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1395 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1395 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include "internal/cryptlib.h"
 | |
| #include "internal/constant_time.h"
 | |
| #include "bn_local.h"
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #ifdef _WIN32
 | |
| # include <malloc.h>
 | |
| # ifndef alloca
 | |
| #  define alloca _alloca
 | |
| # endif
 | |
| #elif defined(__GNUC__)
 | |
| # ifndef alloca
 | |
| #  define alloca(s) __builtin_alloca((s))
 | |
| # endif
 | |
| #elif defined(__sun)
 | |
| # include <alloca.h>
 | |
| #endif
 | |
| 
 | |
| #include "rsaz_exp.h"
 | |
| 
 | |
| #undef SPARC_T4_MONT
 | |
| #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
 | |
| # include "sparc_arch.h"
 | |
| extern unsigned int OPENSSL_sparcv9cap_P[];
 | |
| # define SPARC_T4_MONT
 | |
| #endif
 | |
| 
 | |
| /* maximum precomputation table size for *variable* sliding windows */
 | |
| #define TABLE_SIZE      32
 | |
| 
 | |
| /* this one works - simple but works */
 | |
| int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
 | |
| {
 | |
|     int i, bits, ret = 0;
 | |
|     BIGNUM *v, *rr;
 | |
| 
 | |
|     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
 | |
|             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
 | |
|         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
 | |
|         BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r;
 | |
|     v = BN_CTX_get(ctx);
 | |
|     if (rr == NULL || v == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (BN_copy(v, a) == NULL)
 | |
|         goto err;
 | |
|     bits = BN_num_bits(p);
 | |
| 
 | |
|     if (BN_is_odd(p)) {
 | |
|         if (BN_copy(rr, a) == NULL)
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (!BN_one(rr))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i < bits; i++) {
 | |
|         if (!BN_sqr(v, v, ctx))
 | |
|             goto err;
 | |
|         if (BN_is_bit_set(p, i)) {
 | |
|             if (!BN_mul(rr, rr, v, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
|     }
 | |
|     if (r != rr && BN_copy(r, rr) == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     ret = 1;
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     bn_check_top(r);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
 | |
|                BN_CTX *ctx)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     bn_check_top(a);
 | |
|     bn_check_top(p);
 | |
|     bn_check_top(m);
 | |
| 
 | |
|     /*-
 | |
|      * For even modulus  m = 2^k*m_odd, it might make sense to compute
 | |
|      * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
 | |
|      * exponentiation for the odd part), using appropriate exponent
 | |
|      * reductions, and combine the results using the CRT.
 | |
|      *
 | |
|      * For now, we use Montgomery only if the modulus is odd; otherwise,
 | |
|      * exponentiation using the reciprocal-based quick remaindering
 | |
|      * algorithm is used.
 | |
|      *
 | |
|      * (Timing obtained with expspeed.c [computations  a^p mod m
 | |
|      * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
 | |
|      * 4096, 8192 bits], compared to the running time of the
 | |
|      * standard algorithm:
 | |
|      *
 | |
|      *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
 | |
|      *                     55 .. 77 %  [UltraSparc processor, but
 | |
|      *                                  debug-solaris-sparcv8-gcc conf.]
 | |
|      *
 | |
|      *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
 | |
|      *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
 | |
|      *
 | |
|      * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
 | |
|      * at 2048 and more bits, but at 512 and 1024 bits, it was
 | |
|      * slower even than the standard algorithm!
 | |
|      *
 | |
|      * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
 | |
|      * should be obtained when the new Montgomery reduction code
 | |
|      * has been integrated into OpenSSL.)
 | |
|      */
 | |
| 
 | |
| #define MONT_MUL_MOD
 | |
| #define MONT_EXP_WORD
 | |
| #define RECP_MUL_MOD
 | |
| 
 | |
| #ifdef MONT_MUL_MOD
 | |
|     if (BN_is_odd(m)) {
 | |
| # ifdef MONT_EXP_WORD
 | |
|         if (a->top == 1 && !a->neg
 | |
|             && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
 | |
|             && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
 | |
|             && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
 | |
|             BN_ULONG A = a->d[0];
 | |
|             ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
 | |
|         } else
 | |
| # endif
 | |
|             ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
 | |
|     } else
 | |
| #endif
 | |
| #ifdef RECP_MUL_MOD
 | |
|     {
 | |
|         ret = BN_mod_exp_recp(r, a, p, m, ctx);
 | |
|     }
 | |
| #else
 | |
|     {
 | |
|         ret = BN_mod_exp_simple(r, a, p, m, ctx);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     bn_check_top(r);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
 | |
|                     const BIGNUM *m, BN_CTX *ctx)
 | |
| {
 | |
|     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
 | |
|     int start = 1;
 | |
|     BIGNUM *aa;
 | |
|     /* Table of variables obtained from 'ctx' */
 | |
|     BIGNUM *val[TABLE_SIZE];
 | |
|     BN_RECP_CTX recp;
 | |
| 
 | |
|     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
 | |
|             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
 | |
|             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
 | |
|         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
 | |
|         BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     bits = BN_num_bits(p);
 | |
|     if (bits == 0) {
 | |
|         /* x**0 mod 1, or x**0 mod -1 is still zero. */
 | |
|         if (BN_abs_is_word(m, 1)) {
 | |
|             ret = 1;
 | |
|             BN_zero(r);
 | |
|         } else {
 | |
|             ret = BN_one(r);
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     aa = BN_CTX_get(ctx);
 | |
|     val[0] = BN_CTX_get(ctx);
 | |
|     if (val[0] == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     BN_RECP_CTX_init(&recp);
 | |
|     if (m->neg) {
 | |
|         /* ignore sign of 'm' */
 | |
|         if (!BN_copy(aa, m))
 | |
|             goto err;
 | |
|         aa->neg = 0;
 | |
|         if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (!BN_nnmod(val[0], a, m, ctx))
 | |
|         goto err;               /* 1 */
 | |
|     if (BN_is_zero(val[0])) {
 | |
|         BN_zero(r);
 | |
|         ret = 1;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     window = BN_window_bits_for_exponent_size(bits);
 | |
|     if (window > 1) {
 | |
|         if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
 | |
|             goto err;           /* 2 */
 | |
|         j = 1 << (window - 1);
 | |
|         for (i = 1; i < j; i++) {
 | |
|             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
 | |
|                 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     start = 1;                  /* This is used to avoid multiplication etc
 | |
|                                  * when there is only the value '1' in the
 | |
|                                  * buffer. */
 | |
|     wvalue = 0;                 /* The 'value' of the window */
 | |
|     wstart = bits - 1;          /* The top bit of the window */
 | |
|     wend = 0;                   /* The bottom bit of the window */
 | |
| 
 | |
|     if (!BN_one(r))
 | |
|         goto err;
 | |
| 
 | |
|     for (;;) {
 | |
|         if (BN_is_bit_set(p, wstart) == 0) {
 | |
|             if (!start)
 | |
|                 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
 | |
|                     goto err;
 | |
|             if (wstart == 0)
 | |
|                 break;
 | |
|             wstart--;
 | |
|             continue;
 | |
|         }
 | |
|         /*
 | |
|          * We now have wstart on a 'set' bit, we now need to work out how bit
 | |
|          * a window to do.  To do this we need to scan forward until the last
 | |
|          * set bit before the end of the window
 | |
|          */
 | |
|         j = wstart;
 | |
|         wvalue = 1;
 | |
|         wend = 0;
 | |
|         for (i = 1; i < window; i++) {
 | |
|             if (wstart - i < 0)
 | |
|                 break;
 | |
|             if (BN_is_bit_set(p, wstart - i)) {
 | |
|                 wvalue <<= (i - wend);
 | |
|                 wvalue |= 1;
 | |
|                 wend = i;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* wend is the size of the current window */
 | |
|         j = wend + 1;
 | |
|         /* add the 'bytes above' */
 | |
|         if (!start)
 | |
|             for (i = 0; i < j; i++) {
 | |
|                 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
 | |
|                     goto err;
 | |
|             }
 | |
| 
 | |
|         /* wvalue will be an odd number < 2^window */
 | |
|         if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
 | |
|             goto err;
 | |
| 
 | |
|         /* move the 'window' down further */
 | |
|         wstart -= wend + 1;
 | |
|         wvalue = 0;
 | |
|         start = 0;
 | |
|         if (wstart < 0)
 | |
|             break;
 | |
|     }
 | |
|     ret = 1;
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     BN_RECP_CTX_free(&recp);
 | |
|     bn_check_top(r);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
 | |
|                     const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
 | |
| {
 | |
|     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
 | |
|     int start = 1;
 | |
|     BIGNUM *d, *r;
 | |
|     const BIGNUM *aa;
 | |
|     /* Table of variables obtained from 'ctx' */
 | |
|     BIGNUM *val[TABLE_SIZE];
 | |
|     BN_MONT_CTX *mont = NULL;
 | |
| 
 | |
|     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
 | |
|             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
 | |
|             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
 | |
|         return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
 | |
|     }
 | |
| 
 | |
|     bn_check_top(a);
 | |
|     bn_check_top(p);
 | |
|     bn_check_top(m);
 | |
| 
 | |
|     if (!BN_is_odd(m)) {
 | |
|         BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS);
 | |
|         return 0;
 | |
|     }
 | |
|     bits = BN_num_bits(p);
 | |
|     if (bits == 0) {
 | |
|         /* x**0 mod 1, or x**0 mod -1 is still zero. */
 | |
|         if (BN_abs_is_word(m, 1)) {
 | |
|             ret = 1;
 | |
|             BN_zero(rr);
 | |
|         } else {
 | |
|             ret = BN_one(rr);
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     d = BN_CTX_get(ctx);
 | |
|     r = BN_CTX_get(ctx);
 | |
|     val[0] = BN_CTX_get(ctx);
 | |
|     if (val[0] == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     /*
 | |
|      * If this is not done, things will break in the montgomery part
 | |
|      */
 | |
| 
 | |
|     if (in_mont != NULL)
 | |
|         mont = in_mont;
 | |
|     else {
 | |
|         if ((mont = BN_MONT_CTX_new()) == NULL)
 | |
|             goto err;
 | |
|         if (!BN_MONT_CTX_set(mont, m, ctx))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (a->neg || BN_ucmp(a, m) >= 0) {
 | |
|         if (!BN_nnmod(val[0], a, m, ctx))
 | |
|             goto err;
 | |
|         aa = val[0];
 | |
|     } else
 | |
|         aa = a;
 | |
|     if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx))
 | |
|         goto err;               /* 1 */
 | |
| 
 | |
|     window = BN_window_bits_for_exponent_size(bits);
 | |
|     if (window > 1) {
 | |
|         if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx))
 | |
|             goto err;           /* 2 */
 | |
|         j = 1 << (window - 1);
 | |
|         for (i = 1; i < j; i++) {
 | |
|             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
 | |
|                 !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     start = 1;                  /* This is used to avoid multiplication etc
 | |
|                                  * when there is only the value '1' in the
 | |
|                                  * buffer. */
 | |
|     wvalue = 0;                 /* The 'value' of the window */
 | |
|     wstart = bits - 1;          /* The top bit of the window */
 | |
|     wend = 0;                   /* The bottom bit of the window */
 | |
| 
 | |
| #if 1                           /* by Shay Gueron's suggestion */
 | |
|     j = m->top;                 /* borrow j */
 | |
|     if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
 | |
|         if (bn_wexpand(r, j) == NULL)
 | |
|             goto err;
 | |
|         /* 2^(top*BN_BITS2) - m */
 | |
|         r->d[0] = (0 - m->d[0]) & BN_MASK2;
 | |
|         for (i = 1; i < j; i++)
 | |
|             r->d[i] = (~m->d[i]) & BN_MASK2;
 | |
|         r->top = j;
 | |
|         r->flags |= BN_FLG_FIXED_TOP;
 | |
|     } else
 | |
| #endif
 | |
|     if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx))
 | |
|         goto err;
 | |
|     for (;;) {
 | |
|         if (BN_is_bit_set(p, wstart) == 0) {
 | |
|             if (!start) {
 | |
|                 if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
 | |
|                     goto err;
 | |
|             }
 | |
|             if (wstart == 0)
 | |
|                 break;
 | |
|             wstart--;
 | |
|             continue;
 | |
|         }
 | |
|         /*
 | |
|          * We now have wstart on a 'set' bit, we now need to work out how bit
 | |
|          * a window to do.  To do this we need to scan forward until the last
 | |
|          * set bit before the end of the window
 | |
|          */
 | |
|         j = wstart;
 | |
|         wvalue = 1;
 | |
|         wend = 0;
 | |
|         for (i = 1; i < window; i++) {
 | |
|             if (wstart - i < 0)
 | |
|                 break;
 | |
|             if (BN_is_bit_set(p, wstart - i)) {
 | |
|                 wvalue <<= (i - wend);
 | |
|                 wvalue |= 1;
 | |
|                 wend = i;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* wend is the size of the current window */
 | |
|         j = wend + 1;
 | |
|         /* add the 'bytes above' */
 | |
|         if (!start)
 | |
|             for (i = 0; i < j; i++) {
 | |
|                 if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
 | |
|                     goto err;
 | |
|             }
 | |
| 
 | |
|         /* wvalue will be an odd number < 2^window */
 | |
|         if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx))
 | |
|             goto err;
 | |
| 
 | |
|         /* move the 'window' down further */
 | |
|         wstart -= wend + 1;
 | |
|         wvalue = 0;
 | |
|         start = 0;
 | |
|         if (wstart < 0)
 | |
|             break;
 | |
|     }
 | |
|     /*
 | |
|      * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
 | |
|      * removes padding [if any] and makes return value suitable for public
 | |
|      * API consumer.
 | |
|      */
 | |
| #if defined(SPARC_T4_MONT)
 | |
|     if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
 | |
|         j = mont->N.top;        /* borrow j */
 | |
|         val[0]->d[0] = 1;       /* borrow val[0] */
 | |
|         for (i = 1; i < j; i++)
 | |
|             val[0]->d[i] = 0;
 | |
|         val[0]->top = j;
 | |
|         if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
 | |
|             goto err;
 | |
|     } else
 | |
| #endif
 | |
|     if (!BN_from_montgomery(rr, r, mont, ctx))
 | |
|         goto err;
 | |
|     ret = 1;
 | |
|  err:
 | |
|     if (in_mont == NULL)
 | |
|         BN_MONT_CTX_free(mont);
 | |
|     BN_CTX_end(ctx);
 | |
|     bn_check_top(rr);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
 | |
| {
 | |
|     BN_ULONG ret = 0;
 | |
|     int wordpos;
 | |
| 
 | |
|     wordpos = bitpos / BN_BITS2;
 | |
|     bitpos %= BN_BITS2;
 | |
|     if (wordpos >= 0 && wordpos < a->top) {
 | |
|         ret = a->d[wordpos] & BN_MASK2;
 | |
|         if (bitpos) {
 | |
|             ret >>= bitpos;
 | |
|             if (++wordpos < a->top)
 | |
|                 ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret & BN_MASK2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
 | |
|  * layout so that accessing any of these table values shows the same access
 | |
|  * pattern as far as cache lines are concerned.  The following functions are
 | |
|  * used to transfer a BIGNUM from/to that table.
 | |
|  */
 | |
| 
 | |
| static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
 | |
|                                         unsigned char *buf, int idx,
 | |
|                                         int window)
 | |
| {
 | |
|     int i, j;
 | |
|     int width = 1 << window;
 | |
|     BN_ULONG *table = (BN_ULONG *)buf;
 | |
| 
 | |
|     if (top > b->top)
 | |
|         top = b->top;           /* this works because 'buf' is explicitly
 | |
|                                  * zeroed */
 | |
|     for (i = 0, j = idx; i < top; i++, j += width) {
 | |
|         table[j] = b->d[i];
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
 | |
|                                           unsigned char *buf, int idx,
 | |
|                                           int window)
 | |
| {
 | |
|     int i, j;
 | |
|     int width = 1 << window;
 | |
|     /*
 | |
|      * We declare table 'volatile' in order to discourage compiler
 | |
|      * from reordering loads from the table. Concern is that if
 | |
|      * reordered in specific manner loads might give away the
 | |
|      * information we are trying to conceal. Some would argue that
 | |
|      * compiler can reorder them anyway, but it can as well be
 | |
|      * argued that doing so would be violation of standard...
 | |
|      */
 | |
|     volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
 | |
| 
 | |
|     if (bn_wexpand(b, top) == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     if (window <= 3) {
 | |
|         for (i = 0; i < top; i++, table += width) {
 | |
|             BN_ULONG acc = 0;
 | |
| 
 | |
|             for (j = 0; j < width; j++) {
 | |
|                 acc |= table[j] &
 | |
|                        ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
 | |
|             }
 | |
| 
 | |
|             b->d[i] = acc;
 | |
|         }
 | |
|     } else {
 | |
|         int xstride = 1 << (window - 2);
 | |
|         BN_ULONG y0, y1, y2, y3;
 | |
| 
 | |
|         i = idx >> (window - 2);        /* equivalent of idx / xstride */
 | |
|         idx &= xstride - 1;             /* equivalent of idx % xstride */
 | |
| 
 | |
|         y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
 | |
|         y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
 | |
|         y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
 | |
|         y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
 | |
| 
 | |
|         for (i = 0; i < top; i++, table += width) {
 | |
|             BN_ULONG acc = 0;
 | |
| 
 | |
|             for (j = 0; j < xstride; j++) {
 | |
|                 acc |= ( (table[j + 0 * xstride] & y0) |
 | |
|                          (table[j + 1 * xstride] & y1) |
 | |
|                          (table[j + 2 * xstride] & y2) |
 | |
|                          (table[j + 3 * xstride] & y3) )
 | |
|                        & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
 | |
|             }
 | |
| 
 | |
|             b->d[i] = acc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     b->top = top;
 | |
|     b->flags |= BN_FLG_FIXED_TOP;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a pointer value, compute the next address that is a cache line
 | |
|  * multiple.
 | |
|  */
 | |
| #define MOD_EXP_CTIME_ALIGN(x_) \
 | |
|         ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
 | |
| 
 | |
| /*
 | |
|  * This variant of BN_mod_exp_mont() uses fixed windows and the special
 | |
|  * precomputation memory layout to limit data-dependency to a minimum to
 | |
|  * protect secret exponents (cf. the hyper-threading timing attacks pointed
 | |
|  * out by Colin Percival,
 | |
|  * http://www.daemonology.net/hyperthreading-considered-harmful/)
 | |
|  */
 | |
| int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
 | |
|                               const BIGNUM *m, BN_CTX *ctx,
 | |
|                               BN_MONT_CTX *in_mont)
 | |
| {
 | |
|     int i, bits, ret = 0, window, wvalue, wmask, window0;
 | |
|     int top;
 | |
|     BN_MONT_CTX *mont = NULL;
 | |
| 
 | |
|     int numPowers;
 | |
|     unsigned char *powerbufFree = NULL;
 | |
|     int powerbufLen = 0;
 | |
|     unsigned char *powerbuf = NULL;
 | |
|     BIGNUM tmp, am;
 | |
| #if defined(SPARC_T4_MONT)
 | |
|     unsigned int t4 = 0;
 | |
| #endif
 | |
| 
 | |
|     bn_check_top(a);
 | |
|     bn_check_top(p);
 | |
|     bn_check_top(m);
 | |
| 
 | |
|     if (!BN_is_odd(m)) {
 | |
|         BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     top = m->top;
 | |
| 
 | |
|     /*
 | |
|      * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
 | |
|      * whether the top bits are zero.
 | |
|      */
 | |
|     bits = p->top * BN_BITS2;
 | |
|     if (bits == 0) {
 | |
|         /* x**0 mod 1, or x**0 mod -1 is still zero. */
 | |
|         if (BN_abs_is_word(m, 1)) {
 | |
|             ret = 1;
 | |
|             BN_zero(rr);
 | |
|         } else {
 | |
|             ret = BN_one(rr);
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
| 
 | |
|     /*
 | |
|      * Allocate a montgomery context if it was not supplied by the caller. If
 | |
|      * this is not done, things will break in the montgomery part.
 | |
|      */
 | |
|     if (in_mont != NULL)
 | |
|         mont = in_mont;
 | |
|     else {
 | |
|         if ((mont = BN_MONT_CTX_new()) == NULL)
 | |
|             goto err;
 | |
|         if (!BN_MONT_CTX_set(mont, m, ctx))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     if (a->neg || BN_ucmp(a, m) >= 0) {
 | |
|         BIGNUM *reduced = BN_CTX_get(ctx);
 | |
|         if (reduced == NULL
 | |
|             || !BN_nnmod(reduced, a, m, ctx)) {
 | |
|             goto err;
 | |
|         }
 | |
|         a = reduced;
 | |
|     }
 | |
| 
 | |
| #ifdef RSAZ_ENABLED
 | |
|     /*
 | |
|      * If the size of the operands allow it, perform the optimized
 | |
|      * RSAZ exponentiation. For further information see
 | |
|      * crypto/bn/rsaz_exp.c and accompanying assembly modules.
 | |
|      */
 | |
|     if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
 | |
|         && rsaz_avx2_eligible()) {
 | |
|         if (NULL == bn_wexpand(rr, 16))
 | |
|             goto err;
 | |
|         RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
 | |
|                                mont->n0[0]);
 | |
|         rr->top = 16;
 | |
|         rr->neg = 0;
 | |
|         bn_correct_top(rr);
 | |
|         ret = 1;
 | |
|         goto err;
 | |
|     } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
 | |
|         if (NULL == bn_wexpand(rr, 8))
 | |
|             goto err;
 | |
|         RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
 | |
|         rr->top = 8;
 | |
|         rr->neg = 0;
 | |
|         bn_correct_top(rr);
 | |
|         ret = 1;
 | |
|         goto err;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Get the window size to use with size of p. */
 | |
|     window = BN_window_bits_for_ctime_exponent_size(bits);
 | |
| #if defined(SPARC_T4_MONT)
 | |
|     if (window >= 5 && (top & 15) == 0 && top <= 64 &&
 | |
|         (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
 | |
|         (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
 | |
|         window = 5;
 | |
|     else
 | |
| #endif
 | |
| #if defined(OPENSSL_BN_ASM_MONT5)
 | |
|     if (window >= 5) {
 | |
|         window = 5;             /* ~5% improvement for RSA2048 sign, and even
 | |
|                                  * for RSA4096 */
 | |
|         /* reserve space for mont->N.d[] copy */
 | |
|         powerbufLen += top * sizeof(mont->N.d[0]);
 | |
|     }
 | |
| #endif
 | |
|     (void)0;
 | |
| 
 | |
|     /*
 | |
|      * Allocate a buffer large enough to hold all of the pre-computed powers
 | |
|      * of am, am itself and tmp.
 | |
|      */
 | |
|     numPowers = 1 << window;
 | |
|     powerbufLen += sizeof(m->d[0]) * (top * numPowers +
 | |
|                                       ((2 * top) >
 | |
|                                        numPowers ? (2 * top) : numPowers));
 | |
| #ifdef alloca
 | |
|     if (powerbufLen < 3072)
 | |
|         powerbufFree =
 | |
|             alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
 | |
|     else
 | |
| #endif
 | |
|         if ((powerbufFree =
 | |
|              OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
 | |
|             == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
 | |
|     memset(powerbuf, 0, powerbufLen);
 | |
| 
 | |
| #ifdef alloca
 | |
|     if (powerbufLen < 3072)
 | |
|         powerbufFree = NULL;
 | |
| #endif
 | |
| 
 | |
|     /* lay down tmp and am right after powers table */
 | |
|     tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
 | |
|     am.d = tmp.d + top;
 | |
|     tmp.top = am.top = 0;
 | |
|     tmp.dmax = am.dmax = top;
 | |
|     tmp.neg = am.neg = 0;
 | |
|     tmp.flags = am.flags = BN_FLG_STATIC_DATA;
 | |
| 
 | |
|     /* prepare a^0 in Montgomery domain */
 | |
| #if 1                           /* by Shay Gueron's suggestion */
 | |
|     if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
 | |
|         /* 2^(top*BN_BITS2) - m */
 | |
|         tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
 | |
|         for (i = 1; i < top; i++)
 | |
|             tmp.d[i] = (~m->d[i]) & BN_MASK2;
 | |
|         tmp.top = top;
 | |
|     } else
 | |
| #endif
 | |
|     if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx))
 | |
|         goto err;
 | |
| 
 | |
|     /* prepare a^1 in Montgomery domain */
 | |
|     if (!bn_to_mont_fixed_top(&am, a, mont, ctx))
 | |
|         goto err;
 | |
| 
 | |
| #if defined(SPARC_T4_MONT)
 | |
|     if (t4) {
 | |
|         typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
 | |
|                                        const BN_ULONG *n0, const void *table,
 | |
|                                        int power, int bits);
 | |
|         int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
 | |
|                               const BN_ULONG *n0, const void *table,
 | |
|                               int power, int bits);
 | |
|         int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
 | |
|                                const BN_ULONG *n0, const void *table,
 | |
|                                int power, int bits);
 | |
|         int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
 | |
|                                const BN_ULONG *n0, const void *table,
 | |
|                                int power, int bits);
 | |
|         int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
 | |
|                                const BN_ULONG *n0, const void *table,
 | |
|                                int power, int bits);
 | |
|         static const bn_pwr5_mont_f pwr5_funcs[4] = {
 | |
|             bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
 | |
|             bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
 | |
|         };
 | |
|         bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
 | |
| 
 | |
|         typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                                       const void *bp, const BN_ULONG *np,
 | |
|                                       const BN_ULONG *n0);
 | |
|         int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
 | |
|                              const BN_ULONG *np, const BN_ULONG *n0);
 | |
|         int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                               const void *bp, const BN_ULONG *np,
 | |
|                               const BN_ULONG *n0);
 | |
|         int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                               const void *bp, const BN_ULONG *np,
 | |
|                               const BN_ULONG *n0);
 | |
|         int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                               const void *bp, const BN_ULONG *np,
 | |
|                               const BN_ULONG *n0);
 | |
|         static const bn_mul_mont_f mul_funcs[4] = {
 | |
|             bn_mul_mont_t4_8, bn_mul_mont_t4_16,
 | |
|             bn_mul_mont_t4_24, bn_mul_mont_t4_32
 | |
|         };
 | |
|         bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
 | |
| 
 | |
|         void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                               const void *bp, const BN_ULONG *np,
 | |
|                               const BN_ULONG *n0, int num);
 | |
|         void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                             const void *bp, const BN_ULONG *np,
 | |
|                             const BN_ULONG *n0, int num);
 | |
|         void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                                     const void *table, const BN_ULONG *np,
 | |
|                                     const BN_ULONG *n0, int num, int power);
 | |
|         void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
 | |
|                                    void *table, size_t power);
 | |
|         void bn_gather5_t4(BN_ULONG *out, size_t num,
 | |
|                            void *table, size_t power);
 | |
|         void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
 | |
| 
 | |
|         BN_ULONG *np = mont->N.d, *n0 = mont->n0;
 | |
|         int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
 | |
|                                                 * than 32 */
 | |
| 
 | |
|         /*
 | |
|          * BN_to_montgomery can contaminate words above .top [in
 | |
|          * BN_DEBUG[_DEBUG] build]...
 | |
|          */
 | |
|         for (i = am.top; i < top; i++)
 | |
|             am.d[i] = 0;
 | |
|         for (i = tmp.top; i < top; i++)
 | |
|             tmp.d[i] = 0;
 | |
| 
 | |
|         bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
 | |
|         bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
 | |
|         if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
 | |
|             !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
 | |
|             bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
 | |
|         bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
 | |
| 
 | |
|         for (i = 3; i < 32; i++) {
 | |
|             /* Calculate a^i = a^(i-1) * a */
 | |
|             if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
 | |
|                 !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
 | |
|                 bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
 | |
|             bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
 | |
|         }
 | |
| 
 | |
|         /* switch to 64-bit domain */
 | |
|         np = alloca(top * sizeof(BN_ULONG));
 | |
|         top /= 2;
 | |
|         bn_flip_t4(np, mont->N.d, top);
 | |
| 
 | |
|         /*
 | |
|          * The exponent may not have a whole number of fixed-size windows.
 | |
|          * To simplify the main loop, the initial window has between 1 and
 | |
|          * full-window-size bits such that what remains is always a whole
 | |
|          * number of windows
 | |
|          */
 | |
|         window0 = (bits - 1) % 5 + 1;
 | |
|         wmask = (1 << window0) - 1;
 | |
|         bits -= window0;
 | |
|         wvalue = bn_get_bits(p, bits) & wmask;
 | |
|         bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
 | |
| 
 | |
|         /*
 | |
|          * Scan the exponent one window at a time starting from the most
 | |
|          * significant bits.
 | |
|          */
 | |
|         while (bits > 0) {
 | |
|             if (bits < stride)
 | |
|                 stride = bits;
 | |
|             bits -= stride;
 | |
|             wvalue = bn_get_bits(p, bits);
 | |
| 
 | |
|             if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
 | |
|                 continue;
 | |
|             /* retry once and fall back */
 | |
|             if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
 | |
|                 continue;
 | |
| 
 | |
|             bits += stride - 5;
 | |
|             wvalue >>= stride - 5;
 | |
|             wvalue &= 31;
 | |
|             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|             bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
 | |
|                                    wvalue);
 | |
|         }
 | |
| 
 | |
|         bn_flip_t4(tmp.d, tmp.d, top);
 | |
|         top *= 2;
 | |
|         /* back to 32-bit domain */
 | |
|         tmp.top = top;
 | |
|         bn_correct_top(&tmp);
 | |
|         OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
 | |
|     } else
 | |
| #endif
 | |
| #if defined(OPENSSL_BN_ASM_MONT5)
 | |
|     if (window == 5 && top > 1) {
 | |
|         /*
 | |
|          * This optimization uses ideas from http://eprint.iacr.org/2011/239,
 | |
|          * specifically optimization of cache-timing attack countermeasures
 | |
|          * and pre-computation optimization.
 | |
|          */
 | |
| 
 | |
|         /*
 | |
|          * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
 | |
|          * 512-bit RSA is hardly relevant, we omit it to spare size...
 | |
|          */
 | |
|         void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                                  const void *table, const BN_ULONG *np,
 | |
|                                  const BN_ULONG *n0, int num, int power);
 | |
|         void bn_scatter5(const BN_ULONG *inp, size_t num,
 | |
|                          void *table, size_t power);
 | |
|         void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
 | |
|         void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                        const void *table, const BN_ULONG *np,
 | |
|                        const BN_ULONG *n0, int num, int power);
 | |
|         int bn_get_bits5(const BN_ULONG *ap, int off);
 | |
|         int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                                const BN_ULONG *not_used, const BN_ULONG *np,
 | |
|                                const BN_ULONG *n0, int num);
 | |
| 
 | |
|         BN_ULONG *n0 = mont->n0, *np;
 | |
| 
 | |
|         /*
 | |
|          * BN_to_montgomery can contaminate words above .top [in
 | |
|          * BN_DEBUG[_DEBUG] build]...
 | |
|          */
 | |
|         for (i = am.top; i < top; i++)
 | |
|             am.d[i] = 0;
 | |
|         for (i = tmp.top; i < top; i++)
 | |
|             tmp.d[i] = 0;
 | |
| 
 | |
|         /*
 | |
|          * copy mont->N.d[] to improve cache locality
 | |
|          */
 | |
|         for (np = am.d + top, i = 0; i < top; i++)
 | |
|             np[i] = mont->N.d[i];
 | |
| 
 | |
|         bn_scatter5(tmp.d, top, powerbuf, 0);
 | |
|         bn_scatter5(am.d, am.top, powerbuf, 1);
 | |
|         bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
 | |
|         bn_scatter5(tmp.d, top, powerbuf, 2);
 | |
| 
 | |
| # if 0
 | |
|         for (i = 3; i < 32; i++) {
 | |
|             /* Calculate a^i = a^(i-1) * a */
 | |
|             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
 | |
|             bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|         }
 | |
| # else
 | |
|         /* same as above, but uses squaring for 1/2 of operations */
 | |
|         for (i = 4; i < 32; i *= 2) {
 | |
|             bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|             bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|         }
 | |
|         for (i = 3; i < 8; i += 2) {
 | |
|             int j;
 | |
|             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
 | |
|             bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|             for (j = 2 * i; j < 32; j *= 2) {
 | |
|                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|                 bn_scatter5(tmp.d, top, powerbuf, j);
 | |
|             }
 | |
|         }
 | |
|         for (; i < 16; i += 2) {
 | |
|             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
 | |
|             bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|             bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|             bn_scatter5(tmp.d, top, powerbuf, 2 * i);
 | |
|         }
 | |
|         for (; i < 32; i += 2) {
 | |
|             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
 | |
|             bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|         }
 | |
| # endif
 | |
|         /*
 | |
|          * The exponent may not have a whole number of fixed-size windows.
 | |
|          * To simplify the main loop, the initial window has between 1 and
 | |
|          * full-window-size bits such that what remains is always a whole
 | |
|          * number of windows
 | |
|          */
 | |
|         window0 = (bits - 1) % 5 + 1;
 | |
|         wmask = (1 << window0) - 1;
 | |
|         bits -= window0;
 | |
|         wvalue = bn_get_bits(p, bits) & wmask;
 | |
|         bn_gather5(tmp.d, top, powerbuf, wvalue);
 | |
| 
 | |
|         /*
 | |
|          * Scan the exponent one window at a time starting from the most
 | |
|          * significant bits.
 | |
|          */
 | |
|         if (top & 7) {
 | |
|             while (bits > 0) {
 | |
|                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|                 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
 | |
|                                     bn_get_bits5(p->d, bits -= 5));
 | |
|             }
 | |
|         } else {
 | |
|             while (bits > 0) {
 | |
|                 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top,
 | |
|                           bn_get_bits5(p->d, bits -= 5));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
 | |
|         tmp.top = top;
 | |
|         bn_correct_top(&tmp);
 | |
|         if (ret) {
 | |
|             if (!BN_copy(rr, &tmp))
 | |
|                 ret = 0;
 | |
|             goto err;           /* non-zero ret means it's not error */
 | |
|         }
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
 | |
|             goto err;
 | |
|         if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
 | |
|             goto err;
 | |
| 
 | |
|         /*
 | |
|          * If the window size is greater than 1, then calculate
 | |
|          * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
 | |
|          * powers could instead be computed as (a^(i/2))^2 to use the slight
 | |
|          * performance advantage of sqr over mul).
 | |
|          */
 | |
|         if (window > 1) {
 | |
|             if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx))
 | |
|                 goto err;
 | |
|             if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
 | |
|                                               window))
 | |
|                 goto err;
 | |
|             for (i = 3; i < numPowers; i++) {
 | |
|                 /* Calculate a^i = a^(i-1) * a */
 | |
|                 if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx))
 | |
|                     goto err;
 | |
|                 if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
 | |
|                                                   window))
 | |
|                     goto err;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * The exponent may not have a whole number of fixed-size windows.
 | |
|          * To simplify the main loop, the initial window has between 1 and
 | |
|          * full-window-size bits such that what remains is always a whole
 | |
|          * number of windows
 | |
|          */
 | |
|         window0 = (bits - 1) % window + 1;
 | |
|         wmask = (1 << window0) - 1;
 | |
|         bits -= window0;
 | |
|         wvalue = bn_get_bits(p, bits) & wmask;
 | |
|         if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
 | |
|                                             window))
 | |
|             goto err;
 | |
| 
 | |
|         wmask = (1 << window) - 1;
 | |
|         /*
 | |
|          * Scan the exponent one window at a time starting from the most
 | |
|          * significant bits.
 | |
|          */
 | |
|         while (bits > 0) {
 | |
| 
 | |
|             /* Square the result window-size times */
 | |
|             for (i = 0; i < window; i++)
 | |
|                 if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))
 | |
|                     goto err;
 | |
| 
 | |
|             /*
 | |
|              * Get a window's worth of bits from the exponent
 | |
|              * This avoids calling BN_is_bit_set for each bit, which
 | |
|              * is not only slower but also makes each bit vulnerable to
 | |
|              * EM (and likely other) side-channel attacks like One&Done
 | |
|              * (for details see "One&Done: A Single-Decryption EM-Based
 | |
|              *  Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam,
 | |
|              *  H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
 | |
|              *  M. Prvulovic, in USENIX Security'18)
 | |
|              */
 | |
|             bits -= window;
 | |
|             wvalue = bn_get_bits(p, bits) & wmask;
 | |
|             /*
 | |
|              * Fetch the appropriate pre-computed value from the pre-buf
 | |
|              */
 | |
|             if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
 | |
|                                                 window))
 | |
|                 goto err;
 | |
| 
 | |
|             /* Multiply the result into the intermediate result */
 | |
|             if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
 | |
|      * removes padding [if any] and makes return value suitable for public
 | |
|      * API consumer.
 | |
|      */
 | |
| #if defined(SPARC_T4_MONT)
 | |
|     if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
 | |
|         am.d[0] = 1;            /* borrow am */
 | |
|         for (i = 1; i < top; i++)
 | |
|             am.d[i] = 0;
 | |
|         if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
 | |
|             goto err;
 | |
|     } else
 | |
| #endif
 | |
|     if (!BN_from_montgomery(rr, &tmp, mont, ctx))
 | |
|         goto err;
 | |
|     ret = 1;
 | |
|  err:
 | |
|     if (in_mont == NULL)
 | |
|         BN_MONT_CTX_free(mont);
 | |
|     if (powerbuf != NULL) {
 | |
|         OPENSSL_cleanse(powerbuf, powerbufLen);
 | |
|         OPENSSL_free(powerbufFree);
 | |
|     }
 | |
|     BN_CTX_end(ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
 | |
|                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
 | |
| {
 | |
|     BN_MONT_CTX *mont = NULL;
 | |
|     int b, bits, ret = 0;
 | |
|     int r_is_one;
 | |
|     BN_ULONG w, next_w;
 | |
|     BIGNUM *r, *t;
 | |
|     BIGNUM *swap_tmp;
 | |
| #define BN_MOD_MUL_WORD(r, w, m) \
 | |
|                 (BN_mul_word(r, (w)) && \
 | |
|                 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
 | |
|                         (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
 | |
|     /*
 | |
|      * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
 | |
|      * probably more overhead than always using BN_mod (which uses BN_copy if
 | |
|      * a similar test returns true).
 | |
|      */
 | |
|     /*
 | |
|      * We can use BN_mod and do not need BN_nnmod because our accumulator is
 | |
|      * never negative (the result of BN_mod does not depend on the sign of
 | |
|      * the modulus).
 | |
|      */
 | |
| #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
 | |
|                 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
 | |
| 
 | |
|     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
 | |
|             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
 | |
|         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
 | |
|         BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     bn_check_top(p);
 | |
|     bn_check_top(m);
 | |
| 
 | |
|     if (!BN_is_odd(m)) {
 | |
|         BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS);
 | |
|         return 0;
 | |
|     }
 | |
|     if (m->top == 1)
 | |
|         a %= m->d[0];           /* make sure that 'a' is reduced */
 | |
| 
 | |
|     bits = BN_num_bits(p);
 | |
|     if (bits == 0) {
 | |
|         /* x**0 mod 1, or x**0 mod -1 is still zero. */
 | |
|         if (BN_abs_is_word(m, 1)) {
 | |
|             ret = 1;
 | |
|             BN_zero(rr);
 | |
|         } else {
 | |
|             ret = BN_one(rr);
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
|     if (a == 0) {
 | |
|         BN_zero(rr);
 | |
|         ret = 1;
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     r = BN_CTX_get(ctx);
 | |
|     t = BN_CTX_get(ctx);
 | |
|     if (t == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (in_mont != NULL)
 | |
|         mont = in_mont;
 | |
|     else {
 | |
|         if ((mont = BN_MONT_CTX_new()) == NULL)
 | |
|             goto err;
 | |
|         if (!BN_MONT_CTX_set(mont, m, ctx))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     r_is_one = 1;               /* except for Montgomery factor */
 | |
| 
 | |
|     /* bits-1 >= 0 */
 | |
| 
 | |
|     /* The result is accumulated in the product r*w. */
 | |
|     w = a;                      /* bit 'bits-1' of 'p' is always set */
 | |
|     for (b = bits - 2; b >= 0; b--) {
 | |
|         /* First, square r*w. */
 | |
|         next_w = w * w;
 | |
|         if ((next_w / w) != w) { /* overflow */
 | |
|             if (r_is_one) {
 | |
|                 if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
 | |
|                     goto err;
 | |
|                 r_is_one = 0;
 | |
|             } else {
 | |
|                 if (!BN_MOD_MUL_WORD(r, w, m))
 | |
|                     goto err;
 | |
|             }
 | |
|             next_w = 1;
 | |
|         }
 | |
|         w = next_w;
 | |
|         if (!r_is_one) {
 | |
|             if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
| 
 | |
|         /* Second, multiply r*w by 'a' if exponent bit is set. */
 | |
|         if (BN_is_bit_set(p, b)) {
 | |
|             next_w = w * a;
 | |
|             if ((next_w / a) != w) { /* overflow */
 | |
|                 if (r_is_one) {
 | |
|                     if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
 | |
|                         goto err;
 | |
|                     r_is_one = 0;
 | |
|                 } else {
 | |
|                     if (!BN_MOD_MUL_WORD(r, w, m))
 | |
|                         goto err;
 | |
|                 }
 | |
|                 next_w = a;
 | |
|             }
 | |
|             w = next_w;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Finally, set r:=r*w. */
 | |
|     if (w != 1) {
 | |
|         if (r_is_one) {
 | |
|             if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
 | |
|                 goto err;
 | |
|             r_is_one = 0;
 | |
|         } else {
 | |
|             if (!BN_MOD_MUL_WORD(r, w, m))
 | |
|                 goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (r_is_one) {             /* can happen only if a == 1 */
 | |
|         if (!BN_one(rr))
 | |
|             goto err;
 | |
|     } else {
 | |
|         if (!BN_from_montgomery(rr, r, mont, ctx))
 | |
|             goto err;
 | |
|     }
 | |
|     ret = 1;
 | |
|  err:
 | |
|     if (in_mont == NULL)
 | |
|         BN_MONT_CTX_free(mont);
 | |
|     BN_CTX_end(ctx);
 | |
|     bn_check_top(rr);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* The old fallback, simple version :-) */
 | |
| int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
 | |
|                       const BIGNUM *m, BN_CTX *ctx)
 | |
| {
 | |
|     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
 | |
|     int start = 1;
 | |
|     BIGNUM *d;
 | |
|     /* Table of variables obtained from 'ctx' */
 | |
|     BIGNUM *val[TABLE_SIZE];
 | |
| 
 | |
|     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
 | |
|             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
 | |
|             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
 | |
|         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
 | |
|         BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     bits = BN_num_bits(p);
 | |
|     if (bits == 0) {
 | |
|         /* x**0 mod 1, or x**0 mod -1 is still zero. */
 | |
|         if (BN_abs_is_word(m, 1)) {
 | |
|             ret = 1;
 | |
|             BN_zero(r);
 | |
|         } else {
 | |
|             ret = BN_one(r);
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     BN_CTX_start(ctx);
 | |
|     d = BN_CTX_get(ctx);
 | |
|     val[0] = BN_CTX_get(ctx);
 | |
|     if (val[0] == NULL)
 | |
|         goto err;
 | |
| 
 | |
|     if (!BN_nnmod(val[0], a, m, ctx))
 | |
|         goto err;               /* 1 */
 | |
|     if (BN_is_zero(val[0])) {
 | |
|         BN_zero(r);
 | |
|         ret = 1;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     window = BN_window_bits_for_exponent_size(bits);
 | |
|     if (window > 1) {
 | |
|         if (!BN_mod_mul(d, val[0], val[0], m, ctx))
 | |
|             goto err;           /* 2 */
 | |
|         j = 1 << (window - 1);
 | |
|         for (i = 1; i < j; i++) {
 | |
|             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
 | |
|                 !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
 | |
|                 goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     start = 1;                  /* This is used to avoid multiplication etc
 | |
|                                  * when there is only the value '1' in the
 | |
|                                  * buffer. */
 | |
|     wvalue = 0;                 /* The 'value' of the window */
 | |
|     wstart = bits - 1;          /* The top bit of the window */
 | |
|     wend = 0;                   /* The bottom bit of the window */
 | |
| 
 | |
|     if (!BN_one(r))
 | |
|         goto err;
 | |
| 
 | |
|     for (;;) {
 | |
|         if (BN_is_bit_set(p, wstart) == 0) {
 | |
|             if (!start)
 | |
|                 if (!BN_mod_mul(r, r, r, m, ctx))
 | |
|                     goto err;
 | |
|             if (wstart == 0)
 | |
|                 break;
 | |
|             wstart--;
 | |
|             continue;
 | |
|         }
 | |
|         /*
 | |
|          * We now have wstart on a 'set' bit, we now need to work out how bit
 | |
|          * a window to do.  To do this we need to scan forward until the last
 | |
|          * set bit before the end of the window
 | |
|          */
 | |
|         j = wstart;
 | |
|         wvalue = 1;
 | |
|         wend = 0;
 | |
|         for (i = 1; i < window; i++) {
 | |
|             if (wstart - i < 0)
 | |
|                 break;
 | |
|             if (BN_is_bit_set(p, wstart - i)) {
 | |
|                 wvalue <<= (i - wend);
 | |
|                 wvalue |= 1;
 | |
|                 wend = i;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* wend is the size of the current window */
 | |
|         j = wend + 1;
 | |
|         /* add the 'bytes above' */
 | |
|         if (!start)
 | |
|             for (i = 0; i < j; i++) {
 | |
|                 if (!BN_mod_mul(r, r, r, m, ctx))
 | |
|                     goto err;
 | |
|             }
 | |
| 
 | |
|         /* wvalue will be an odd number < 2^window */
 | |
|         if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
 | |
|             goto err;
 | |
| 
 | |
|         /* move the 'window' down further */
 | |
|         wstart -= wend + 1;
 | |
|         wvalue = 0;
 | |
|         start = 0;
 | |
|         if (wstart < 0)
 | |
|             break;
 | |
|     }
 | |
|     ret = 1;
 | |
|  err:
 | |
|     BN_CTX_end(ctx);
 | |
|     bn_check_top(r);
 | |
|     return ret;
 | |
| }
 |