mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			359 lines
		
	
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			359 lines
		
	
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
 *
 | 
						|
 * Licensed under the OpenSSL license (the "License").  You may not use
 | 
						|
 * this file except in compliance with the License.  You can obtain a copy
 | 
						|
 * in the file LICENSE in the source distribution or at
 | 
						|
 * https://www.openssl.org/source/license.html
 | 
						|
 */
 | 
						|
 | 
						|
#include "internal/cryptlib.h"
 | 
						|
#include "bn_local.h"
 | 
						|
 | 
						|
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
 | 
						|
/*
 | 
						|
 * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
 | 
						|
 * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
 | 
						|
 * Theory", algorithm 1.5.1). 'p' must be prime!
 | 
						|
 */
 | 
						|
{
 | 
						|
    BIGNUM *ret = in;
 | 
						|
    int err = 1;
 | 
						|
    int r;
 | 
						|
    BIGNUM *A, *b, *q, *t, *x, *y;
 | 
						|
    int e, i, j;
 | 
						|
 | 
						|
    if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
 | 
						|
        if (BN_abs_is_word(p, 2)) {
 | 
						|
            if (ret == NULL)
 | 
						|
                ret = BN_new();
 | 
						|
            if (ret == NULL)
 | 
						|
                goto end;
 | 
						|
            if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
 | 
						|
                if (ret != in)
 | 
						|
                    BN_free(ret);
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
            bn_check_top(ret);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BN_is_zero(a) || BN_is_one(a)) {
 | 
						|
        if (ret == NULL)
 | 
						|
            ret = BN_new();
 | 
						|
        if (ret == NULL)
 | 
						|
            goto end;
 | 
						|
        if (!BN_set_word(ret, BN_is_one(a))) {
 | 
						|
            if (ret != in)
 | 
						|
                BN_free(ret);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        bn_check_top(ret);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    BN_CTX_start(ctx);
 | 
						|
    A = BN_CTX_get(ctx);
 | 
						|
    b = BN_CTX_get(ctx);
 | 
						|
    q = BN_CTX_get(ctx);
 | 
						|
    t = BN_CTX_get(ctx);
 | 
						|
    x = BN_CTX_get(ctx);
 | 
						|
    y = BN_CTX_get(ctx);
 | 
						|
    if (y == NULL)
 | 
						|
        goto end;
 | 
						|
 | 
						|
    if (ret == NULL)
 | 
						|
        ret = BN_new();
 | 
						|
    if (ret == NULL)
 | 
						|
        goto end;
 | 
						|
 | 
						|
    /* A = a mod p */
 | 
						|
    if (!BN_nnmod(A, a, p, ctx))
 | 
						|
        goto end;
 | 
						|
 | 
						|
    /* now write  |p| - 1  as  2^e*q  where  q  is odd */
 | 
						|
    e = 1;
 | 
						|
    while (!BN_is_bit_set(p, e))
 | 
						|
        e++;
 | 
						|
    /* we'll set  q  later (if needed) */
 | 
						|
 | 
						|
    if (e == 1) {
 | 
						|
        /*-
 | 
						|
         * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
 | 
						|
         * modulo  (|p|-1)/2,  and square roots can be computed
 | 
						|
         * directly by modular exponentiation.
 | 
						|
         * We have
 | 
						|
         *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
 | 
						|
         * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
 | 
						|
         */
 | 
						|
        if (!BN_rshift(q, p, 2))
 | 
						|
            goto end;
 | 
						|
        q->neg = 0;
 | 
						|
        if (!BN_add_word(q, 1))
 | 
						|
            goto end;
 | 
						|
        if (!BN_mod_exp(ret, A, q, p, ctx))
 | 
						|
            goto end;
 | 
						|
        err = 0;
 | 
						|
        goto vrfy;
 | 
						|
    }
 | 
						|
 | 
						|
    if (e == 2) {
 | 
						|
        /*-
 | 
						|
         * |p| == 5  (mod 8)
 | 
						|
         *
 | 
						|
         * In this case  2  is always a non-square since
 | 
						|
         * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
 | 
						|
         * So if  a  really is a square, then  2*a  is a non-square.
 | 
						|
         * Thus for
 | 
						|
         *      b := (2*a)^((|p|-5)/8),
 | 
						|
         *      i := (2*a)*b^2
 | 
						|
         * we have
 | 
						|
         *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
 | 
						|
         *         = (2*a)^((p-1)/2)
 | 
						|
         *         = -1;
 | 
						|
         * so if we set
 | 
						|
         *      x := a*b*(i-1),
 | 
						|
         * then
 | 
						|
         *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
 | 
						|
         *         = a^2 * b^2 * (-2*i)
 | 
						|
         *         = a*(-i)*(2*a*b^2)
 | 
						|
         *         = a*(-i)*i
 | 
						|
         *         = a.
 | 
						|
         *
 | 
						|
         * (This is due to A.O.L. Atkin,
 | 
						|
         * Subject: Square Roots and Cognate Matters modulo p=8n+5.
 | 
						|
         * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026
 | 
						|
         * November 1992.)
 | 
						|
         */
 | 
						|
 | 
						|
        /* t := 2*a */
 | 
						|
        if (!BN_mod_lshift1_quick(t, A, p))
 | 
						|
            goto end;
 | 
						|
 | 
						|
        /* b := (2*a)^((|p|-5)/8) */
 | 
						|
        if (!BN_rshift(q, p, 3))
 | 
						|
            goto end;
 | 
						|
        q->neg = 0;
 | 
						|
        if (!BN_mod_exp(b, t, q, p, ctx))
 | 
						|
            goto end;
 | 
						|
 | 
						|
        /* y := b^2 */
 | 
						|
        if (!BN_mod_sqr(y, b, p, ctx))
 | 
						|
            goto end;
 | 
						|
 | 
						|
        /* t := (2*a)*b^2 - 1 */
 | 
						|
        if (!BN_mod_mul(t, t, y, p, ctx))
 | 
						|
            goto end;
 | 
						|
        if (!BN_sub_word(t, 1))
 | 
						|
            goto end;
 | 
						|
 | 
						|
        /* x = a*b*t */
 | 
						|
        if (!BN_mod_mul(x, A, b, p, ctx))
 | 
						|
            goto end;
 | 
						|
        if (!BN_mod_mul(x, x, t, p, ctx))
 | 
						|
            goto end;
 | 
						|
 | 
						|
        if (!BN_copy(ret, x))
 | 
						|
            goto end;
 | 
						|
        err = 0;
 | 
						|
        goto vrfy;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
 | 
						|
     * find some y that is not a square.
 | 
						|
     */
 | 
						|
    if (!BN_copy(q, p))
 | 
						|
        goto end;               /* use 'q' as temp */
 | 
						|
    q->neg = 0;
 | 
						|
    i = 2;
 | 
						|
    do {
 | 
						|
        /*
 | 
						|
         * For efficiency, try small numbers first; if this fails, try random
 | 
						|
         * numbers.
 | 
						|
         */
 | 
						|
        if (i < 22) {
 | 
						|
            if (!BN_set_word(y, i))
 | 
						|
                goto end;
 | 
						|
        } else {
 | 
						|
            if (!BN_priv_rand(y, BN_num_bits(p), 0, 0))
 | 
						|
                goto end;
 | 
						|
            if (BN_ucmp(y, p) >= 0) {
 | 
						|
                if (!(p->neg ? BN_add : BN_sub) (y, y, p))
 | 
						|
                    goto end;
 | 
						|
            }
 | 
						|
            /* now 0 <= y < |p| */
 | 
						|
            if (BN_is_zero(y))
 | 
						|
                if (!BN_set_word(y, i))
 | 
						|
                    goto end;
 | 
						|
        }
 | 
						|
 | 
						|
        r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
 | 
						|
        if (r < -1)
 | 
						|
            goto end;
 | 
						|
        if (r == 0) {
 | 
						|
            /* m divides p */
 | 
						|
            BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    while (r == 1 && ++i < 82);
 | 
						|
 | 
						|
    if (r != -1) {
 | 
						|
        /*
 | 
						|
         * Many rounds and still no non-square -- this is more likely a bug
 | 
						|
         * than just bad luck. Even if p is not prime, we should have found
 | 
						|
         * some y such that r == -1.
 | 
						|
         */
 | 
						|
        BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Here's our actual 'q': */
 | 
						|
    if (!BN_rshift(q, q, e))
 | 
						|
        goto end;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Now that we have some non-square, we can find an element of order 2^e
 | 
						|
     * by computing its q'th power.
 | 
						|
     */
 | 
						|
    if (!BN_mod_exp(y, y, q, p, ctx))
 | 
						|
        goto end;
 | 
						|
    if (BN_is_one(y)) {
 | 
						|
        BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
 | 
						|
        goto end;
 | 
						|
    }
 | 
						|
 | 
						|
    /*-
 | 
						|
     * Now we know that (if  p  is indeed prime) there is an integer
 | 
						|
     * k,  0 <= k < 2^e,  such that
 | 
						|
     *
 | 
						|
     *      a^q * y^k == 1   (mod p).
 | 
						|
     *
 | 
						|
     * As  a^q  is a square and  y  is not,  k  must be even.
 | 
						|
     * q+1  is even, too, so there is an element
 | 
						|
     *
 | 
						|
     *     X := a^((q+1)/2) * y^(k/2),
 | 
						|
     *
 | 
						|
     * and it satisfies
 | 
						|
     *
 | 
						|
     *     X^2 = a^q * a     * y^k
 | 
						|
     *         = a,
 | 
						|
     *
 | 
						|
     * so it is the square root that we are looking for.
 | 
						|
     */
 | 
						|
 | 
						|
    /* t := (q-1)/2  (note that  q  is odd) */
 | 
						|
    if (!BN_rshift1(t, q))
 | 
						|
        goto end;
 | 
						|
 | 
						|
    /* x := a^((q-1)/2) */
 | 
						|
    if (BN_is_zero(t)) {        /* special case: p = 2^e + 1 */
 | 
						|
        if (!BN_nnmod(t, A, p, ctx))
 | 
						|
            goto end;
 | 
						|
        if (BN_is_zero(t)) {
 | 
						|
            /* special case: a == 0  (mod p) */
 | 
						|
            BN_zero(ret);
 | 
						|
            err = 0;
 | 
						|
            goto end;
 | 
						|
        } else if (!BN_one(x))
 | 
						|
            goto end;
 | 
						|
    } else {
 | 
						|
        if (!BN_mod_exp(x, A, t, p, ctx))
 | 
						|
            goto end;
 | 
						|
        if (BN_is_zero(x)) {
 | 
						|
            /* special case: a == 0  (mod p) */
 | 
						|
            BN_zero(ret);
 | 
						|
            err = 0;
 | 
						|
            goto end;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* b := a*x^2  (= a^q) */
 | 
						|
    if (!BN_mod_sqr(b, x, p, ctx))
 | 
						|
        goto end;
 | 
						|
    if (!BN_mod_mul(b, b, A, p, ctx))
 | 
						|
        goto end;
 | 
						|
 | 
						|
    /* x := a*x    (= a^((q+1)/2)) */
 | 
						|
    if (!BN_mod_mul(x, x, A, p, ctx))
 | 
						|
        goto end;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        /*-
 | 
						|
         * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
 | 
						|
         * where  E  refers to the original value of  e,  which we
 | 
						|
         * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
 | 
						|
         *
 | 
						|
         * We have  a*b = x^2,
 | 
						|
         *    y^2^(e-1) = -1,
 | 
						|
         *    b^2^(e-1) = 1.
 | 
						|
         */
 | 
						|
 | 
						|
        if (BN_is_one(b)) {
 | 
						|
            if (!BN_copy(ret, x))
 | 
						|
                goto end;
 | 
						|
            err = 0;
 | 
						|
            goto vrfy;
 | 
						|
        }
 | 
						|
 | 
						|
        /* find smallest  i  such that  b^(2^i) = 1 */
 | 
						|
        i = 1;
 | 
						|
        if (!BN_mod_sqr(t, b, p, ctx))
 | 
						|
            goto end;
 | 
						|
        while (!BN_is_one(t)) {
 | 
						|
            i++;
 | 
						|
            if (i == e) {
 | 
						|
                BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
 | 
						|
                goto end;
 | 
						|
            }
 | 
						|
            if (!BN_mod_mul(t, t, t, p, ctx))
 | 
						|
                goto end;
 | 
						|
        }
 | 
						|
 | 
						|
        /* t := y^2^(e - i - 1) */
 | 
						|
        if (!BN_copy(t, y))
 | 
						|
            goto end;
 | 
						|
        for (j = e - i - 1; j > 0; j--) {
 | 
						|
            if (!BN_mod_sqr(t, t, p, ctx))
 | 
						|
                goto end;
 | 
						|
        }
 | 
						|
        if (!BN_mod_mul(y, t, t, p, ctx))
 | 
						|
            goto end;
 | 
						|
        if (!BN_mod_mul(x, x, t, p, ctx))
 | 
						|
            goto end;
 | 
						|
        if (!BN_mod_mul(b, b, y, p, ctx))
 | 
						|
            goto end;
 | 
						|
        e = i;
 | 
						|
    }
 | 
						|
 | 
						|
 vrfy:
 | 
						|
    if (!err) {
 | 
						|
        /*
 | 
						|
         * verify the result -- the input might have been not a square (test
 | 
						|
         * added in 0.9.8)
 | 
						|
         */
 | 
						|
 | 
						|
        if (!BN_mod_sqr(x, ret, p, ctx))
 | 
						|
            err = 1;
 | 
						|
 | 
						|
        if (!err && 0 != BN_cmp(x, A)) {
 | 
						|
            BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
 | 
						|
            err = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 end:
 | 
						|
    if (err) {
 | 
						|
        if (ret != in)
 | 
						|
            BN_clear_free(ret);
 | 
						|
        ret = NULL;
 | 
						|
    }
 | 
						|
    BN_CTX_end(ctx);
 | 
						|
    bn_check_top(ret);
 | 
						|
    return ret;
 | 
						|
}
 |