mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1002 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1002 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "crypto/ctype.h"
 | |
| #include <string.h>
 | |
| #include "internal/cryptlib.h"
 | |
| #include <openssl/buffer.h>
 | |
| #include <openssl/objects.h>
 | |
| #include <openssl/evp.h>
 | |
| #include <openssl/rand.h>
 | |
| #include <openssl/x509.h>
 | |
| #include <openssl/pem.h>
 | |
| #include <openssl/pkcs12.h>
 | |
| #include "crypto/asn1.h"
 | |
| #include <openssl/des.h>
 | |
| #include <openssl/engine.h>
 | |
| 
 | |
| #define MIN_LENGTH      4
 | |
| 
 | |
| static int load_iv(char **fromp, unsigned char *to, int num);
 | |
| static int check_pem(const char *nm, const char *name);
 | |
| int pem_check_suffix(const char *pem_str, const char *suffix);
 | |
| 
 | |
| int PEM_def_callback(char *buf, int num, int rwflag, void *userdata)
 | |
| {
 | |
|     int i, min_len;
 | |
|     const char *prompt;
 | |
| 
 | |
|     /* We assume that the user passes a default password as userdata */
 | |
|     if (userdata) {
 | |
|         i = strlen(userdata);
 | |
|         i = (i > num) ? num : i;
 | |
|         memcpy(buf, userdata, i);
 | |
|         return i;
 | |
|     }
 | |
| 
 | |
|     prompt = EVP_get_pw_prompt();
 | |
|     if (prompt == NULL)
 | |
|         prompt = "Enter PEM pass phrase:";
 | |
| 
 | |
|     /*
 | |
|      * rwflag == 0 means decryption
 | |
|      * rwflag == 1 means encryption
 | |
|      *
 | |
|      * We assume that for encryption, we want a minimum length, while for
 | |
|      * decryption, we cannot know any minimum length, so we assume zero.
 | |
|      */
 | |
|     min_len = rwflag ? MIN_LENGTH : 0;
 | |
| 
 | |
|     i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag);
 | |
|     if (i != 0) {
 | |
|         PEMerr(PEM_F_PEM_DEF_CALLBACK, PEM_R_PROBLEMS_GETTING_PASSWORD);
 | |
|         memset(buf, 0, (unsigned int)num);
 | |
|         return -1;
 | |
|     }
 | |
|     return strlen(buf);
 | |
| }
 | |
| 
 | |
| void PEM_proc_type(char *buf, int type)
 | |
| {
 | |
|     const char *str;
 | |
|     char *p = buf + strlen(buf);
 | |
| 
 | |
|     if (type == PEM_TYPE_ENCRYPTED)
 | |
|         str = "ENCRYPTED";
 | |
|     else if (type == PEM_TYPE_MIC_CLEAR)
 | |
|         str = "MIC-CLEAR";
 | |
|     else if (type == PEM_TYPE_MIC_ONLY)
 | |
|         str = "MIC-ONLY";
 | |
|     else
 | |
|         str = "BAD-TYPE";
 | |
| 
 | |
|     BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str);
 | |
| }
 | |
| 
 | |
| void PEM_dek_info(char *buf, const char *type, int len, char *str)
 | |
| {
 | |
|     long i;
 | |
|     char *p = buf + strlen(buf);
 | |
|     int j = PEM_BUFSIZE - (size_t)(p - buf), n;
 | |
| 
 | |
|     n = BIO_snprintf(p, j, "DEK-Info: %s,", type);
 | |
|     if (n > 0) {
 | |
|         j -= n;
 | |
|         p += n;
 | |
|         for (i = 0; i < len; i++) {
 | |
|             n = BIO_snprintf(p, j, "%02X", 0xff & str[i]);
 | |
|             if (n <= 0)
 | |
|                 return;
 | |
|             j -= n;
 | |
|             p += n;
 | |
|         }
 | |
|         if (j > 1)
 | |
|             strcpy(p, "\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_STDIO
 | |
| void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x,
 | |
|                     pem_password_cb *cb, void *u)
 | |
| {
 | |
|     BIO *b;
 | |
|     void *ret;
 | |
| 
 | |
|     if ((b = BIO_new(BIO_s_file())) == NULL) {
 | |
|         PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB);
 | |
|         return 0;
 | |
|     }
 | |
|     BIO_set_fp(b, fp, BIO_NOCLOSE);
 | |
|     ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u);
 | |
|     BIO_free(b);
 | |
|     return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int check_pem(const char *nm, const char *name)
 | |
| {
 | |
|     /* Normal matching nm and name */
 | |
|     if (strcmp(nm, name) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     /* Make PEM_STRING_EVP_PKEY match any private key */
 | |
| 
 | |
|     if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) {
 | |
|         int slen;
 | |
|         const EVP_PKEY_ASN1_METHOD *ameth;
 | |
|         if (strcmp(nm, PEM_STRING_PKCS8) == 0)
 | |
|             return 1;
 | |
|         if (strcmp(nm, PEM_STRING_PKCS8INF) == 0)
 | |
|             return 1;
 | |
|         slen = pem_check_suffix(nm, "PRIVATE KEY");
 | |
|         if (slen > 0) {
 | |
|             /*
 | |
|              * NB: ENGINE implementations won't contain a deprecated old
 | |
|              * private key decode function so don't look for them.
 | |
|              */
 | |
|             ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen);
 | |
|             if (ameth && ameth->old_priv_decode)
 | |
|                 return 1;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (strcmp(name, PEM_STRING_PARAMETERS) == 0) {
 | |
|         int slen;
 | |
|         const EVP_PKEY_ASN1_METHOD *ameth;
 | |
|         slen = pem_check_suffix(nm, "PARAMETERS");
 | |
|         if (slen > 0) {
 | |
|             ENGINE *e;
 | |
|             ameth = EVP_PKEY_asn1_find_str(&e, nm, slen);
 | |
|             if (ameth) {
 | |
|                 int r;
 | |
|                 if (ameth->param_decode)
 | |
|                     r = 1;
 | |
|                 else
 | |
|                     r = 0;
 | |
| #ifndef OPENSSL_NO_ENGINE
 | |
|                 ENGINE_finish(e);
 | |
| #endif
 | |
|                 return r;
 | |
|             }
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     /* If reading DH parameters handle X9.42 DH format too */
 | |
|     if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0
 | |
|         && strcmp(name, PEM_STRING_DHPARAMS) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     /* Permit older strings */
 | |
| 
 | |
|     if (strcmp(nm, PEM_STRING_X509_OLD) == 0
 | |
|         && strcmp(name, PEM_STRING_X509) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0
 | |
|         && strcmp(name, PEM_STRING_X509_REQ) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     /* Allow normal certs to be read as trusted certs */
 | |
|     if (strcmp(nm, PEM_STRING_X509) == 0
 | |
|         && strcmp(name, PEM_STRING_X509_TRUSTED) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     if (strcmp(nm, PEM_STRING_X509_OLD) == 0
 | |
|         && strcmp(name, PEM_STRING_X509_TRUSTED) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     /* Some CAs use PKCS#7 with CERTIFICATE headers */
 | |
|     if (strcmp(nm, PEM_STRING_X509) == 0
 | |
|         && strcmp(name, PEM_STRING_PKCS7) == 0)
 | |
|         return 1;
 | |
| 
 | |
|     if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0
 | |
|         && strcmp(name, PEM_STRING_PKCS7) == 0)
 | |
|         return 1;
 | |
| 
 | |
| #ifndef OPENSSL_NO_CMS
 | |
|     if (strcmp(nm, PEM_STRING_X509) == 0
 | |
|         && strcmp(name, PEM_STRING_CMS) == 0)
 | |
|         return 1;
 | |
|     /* Allow CMS to be read from PKCS#7 headers */
 | |
|     if (strcmp(nm, PEM_STRING_PKCS7) == 0
 | |
|         && strcmp(name, PEM_STRING_CMS) == 0)
 | |
|         return 1;
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void pem_free(void *p, unsigned int flags, size_t num)
 | |
| {
 | |
|     if (flags & PEM_FLAG_SECURE)
 | |
|         OPENSSL_secure_clear_free(p, num);
 | |
|     else
 | |
|         OPENSSL_free(p);
 | |
| }
 | |
| 
 | |
| static void *pem_malloc(int num, unsigned int flags)
 | |
| {
 | |
|     return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num)
 | |
|                                      : OPENSSL_malloc(num);
 | |
| }
 | |
| 
 | |
| static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen,
 | |
|                                     char **pnm, const char *name, BIO *bp,
 | |
|                                     pem_password_cb *cb, void *u,
 | |
|                                     unsigned int flags)
 | |
| {
 | |
|     EVP_CIPHER_INFO cipher;
 | |
|     char *nm = NULL, *header = NULL;
 | |
|     unsigned char *data = NULL;
 | |
|     long len = 0;
 | |
|     int ret = 0;
 | |
| 
 | |
|     do {
 | |
|         pem_free(nm, flags, 0);
 | |
|         pem_free(header, flags, 0);
 | |
|         pem_free(data, flags, len);
 | |
|         if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) {
 | |
|             if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE)
 | |
|                 ERR_add_error_data(2, "Expecting: ", name);
 | |
|             return 0;
 | |
|         }
 | |
|     } while (!check_pem(nm, name));
 | |
|     if (!PEM_get_EVP_CIPHER_INFO(header, &cipher))
 | |
|         goto err;
 | |
|     if (!PEM_do_header(&cipher, data, &len, cb, u))
 | |
|         goto err;
 | |
| 
 | |
|     *pdata = data;
 | |
|     *plen = len;
 | |
| 
 | |
|     if (pnm != NULL)
 | |
|         *pnm = nm;
 | |
| 
 | |
|     ret = 1;
 | |
| 
 | |
|  err:
 | |
|     if (!ret || pnm == NULL)
 | |
|         pem_free(nm, flags, 0);
 | |
|     pem_free(header, flags, 0);
 | |
|     if (!ret)
 | |
|         pem_free(data, flags, len);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm,
 | |
|                        const char *name, BIO *bp, pem_password_cb *cb,
 | |
|                        void *u) {
 | |
|     return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u,
 | |
|                                     PEM_FLAG_EAY_COMPATIBLE);
 | |
| }
 | |
| 
 | |
| int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm,
 | |
|                               const char *name, BIO *bp, pem_password_cb *cb,
 | |
|                               void *u) {
 | |
|     return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u,
 | |
|                                     PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE);
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_STDIO
 | |
| int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp,
 | |
|                    void *x, const EVP_CIPHER *enc, unsigned char *kstr,
 | |
|                    int klen, pem_password_cb *callback, void *u)
 | |
| {
 | |
|     BIO *b;
 | |
|     int ret;
 | |
| 
 | |
|     if ((b = BIO_new(BIO_s_file())) == NULL) {
 | |
|         PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB);
 | |
|         return 0;
 | |
|     }
 | |
|     BIO_set_fp(b, fp, BIO_NOCLOSE);
 | |
|     ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u);
 | |
|     BIO_free(b);
 | |
|     return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp,
 | |
|                        void *x, const EVP_CIPHER *enc, unsigned char *kstr,
 | |
|                        int klen, pem_password_cb *callback, void *u)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx = NULL;
 | |
|     int dsize = 0, i = 0, j = 0, ret = 0;
 | |
|     unsigned char *p, *data = NULL;
 | |
|     const char *objstr = NULL;
 | |
|     char buf[PEM_BUFSIZE];
 | |
|     unsigned char key[EVP_MAX_KEY_LENGTH];
 | |
|     unsigned char iv[EVP_MAX_IV_LENGTH];
 | |
| 
 | |
|     if (enc != NULL) {
 | |
|         objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc));
 | |
|         if (objstr == NULL || EVP_CIPHER_iv_length(enc) == 0
 | |
|                 || EVP_CIPHER_iv_length(enc) > (int)sizeof(iv)
 | |
|                    /*
 | |
|                     * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n"
 | |
|                     * fits into buf
 | |
|                     */
 | |
|                 || (strlen(objstr) + 23 + 2 * EVP_CIPHER_iv_length(enc) + 13)
 | |
|                    > sizeof(buf)) {
 | |
|             PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER);
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((dsize = i2d(x, NULL)) <= 0) {
 | |
|         PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB);
 | |
|         dsize = 0;
 | |
|         goto err;
 | |
|     }
 | |
|     /* dsize + 8 bytes are needed */
 | |
|     /* actually it needs the cipher block size extra... */
 | |
|     data = OPENSSL_malloc((unsigned int)dsize + 20);
 | |
|     if (data == NULL) {
 | |
|         PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
|     p = data;
 | |
|     i = i2d(x, &p);
 | |
| 
 | |
|     if (enc != NULL) {
 | |
|         if (kstr == NULL) {
 | |
|             if (callback == NULL)
 | |
|                 klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u);
 | |
|             else
 | |
|                 klen = (*callback) (buf, PEM_BUFSIZE, 1, u);
 | |
|             if (klen <= 0) {
 | |
|                 PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_READ_KEY);
 | |
|                 goto err;
 | |
|             }
 | |
| #ifdef CHARSET_EBCDIC
 | |
|             /* Convert the pass phrase from EBCDIC */
 | |
|             ebcdic2ascii(buf, buf, klen);
 | |
| #endif
 | |
|             kstr = (unsigned char *)buf;
 | |
|         }
 | |
|         if (RAND_bytes(iv, EVP_CIPHER_iv_length(enc)) <= 0) /* Generate a salt */
 | |
|             goto err;
 | |
|         /*
 | |
|          * The 'iv' is used as the iv and as a salt.  It is NOT taken from
 | |
|          * the BytesToKey function
 | |
|          */
 | |
|         if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL))
 | |
|             goto err;
 | |
| 
 | |
|         if (kstr == (unsigned char *)buf)
 | |
|             OPENSSL_cleanse(buf, PEM_BUFSIZE);
 | |
| 
 | |
|         buf[0] = '\0';
 | |
|         PEM_proc_type(buf, PEM_TYPE_ENCRYPTED);
 | |
|         PEM_dek_info(buf, objstr, EVP_CIPHER_iv_length(enc), (char *)iv);
 | |
|         /* k=strlen(buf); */
 | |
| 
 | |
|         ret = 1;
 | |
|         if ((ctx = EVP_CIPHER_CTX_new()) == NULL
 | |
|             || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv)
 | |
|             || !EVP_EncryptUpdate(ctx, data, &j, data, i)
 | |
|             || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i))
 | |
|             ret = 0;
 | |
|         if (ret == 0)
 | |
|             goto err;
 | |
|         i += j;
 | |
|     } else {
 | |
|         ret = 1;
 | |
|         buf[0] = '\0';
 | |
|     }
 | |
|     i = PEM_write_bio(bp, name, buf, data, i);
 | |
|     if (i <= 0)
 | |
|         ret = 0;
 | |
|  err:
 | |
|     OPENSSL_cleanse(key, sizeof(key));
 | |
|     OPENSSL_cleanse(iv, sizeof(iv));
 | |
|     EVP_CIPHER_CTX_free(ctx);
 | |
|     OPENSSL_cleanse(buf, PEM_BUFSIZE);
 | |
|     OPENSSL_clear_free(data, (unsigned int)dsize);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen,
 | |
|                   pem_password_cb *callback, void *u)
 | |
| {
 | |
|     int ok;
 | |
|     int keylen;
 | |
|     long len = *plen;
 | |
|     int ilen = (int) len;       /* EVP_DecryptUpdate etc. take int lengths */
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     unsigned char key[EVP_MAX_KEY_LENGTH];
 | |
|     char buf[PEM_BUFSIZE];
 | |
| 
 | |
| #if LONG_MAX > INT_MAX
 | |
|     /* Check that we did not truncate the length */
 | |
|     if (len > INT_MAX) {
 | |
|         PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_HEADER_TOO_LONG);
 | |
|         return 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (cipher->cipher == NULL)
 | |
|         return 1;
 | |
|     if (callback == NULL)
 | |
|         keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u);
 | |
|     else
 | |
|         keylen = callback(buf, PEM_BUFSIZE, 0, u);
 | |
|     if (keylen < 0) {
 | |
|         PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ);
 | |
|         return 0;
 | |
|     }
 | |
| #ifdef CHARSET_EBCDIC
 | |
|     /* Convert the pass phrase from EBCDIC */
 | |
|     ebcdic2ascii(buf, buf, keylen);
 | |
| #endif
 | |
| 
 | |
|     if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]),
 | |
|                         (unsigned char *)buf, keylen, 1, key, NULL))
 | |
|         return 0;
 | |
| 
 | |
|     ctx = EVP_CIPHER_CTX_new();
 | |
|     if (ctx == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0]));
 | |
|     if (ok)
 | |
|         ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen);
 | |
|     if (ok) {
 | |
|         /* Squirrel away the length of data decrypted so far. */
 | |
|         *plen = ilen;
 | |
|         ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen);
 | |
|     }
 | |
|     if (ok)
 | |
|         *plen += ilen;
 | |
|     else
 | |
|         PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT);
 | |
| 
 | |
|     EVP_CIPHER_CTX_free(ctx);
 | |
|     OPENSSL_cleanse((char *)buf, sizeof(buf));
 | |
|     OPENSSL_cleanse((char *)key, sizeof(key));
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This implements a very limited PEM header parser that does not support the
 | |
|  * full grammar of rfc1421.  In particular, folded headers are not supported,
 | |
|  * nor is additional whitespace.
 | |
|  *
 | |
|  * A robust implementation would make use of a library that turns the headers
 | |
|  * into a BIO from which one folded line is read at a time, and is then split
 | |
|  * into a header label and content.  We would then parse the content of the
 | |
|  * headers we care about.  This is overkill for just this limited use-case, but
 | |
|  * presumably we also parse rfc822-style headers for S/MIME, so a common
 | |
|  * abstraction might well be more generally useful.
 | |
|  */
 | |
| int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher)
 | |
| {
 | |
|     static const char ProcType[] = "Proc-Type:";
 | |
|     static const char ENCRYPTED[] = "ENCRYPTED";
 | |
|     static const char DEKInfo[] = "DEK-Info:";
 | |
|     const EVP_CIPHER *enc = NULL;
 | |
|     int ivlen;
 | |
|     char *dekinfostart, c;
 | |
| 
 | |
|     cipher->cipher = NULL;
 | |
|     memset(cipher->iv, 0, sizeof(cipher->iv));
 | |
|     if ((header == NULL) || (*header == '\0') || (*header == '\n'))
 | |
|         return 1;
 | |
| 
 | |
|     if (strncmp(header, ProcType, sizeof(ProcType)-1) != 0) {
 | |
|         PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE);
 | |
|         return 0;
 | |
|     }
 | |
|     header += sizeof(ProcType)-1;
 | |
|     header += strspn(header, " \t");
 | |
| 
 | |
|     if (*header++ != '4' || *header++ != ',')
 | |
|         return 0;
 | |
|     header += strspn(header, " \t");
 | |
| 
 | |
|     /* We expect "ENCRYPTED" followed by optional white-space + line break */
 | |
|     if (strncmp(header, ENCRYPTED, sizeof(ENCRYPTED)-1) != 0 ||
 | |
|         strspn(header+sizeof(ENCRYPTED)-1, " \t\r\n") == 0) {
 | |
|         PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED);
 | |
|         return 0;
 | |
|     }
 | |
|     header += sizeof(ENCRYPTED)-1;
 | |
|     header += strspn(header, " \t\r");
 | |
|     if (*header++ != '\n') {
 | |
|         PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*-
 | |
|      * https://tools.ietf.org/html/rfc1421#section-4.6.1.3
 | |
|      * We expect "DEK-Info: algo[,hex-parameters]"
 | |
|      */
 | |
|     if (strncmp(header, DEKInfo, sizeof(DEKInfo)-1) != 0) {
 | |
|         PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO);
 | |
|         return 0;
 | |
|     }
 | |
|     header += sizeof(DEKInfo)-1;
 | |
|     header += strspn(header, " \t");
 | |
| 
 | |
|     /*
 | |
|      * DEK-INFO is a comma-separated combination of algorithm name and optional
 | |
|      * parameters.
 | |
|      */
 | |
|     dekinfostart = header;
 | |
|     header += strcspn(header, " \t,");
 | |
|     c = *header;
 | |
|     *header = '\0';
 | |
|     cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart);
 | |
|     *header = c;
 | |
|     header += strspn(header, " \t");
 | |
| 
 | |
|     if (enc == NULL) {
 | |
|         PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNSUPPORTED_ENCRYPTION);
 | |
|         return 0;
 | |
|     }
 | |
|     ivlen = EVP_CIPHER_iv_length(enc);
 | |
|     if (ivlen > 0 && *header++ != ',') {
 | |
|         PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_MISSING_DEK_IV);
 | |
|         return 0;
 | |
|     } else if (ivlen == 0 && *header == ',') {
 | |
|         PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNEXPECTED_DEK_IV);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!load_iv(&header, cipher->iv, EVP_CIPHER_iv_length(enc)))
 | |
|         return 0;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int load_iv(char **fromp, unsigned char *to, int num)
 | |
| {
 | |
|     int v, i;
 | |
|     char *from;
 | |
| 
 | |
|     from = *fromp;
 | |
|     for (i = 0; i < num; i++)
 | |
|         to[i] = 0;
 | |
|     num *= 2;
 | |
|     for (i = 0; i < num; i++) {
 | |
|         v = OPENSSL_hexchar2int(*from);
 | |
|         if (v < 0) {
 | |
|             PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS);
 | |
|             return 0;
 | |
|         }
 | |
|         from++;
 | |
|         to[i / 2] |= v << (long)((!(i & 1)) * 4);
 | |
|     }
 | |
| 
 | |
|     *fromp = from;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_STDIO
 | |
| int PEM_write(FILE *fp, const char *name, const char *header,
 | |
|               const unsigned char *data, long len)
 | |
| {
 | |
|     BIO *b;
 | |
|     int ret;
 | |
| 
 | |
|     if ((b = BIO_new(BIO_s_file())) == NULL) {
 | |
|         PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB);
 | |
|         return 0;
 | |
|     }
 | |
|     BIO_set_fp(b, fp, BIO_NOCLOSE);
 | |
|     ret = PEM_write_bio(b, name, header, data, len);
 | |
|     BIO_free(b);
 | |
|     return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int PEM_write_bio(BIO *bp, const char *name, const char *header,
 | |
|                   const unsigned char *data, long len)
 | |
| {
 | |
|     int nlen, n, i, j, outl;
 | |
|     unsigned char *buf = NULL;
 | |
|     EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
 | |
|     int reason = ERR_R_BUF_LIB;
 | |
|     int retval = 0;
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         reason = ERR_R_MALLOC_FAILURE;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     EVP_EncodeInit(ctx);
 | |
|     nlen = strlen(name);
 | |
| 
 | |
|     if ((BIO_write(bp, "-----BEGIN ", 11) != 11) ||
 | |
|         (BIO_write(bp, name, nlen) != nlen) ||
 | |
|         (BIO_write(bp, "-----\n", 6) != 6))
 | |
|         goto err;
 | |
| 
 | |
|     i = strlen(header);
 | |
|     if (i > 0) {
 | |
|         if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1))
 | |
|             goto err;
 | |
|     }
 | |
| 
 | |
|     buf = OPENSSL_malloc(PEM_BUFSIZE * 8);
 | |
|     if (buf == NULL) {
 | |
|         reason = ERR_R_MALLOC_FAILURE;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     i = j = 0;
 | |
|     while (len > 0) {
 | |
|         n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len);
 | |
|         if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n))
 | |
|             goto err;
 | |
|         if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl))
 | |
|             goto err;
 | |
|         i += outl;
 | |
|         len -= n;
 | |
|         j += n;
 | |
|     }
 | |
|     EVP_EncodeFinal(ctx, buf, &outl);
 | |
|     if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl))
 | |
|         goto err;
 | |
|     if ((BIO_write(bp, "-----END ", 9) != 9) ||
 | |
|         (BIO_write(bp, name, nlen) != nlen) ||
 | |
|         (BIO_write(bp, "-----\n", 6) != 6))
 | |
|         goto err;
 | |
|     retval = i + outl;
 | |
| 
 | |
|  err:
 | |
|     if (retval == 0)
 | |
|         PEMerr(PEM_F_PEM_WRITE_BIO, reason);
 | |
|     EVP_ENCODE_CTX_free(ctx);
 | |
|     OPENSSL_clear_free(buf, PEM_BUFSIZE * 8);
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| #ifndef OPENSSL_NO_STDIO
 | |
| int PEM_read(FILE *fp, char **name, char **header, unsigned char **data,
 | |
|              long *len)
 | |
| {
 | |
|     BIO *b;
 | |
|     int ret;
 | |
| 
 | |
|     if ((b = BIO_new(BIO_s_file())) == NULL) {
 | |
|         PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB);
 | |
|         return 0;
 | |
|     }
 | |
|     BIO_set_fp(b, fp, BIO_NOCLOSE);
 | |
|     ret = PEM_read_bio(b, name, header, data, len);
 | |
|     BIO_free(b);
 | |
|     return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Some helpers for PEM_read_bio_ex(). */
 | |
| static int sanitize_line(char *linebuf, int len, unsigned int flags)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (flags & PEM_FLAG_EAY_COMPATIBLE) {
 | |
|         /* Strip trailing whitespace */
 | |
|         while ((len >= 0) && (linebuf[len] <= ' '))
 | |
|             len--;
 | |
|         /* Go back to whitespace before applying uniform line ending. */
 | |
|         len++;
 | |
|     } else if (flags & PEM_FLAG_ONLY_B64) {
 | |
|         for (i = 0; i < len; ++i) {
 | |
|             if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n'
 | |
|                 || linebuf[i] == '\r')
 | |
|                 break;
 | |
|         }
 | |
|         len = i;
 | |
|     } else {
 | |
|         /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip
 | |
|          * control characters in-place and let everything through. */
 | |
|         for (i = 0; i < len; ++i) {
 | |
|             if (linebuf[i] == '\n' || linebuf[i] == '\r')
 | |
|                 break;
 | |
|             if (ossl_iscntrl(linebuf[i]))
 | |
|                 linebuf[i] = ' ';
 | |
|         }
 | |
|         len = i;
 | |
|     }
 | |
|     /* The caller allocated LINESIZE+1, so this is safe. */
 | |
|     linebuf[len++] = '\n';
 | |
|     linebuf[len] = '\0';
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| #define LINESIZE 255
 | |
| /* Note trailing spaces for begin and end. */
 | |
| static const char beginstr[] = "-----BEGIN ";
 | |
| static const char endstr[] = "-----END ";
 | |
| static const char tailstr[] = "-----\n";
 | |
| #define BEGINLEN ((int)(sizeof(beginstr) - 1))
 | |
| #define ENDLEN ((int)(sizeof(endstr) - 1))
 | |
| #define TAILLEN ((int)(sizeof(tailstr) - 1))
 | |
| static int get_name(BIO *bp, char **name, unsigned int flags)
 | |
| {
 | |
|     char *linebuf;
 | |
|     int ret = 0;
 | |
|     int len;
 | |
| 
 | |
|     /*
 | |
|      * Need to hold trailing NUL (accounted for by BIO_gets() and the newline
 | |
|      * that will be added by sanitize_line() (the extra '1').
 | |
|      */
 | |
|     linebuf = pem_malloc(LINESIZE + 1, flags);
 | |
|     if (linebuf == NULL) {
 | |
|         PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         len = BIO_gets(bp, linebuf, LINESIZE);
 | |
| 
 | |
|         if (len <= 0) {
 | |
|             PEMerr(PEM_F_GET_NAME, PEM_R_NO_START_LINE);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         /* Strip trailing garbage and standardize ending. */
 | |
|         len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64);
 | |
| 
 | |
|         /* Allow leading empty or non-matching lines. */
 | |
|     } while (strncmp(linebuf, beginstr, BEGINLEN) != 0
 | |
|              || len < TAILLEN
 | |
|              || strncmp(linebuf + len - TAILLEN, tailstr, TAILLEN) != 0);
 | |
|     linebuf[len - TAILLEN] = '\0';
 | |
|     len = len - BEGINLEN - TAILLEN + 1;
 | |
|     *name = pem_malloc(len, flags);
 | |
|     if (*name == NULL) {
 | |
|         PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE);
 | |
|         goto err;
 | |
|     }
 | |
|     memcpy(*name, linebuf + BEGINLEN, len);
 | |
|     ret = 1;
 | |
| 
 | |
| err:
 | |
|     pem_free(linebuf, flags, LINESIZE + 1);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Keep track of how much of a header we've seen. */
 | |
| enum header_status {
 | |
|     MAYBE_HEADER,
 | |
|     IN_HEADER,
 | |
|     POST_HEADER
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Extract the optional PEM header, with details on the type of content and
 | |
|  * any encryption used on the contents, and the bulk of the data from the bio.
 | |
|  * The end of the header is marked by a blank line; if the end-of-input marker
 | |
|  * is reached prior to a blank line, there is no header.
 | |
|  *
 | |
|  * The header and data arguments are BIO** since we may have to swap them
 | |
|  * if there is no header, for efficiency.
 | |
|  *
 | |
|  * We need the name of the PEM-encoded type to verify the end string.
 | |
|  */
 | |
| static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name,
 | |
|                                unsigned int flags)
 | |
| {
 | |
|     BIO *tmp = *header;
 | |
|     char *linebuf, *p;
 | |
|     int len, line, ret = 0, end = 0, prev_partial_line_read = 0, partial_line_read = 0;
 | |
|     /* 0 if not seen (yet), 1 if reading header, 2 if finished header */
 | |
|     enum header_status got_header = MAYBE_HEADER;
 | |
|     unsigned int flags_mask;
 | |
|     size_t namelen;
 | |
| 
 | |
|     /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline
 | |
|      * that will be added by sanitize_line() (the extra '1'). */
 | |
|     linebuf = pem_malloc(LINESIZE + 1, flags);
 | |
|     if (linebuf == NULL) {
 | |
|         PEMerr(PEM_F_GET_HEADER_AND_DATA, ERR_R_MALLOC_FAILURE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for (line = 0; ; line++) {
 | |
|         flags_mask = ~0u;
 | |
|         len = BIO_gets(bp, linebuf, LINESIZE);
 | |
|         if (len <= 0) {
 | |
|             PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE);
 | |
|             goto err;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Check if line has been read completely or if only part of the line
 | |
|          * has been read. Keep the previous value to ignore newlines that
 | |
|          * appear due to reading a line up until the char before the newline.
 | |
|          */
 | |
|         prev_partial_line_read = partial_line_read;
 | |
|         partial_line_read = len == LINESIZE-1 && linebuf[LINESIZE-2] != '\n';
 | |
| 
 | |
|         if (got_header == MAYBE_HEADER) {
 | |
|             if (memchr(linebuf, ':', len) != NULL)
 | |
|                 got_header = IN_HEADER;
 | |
|         }
 | |
|         if (!strncmp(linebuf, endstr, ENDLEN) || got_header == IN_HEADER)
 | |
|             flags_mask &= ~PEM_FLAG_ONLY_B64;
 | |
|         len = sanitize_line(linebuf, len, flags & flags_mask);
 | |
| 
 | |
|         /* Check for end of header. */
 | |
|         if (linebuf[0] == '\n') {
 | |
|             /*
 | |
|              * If previous line has been read only partially this newline is a
 | |
|              * regular newline at the end of a line and not an empty line.
 | |
|              */
 | |
|             if (!prev_partial_line_read) {
 | |
|                 if (got_header == POST_HEADER) {
 | |
|                     /* Another blank line is an error. */
 | |
|                     PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE);
 | |
|                     goto err;
 | |
|                 }
 | |
|                 got_header = POST_HEADER;
 | |
|                 tmp = *data;
 | |
|             }
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* Check for end of stream (which means there is no header). */
 | |
|         if (strncmp(linebuf, endstr, ENDLEN) == 0) {
 | |
|             p = linebuf + ENDLEN;
 | |
|             namelen = strlen(name);
 | |
|             if (strncmp(p, name, namelen) != 0 ||
 | |
|                 strncmp(p + namelen, tailstr, TAILLEN) != 0) {
 | |
|                 PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE);
 | |
|                 goto err;
 | |
|             }
 | |
|             if (got_header == MAYBE_HEADER) {
 | |
|                 *header = *data;
 | |
|                 *data = tmp;
 | |
|             }
 | |
|             break;
 | |
|         } else if (end) {
 | |
|             /* Malformed input; short line not at end of data. */
 | |
|             PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE);
 | |
|             goto err;
 | |
|         }
 | |
|         /*
 | |
|          * Else, a line of text -- could be header or data; we don't
 | |
|          * know yet.  Just pass it through.
 | |
|          */
 | |
|         if (BIO_puts(tmp, linebuf) < 0)
 | |
|             goto err;
 | |
|         /*
 | |
|          * Only encrypted files need the line length check applied.
 | |
|          */
 | |
|         if (got_header == POST_HEADER) {
 | |
|             /* 65 includes the trailing newline */
 | |
|             if (len > 65)
 | |
|                 goto err;
 | |
|             if (len < 65)
 | |
|                 end = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = 1;
 | |
| err:
 | |
|     pem_free(linebuf, flags, LINESIZE + 1);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Read in PEM-formatted data from the given BIO.
 | |
|  *
 | |
|  * By nature of the PEM format, all content must be printable ASCII (except
 | |
|  * for line endings).  Other characters are malformed input and will be rejected.
 | |
|  */
 | |
| int PEM_read_bio_ex(BIO *bp, char **name_out, char **header,
 | |
|                     unsigned char **data, long *len_out, unsigned int flags)
 | |
| {
 | |
|     EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new();
 | |
|     const BIO_METHOD *bmeth;
 | |
|     BIO *headerB = NULL, *dataB = NULL;
 | |
|     char *name = NULL;
 | |
|     int len, taillen, headerlen, ret = 0;
 | |
|     BUF_MEM * buf_mem;
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     *len_out = 0;
 | |
|     *name_out = *header = NULL;
 | |
|     *data = NULL;
 | |
|     if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) {
 | |
|         /* These two are mutually incompatible; bail out. */
 | |
|         PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_PASSED_INVALID_ARGUMENT);
 | |
|         goto end;
 | |
|     }
 | |
|     bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem();
 | |
| 
 | |
|     headerB = BIO_new(bmeth);
 | |
|     dataB = BIO_new(bmeth);
 | |
|     if (headerB == NULL || dataB == NULL) {
 | |
|         PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE);
 | |
|         goto end;
 | |
|     }
 | |
| 
 | |
|     if (!get_name(bp, &name, flags))
 | |
|         goto end;
 | |
|     if (!get_header_and_data(bp, &headerB, &dataB, name, flags))
 | |
|         goto end;
 | |
| 
 | |
|     EVP_DecodeInit(ctx);
 | |
|     BIO_get_mem_ptr(dataB, &buf_mem);
 | |
|     len = buf_mem->length;
 | |
|     if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len,
 | |
|                          (unsigned char*)buf_mem->data, len) < 0
 | |
|             || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]),
 | |
|                                &taillen) < 0) {
 | |
|         PEMerr(PEM_F_PEM_READ_BIO_EX, PEM_R_BAD_BASE64_DECODE);
 | |
|         goto end;
 | |
|     }
 | |
|     len += taillen;
 | |
|     buf_mem->length = len;
 | |
| 
 | |
|     /* There was no data in the PEM file; avoid malloc(0). */
 | |
|     if (len == 0)
 | |
|         goto end;
 | |
|     headerlen = BIO_get_mem_data(headerB, NULL);
 | |
|     *header = pem_malloc(headerlen + 1, flags);
 | |
|     *data = pem_malloc(len, flags);
 | |
|     if (*header == NULL || *data == NULL) {
 | |
|         pem_free(*header, flags, 0);
 | |
|         pem_free(*data, flags, 0);
 | |
|         goto end;
 | |
|     }
 | |
|     BIO_read(headerB, *header, headerlen);
 | |
|     (*header)[headerlen] = '\0';
 | |
|     BIO_read(dataB, *data, len);
 | |
|     *len_out = len;
 | |
|     *name_out = name;
 | |
|     name = NULL;
 | |
|     ret = 1;
 | |
| 
 | |
| end:
 | |
|     EVP_ENCODE_CTX_free(ctx);
 | |
|     pem_free(name, flags, 0);
 | |
|     BIO_free(headerB);
 | |
|     BIO_free(dataB);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data,
 | |
|                  long *len)
 | |
| {
 | |
|     return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check pem string and return prefix length. If for example the pem_str ==
 | |
|  * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the
 | |
|  * string "RSA".
 | |
|  */
 | |
| 
 | |
| int pem_check_suffix(const char *pem_str, const char *suffix)
 | |
| {
 | |
|     int pem_len = strlen(pem_str);
 | |
|     int suffix_len = strlen(suffix);
 | |
|     const char *p;
 | |
|     if (suffix_len + 1 >= pem_len)
 | |
|         return 0;
 | |
|     p = pem_str + pem_len - suffix_len;
 | |
|     if (strcmp(p, suffix))
 | |
|         return 0;
 | |
|     p--;
 | |
|     if (*p != ' ')
 | |
|         return 0;
 | |
|     return p - pem_str;
 | |
| }
 |