mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			262 lines
		
	
	
	
		
			6.2 KiB
		
	
	
	
		
			Raku
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
	
		
			6.2 KiB
		
	
	
	
		
			Raku
		
	
	
	
	
	
#! /usr/bin/env perl
 | 
						|
# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the OpenSSL license (the "License").  You may not use
 | 
						|
# this file except in compliance with the License.  You can obtain a copy
 | 
						|
# in the file LICENSE in the source distribution or at
 | 
						|
# https://www.openssl.org/source/license.html
 | 
						|
 | 
						|
 | 
						|
# ====================================================================
 | 
						|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
 | 
						|
# project. The module is, however, dual licensed under OpenSSL and
 | 
						|
# CRYPTOGAMS licenses depending on where you obtain it. For further
 | 
						|
# details see http://www.openssl.org/~appro/cryptogams/.
 | 
						|
# ====================================================================
 | 
						|
 | 
						|
# September 2010.
 | 
						|
#
 | 
						|
# The module implements "4-bit" GCM GHASH function and underlying
 | 
						|
# single multiplication operation in GF(2^128). "4-bit" means that it
 | 
						|
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
 | 
						|
# was measured to be ~18 cycles per processed byte on z10, which is
 | 
						|
# almost 40% better than gcc-generated code. It should be noted that
 | 
						|
# 18 cycles is worse result than expected: loop is scheduled for 12
 | 
						|
# and the result should be close to 12. In the lack of instruction-
 | 
						|
# level profiling data it's impossible to tell why...
 | 
						|
 | 
						|
# November 2010.
 | 
						|
#
 | 
						|
# Adapt for -m31 build. If kernel supports what's called "highgprs"
 | 
						|
# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
 | 
						|
# instructions and achieve "64-bit" performance even in 31-bit legacy
 | 
						|
# application context. The feature is not specific to any particular
 | 
						|
# processor, as long as it's "z-CPU". Latter implies that the code
 | 
						|
# remains z/Architecture specific. On z990 it was measured to perform
 | 
						|
# 2.8x better than 32-bit code generated by gcc 4.3.
 | 
						|
 | 
						|
# March 2011.
 | 
						|
#
 | 
						|
# Support for hardware KIMD-GHASH is verified to produce correct
 | 
						|
# result and therefore is engaged. On z196 it was measured to process
 | 
						|
# 8KB buffer ~7 faster than software implementation. It's not as
 | 
						|
# impressive for smaller buffer sizes and for smallest 16-bytes buffer
 | 
						|
# it's actually almost 2 times slower. Which is the reason why
 | 
						|
# KIMD-GHASH is not used in gcm_gmult_4bit.
 | 
						|
 | 
						|
$flavour = shift;
 | 
						|
 | 
						|
if ($flavour =~ /3[12]/) {
 | 
						|
	$SIZE_T=4;
 | 
						|
	$g="";
 | 
						|
} else {
 | 
						|
	$SIZE_T=8;
 | 
						|
	$g="g";
 | 
						|
}
 | 
						|
 | 
						|
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
 | 
						|
open STDOUT,">$output";
 | 
						|
 | 
						|
$softonly=0;
 | 
						|
 | 
						|
$Zhi="%r0";
 | 
						|
$Zlo="%r1";
 | 
						|
 | 
						|
$Xi="%r2";	# argument block
 | 
						|
$Htbl="%r3";
 | 
						|
$inp="%r4";
 | 
						|
$len="%r5";
 | 
						|
 | 
						|
$rem0="%r6";	# variables
 | 
						|
$rem1="%r7";
 | 
						|
$nlo="%r8";
 | 
						|
$nhi="%r9";
 | 
						|
$xi="%r10";
 | 
						|
$cnt="%r11";
 | 
						|
$tmp="%r12";
 | 
						|
$x78="%r13";
 | 
						|
$rem_4bit="%r14";
 | 
						|
 | 
						|
$sp="%r15";
 | 
						|
 | 
						|
$code.=<<___;
 | 
						|
#include "s390x_arch.h"
 | 
						|
 | 
						|
.text
 | 
						|
 | 
						|
.globl	gcm_gmult_4bit
 | 
						|
.align	32
 | 
						|
gcm_gmult_4bit:
 | 
						|
___
 | 
						|
$code.=<<___ if(!$softonly && 0);	# hardware is slow for single block...
 | 
						|
	larl	%r1,OPENSSL_s390xcap_P
 | 
						|
	lghi	%r0,0
 | 
						|
	lg	%r1,S390X_KIMD+8(%r1)	# load second word of kimd capabilities
 | 
						|
					#  vector
 | 
						|
	tmhh	%r1,0x4000	# check for function 65
 | 
						|
	jz	.Lsoft_gmult
 | 
						|
	stg	%r0,16($sp)	# arrange 16 bytes of zero input
 | 
						|
	stg	%r0,24($sp)
 | 
						|
	lghi	%r0,S390X_GHASH	# function 65
 | 
						|
	la	%r1,0($Xi)	# H lies right after Xi in gcm128_context
 | 
						|
	la	$inp,16($sp)
 | 
						|
	lghi	$len,16
 | 
						|
	.long	0xb93e0004	# kimd %r0,$inp
 | 
						|
	brc	1,.-4		# pay attention to "partial completion"
 | 
						|
	br	%r14
 | 
						|
.align	32
 | 
						|
.Lsoft_gmult:
 | 
						|
___
 | 
						|
$code.=<<___;
 | 
						|
	stm${g}	%r6,%r14,6*$SIZE_T($sp)
 | 
						|
 | 
						|
	aghi	$Xi,-1
 | 
						|
	lghi	$len,1
 | 
						|
	lghi	$x78,`0xf<<3`
 | 
						|
	larl	$rem_4bit,rem_4bit
 | 
						|
 | 
						|
	lg	$Zlo,8+1($Xi)		# Xi
 | 
						|
	j	.Lgmult_shortcut
 | 
						|
.type	gcm_gmult_4bit,\@function
 | 
						|
.size	gcm_gmult_4bit,(.-gcm_gmult_4bit)
 | 
						|
 | 
						|
.globl	gcm_ghash_4bit
 | 
						|
.align	32
 | 
						|
gcm_ghash_4bit:
 | 
						|
___
 | 
						|
$code.=<<___ if(!$softonly);
 | 
						|
	larl	%r1,OPENSSL_s390xcap_P
 | 
						|
	lg	%r0,S390X_KIMD+8(%r1)	# load second word of kimd capabilities
 | 
						|
					#  vector
 | 
						|
	tmhh	%r0,0x4000	# check for function 65
 | 
						|
	jz	.Lsoft_ghash
 | 
						|
	lghi	%r0,S390X_GHASH	# function 65
 | 
						|
	la	%r1,0($Xi)	# H lies right after Xi in gcm128_context
 | 
						|
	.long	0xb93e0004	# kimd %r0,$inp
 | 
						|
	brc	1,.-4		# pay attention to "partial completion"
 | 
						|
	br	%r14
 | 
						|
.align	32
 | 
						|
.Lsoft_ghash:
 | 
						|
___
 | 
						|
$code.=<<___ if ($flavour =~ /3[12]/);
 | 
						|
	llgfr	$len,$len
 | 
						|
___
 | 
						|
$code.=<<___;
 | 
						|
	stm${g}	%r6,%r14,6*$SIZE_T($sp)
 | 
						|
 | 
						|
	aghi	$Xi,-1
 | 
						|
	srlg	$len,$len,4
 | 
						|
	lghi	$x78,`0xf<<3`
 | 
						|
	larl	$rem_4bit,rem_4bit
 | 
						|
 | 
						|
	lg	$Zlo,8+1($Xi)		# Xi
 | 
						|
	lg	$Zhi,0+1($Xi)
 | 
						|
	lghi	$tmp,0
 | 
						|
.Louter:
 | 
						|
	xg	$Zhi,0($inp)		# Xi ^= inp
 | 
						|
	xg	$Zlo,8($inp)
 | 
						|
	xgr	$Zhi,$tmp
 | 
						|
	stg	$Zlo,8+1($Xi)
 | 
						|
	stg	$Zhi,0+1($Xi)
 | 
						|
 | 
						|
.Lgmult_shortcut:
 | 
						|
	lghi	$tmp,0xf0
 | 
						|
	sllg	$nlo,$Zlo,4
 | 
						|
	srlg	$xi,$Zlo,8		# extract second byte
 | 
						|
	ngr	$nlo,$tmp
 | 
						|
	lgr	$nhi,$Zlo
 | 
						|
	lghi	$cnt,14
 | 
						|
	ngr	$nhi,$tmp
 | 
						|
 | 
						|
	lg	$Zlo,8($nlo,$Htbl)
 | 
						|
	lg	$Zhi,0($nlo,$Htbl)
 | 
						|
 | 
						|
	sllg	$nlo,$xi,4
 | 
						|
	sllg	$rem0,$Zlo,3
 | 
						|
	ngr	$nlo,$tmp
 | 
						|
	ngr	$rem0,$x78
 | 
						|
	ngr	$xi,$tmp
 | 
						|
 | 
						|
	sllg	$tmp,$Zhi,60
 | 
						|
	srlg	$Zlo,$Zlo,4
 | 
						|
	srlg	$Zhi,$Zhi,4
 | 
						|
	xg	$Zlo,8($nhi,$Htbl)
 | 
						|
	xg	$Zhi,0($nhi,$Htbl)
 | 
						|
	lgr	$nhi,$xi
 | 
						|
	sllg	$rem1,$Zlo,3
 | 
						|
	xgr	$Zlo,$tmp
 | 
						|
	ngr	$rem1,$x78
 | 
						|
	sllg	$tmp,$Zhi,60
 | 
						|
	j	.Lghash_inner
 | 
						|
.align	16
 | 
						|
.Lghash_inner:
 | 
						|
	srlg	$Zlo,$Zlo,4
 | 
						|
	srlg	$Zhi,$Zhi,4
 | 
						|
	xg	$Zlo,8($nlo,$Htbl)
 | 
						|
	llgc	$xi,0($cnt,$Xi)
 | 
						|
	xg	$Zhi,0($nlo,$Htbl)
 | 
						|
	sllg	$nlo,$xi,4
 | 
						|
	xg	$Zhi,0($rem0,$rem_4bit)
 | 
						|
	nill	$nlo,0xf0
 | 
						|
	sllg	$rem0,$Zlo,3
 | 
						|
	xgr	$Zlo,$tmp
 | 
						|
	ngr	$rem0,$x78
 | 
						|
	nill	$xi,0xf0
 | 
						|
 | 
						|
	sllg	$tmp,$Zhi,60
 | 
						|
	srlg	$Zlo,$Zlo,4
 | 
						|
	srlg	$Zhi,$Zhi,4
 | 
						|
	xg	$Zlo,8($nhi,$Htbl)
 | 
						|
	xg	$Zhi,0($nhi,$Htbl)
 | 
						|
	lgr	$nhi,$xi
 | 
						|
	xg	$Zhi,0($rem1,$rem_4bit)
 | 
						|
	sllg	$rem1,$Zlo,3
 | 
						|
	xgr	$Zlo,$tmp
 | 
						|
	ngr	$rem1,$x78
 | 
						|
	sllg	$tmp,$Zhi,60
 | 
						|
	brct	$cnt,.Lghash_inner
 | 
						|
 | 
						|
	srlg	$Zlo,$Zlo,4
 | 
						|
	srlg	$Zhi,$Zhi,4
 | 
						|
	xg	$Zlo,8($nlo,$Htbl)
 | 
						|
	xg	$Zhi,0($nlo,$Htbl)
 | 
						|
	sllg	$xi,$Zlo,3
 | 
						|
	xg	$Zhi,0($rem0,$rem_4bit)
 | 
						|
	xgr	$Zlo,$tmp
 | 
						|
	ngr	$xi,$x78
 | 
						|
 | 
						|
	sllg	$tmp,$Zhi,60
 | 
						|
	srlg	$Zlo,$Zlo,4
 | 
						|
	srlg	$Zhi,$Zhi,4
 | 
						|
	xg	$Zlo,8($nhi,$Htbl)
 | 
						|
	xg	$Zhi,0($nhi,$Htbl)
 | 
						|
	xgr	$Zlo,$tmp
 | 
						|
	xg	$Zhi,0($rem1,$rem_4bit)
 | 
						|
 | 
						|
	lg	$tmp,0($xi,$rem_4bit)
 | 
						|
	la	$inp,16($inp)
 | 
						|
	sllg	$tmp,$tmp,4		# correct last rem_4bit[rem]
 | 
						|
	brctg	$len,.Louter
 | 
						|
 | 
						|
	xgr	$Zhi,$tmp
 | 
						|
	stg	$Zlo,8+1($Xi)
 | 
						|
	stg	$Zhi,0+1($Xi)
 | 
						|
	lm${g}	%r6,%r14,6*$SIZE_T($sp)
 | 
						|
	br	%r14
 | 
						|
.type	gcm_ghash_4bit,\@function
 | 
						|
.size	gcm_ghash_4bit,(.-gcm_ghash_4bit)
 | 
						|
 | 
						|
.align	64
 | 
						|
rem_4bit:
 | 
						|
	.long	`0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0
 | 
						|
	.long	`0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0
 | 
						|
	.long	`0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0
 | 
						|
	.long	`0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0
 | 
						|
.type	rem_4bit,\@object
 | 
						|
.size	rem_4bit,(.-rem_4bit)
 | 
						|
.string	"GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>"
 | 
						|
___
 | 
						|
 | 
						|
$code =~ s/\`([^\`]*)\`/eval $1/gem;
 | 
						|
print $code;
 | 
						|
close STDOUT or die "error closing STDOUT: $!";
 |