mirror of
				https://github.com/ossrs/srs.git
				synced 2025-03-09 15:49:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1246 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1246 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
 | |
|  *
 | |
|  * Licensed under the OpenSSL license (the "License").  You may not use
 | |
|  * this file except in compliance with the License.  You can obtain a copy
 | |
|  * in the file LICENSE in the source distribution or at
 | |
|  * https://www.openssl.org/source/license.html
 | |
|  */
 | |
| 
 | |
| #include <openssl/e_os2.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
 | |
|                    size_t r);
 | |
| void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r);
 | |
| 
 | |
| #if !defined(KECCAK1600_ASM) || !defined(SELFTEST)
 | |
| 
 | |
| /*
 | |
|  * Choose some sensible defaults
 | |
|  */
 | |
| #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \
 | |
|     !defined(KECCAK_2X) && !defined(KECCAK_INPLACE)
 | |
| # define KECCAK_2X      /* default to KECCAK_2X variant */
 | |
| #endif
 | |
| 
 | |
| #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
 | |
| # define KECCAK_COMPLEMENTING_TRANSFORM
 | |
| #endif
 | |
| 
 | |
| #if defined(__x86_64__) || defined(__aarch64__) || \
 | |
|     defined(__mips64) || defined(__ia64) || \
 | |
|     (defined(__VMS) && !defined(__vax))
 | |
| /*
 | |
|  * These are available even in ILP32 flavours, but even then they are
 | |
|  * capable of performing 64-bit operations as efficiently as in *P64.
 | |
|  * Since it's not given that we can use sizeof(void *), just shunt it.
 | |
|  */
 | |
| # define BIT_INTERLEAVE (0)
 | |
| #else
 | |
| # define BIT_INTERLEAVE (sizeof(void *) < 8)
 | |
| #endif
 | |
| 
 | |
| #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31)))
 | |
| 
 | |
| static uint64_t ROL64(uint64_t val, int offset)
 | |
| {
 | |
|     if (offset == 0) {
 | |
|         return val;
 | |
|     } else if (!BIT_INTERLEAVE) {
 | |
|         return (val << offset) | (val >> (64-offset));
 | |
|     } else {
 | |
|         uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val;
 | |
| 
 | |
|         if (offset & 1) {
 | |
|             uint32_t tmp = hi;
 | |
| 
 | |
|             offset >>= 1;
 | |
|             hi = ROL32(lo, offset);
 | |
|             lo = ROL32(tmp, offset + 1);
 | |
|         } else {
 | |
|             offset >>= 1;
 | |
|             lo = ROL32(lo, offset);
 | |
|             hi = ROL32(hi, offset);
 | |
|         }
 | |
| 
 | |
|         return ((uint64_t)hi << 32) | lo;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const unsigned char rhotates[5][5] = {
 | |
|     {  0,  1, 62, 28, 27 },
 | |
|     { 36, 44,  6, 55, 20 },
 | |
|     {  3, 10, 43, 25, 39 },
 | |
|     { 41, 45, 15, 21,  8 },
 | |
|     { 18,  2, 61, 56, 14 }
 | |
| };
 | |
| 
 | |
| static const uint64_t iotas[] = {
 | |
|     BIT_INTERLEAVE ? 0x0000000000000001U : 0x0000000000000001U,
 | |
|     BIT_INTERLEAVE ? 0x0000008900000000U : 0x0000000000008082U,
 | |
|     BIT_INTERLEAVE ? 0x8000008b00000000U : 0x800000000000808aU,
 | |
|     BIT_INTERLEAVE ? 0x8000808000000000U : 0x8000000080008000U,
 | |
|     BIT_INTERLEAVE ? 0x0000008b00000001U : 0x000000000000808bU,
 | |
|     BIT_INTERLEAVE ? 0x0000800000000001U : 0x0000000080000001U,
 | |
|     BIT_INTERLEAVE ? 0x8000808800000001U : 0x8000000080008081U,
 | |
|     BIT_INTERLEAVE ? 0x8000008200000001U : 0x8000000000008009U,
 | |
|     BIT_INTERLEAVE ? 0x0000000b00000000U : 0x000000000000008aU,
 | |
|     BIT_INTERLEAVE ? 0x0000000a00000000U : 0x0000000000000088U,
 | |
|     BIT_INTERLEAVE ? 0x0000808200000001U : 0x0000000080008009U,
 | |
|     BIT_INTERLEAVE ? 0x0000800300000000U : 0x000000008000000aU,
 | |
|     BIT_INTERLEAVE ? 0x0000808b00000001U : 0x000000008000808bU,
 | |
|     BIT_INTERLEAVE ? 0x8000000b00000001U : 0x800000000000008bU,
 | |
|     BIT_INTERLEAVE ? 0x8000008a00000001U : 0x8000000000008089U,
 | |
|     BIT_INTERLEAVE ? 0x8000008100000001U : 0x8000000000008003U,
 | |
|     BIT_INTERLEAVE ? 0x8000008100000000U : 0x8000000000008002U,
 | |
|     BIT_INTERLEAVE ? 0x8000000800000000U : 0x8000000000000080U,
 | |
|     BIT_INTERLEAVE ? 0x0000008300000000U : 0x000000000000800aU,
 | |
|     BIT_INTERLEAVE ? 0x8000800300000000U : 0x800000008000000aU,
 | |
|     BIT_INTERLEAVE ? 0x8000808800000001U : 0x8000000080008081U,
 | |
|     BIT_INTERLEAVE ? 0x8000008800000000U : 0x8000000000008080U,
 | |
|     BIT_INTERLEAVE ? 0x0000800000000001U : 0x0000000080000001U,
 | |
|     BIT_INTERLEAVE ? 0x8000808200000000U : 0x8000000080008008U
 | |
| };
 | |
| 
 | |
| #if defined(KECCAK_REF)
 | |
| /*
 | |
|  * This is straightforward or "maximum clarity" implementation aiming
 | |
|  * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard:
 | |
|  * Permutation-Based Hash and Extendible-Output Functions" as much as
 | |
|  * possible. With one caveat. Because of the way C stores matrices,
 | |
|  * references to A[x,y] in the specification are presented as A[y][x].
 | |
|  * Implementation unrolls inner x-loops so that modulo 5 operations are
 | |
|  * explicitly pre-computed.
 | |
|  */
 | |
| static void Theta(uint64_t A[5][5])
 | |
| {
 | |
|     uint64_t C[5], D[5];
 | |
|     size_t y;
 | |
| 
 | |
|     C[0] = A[0][0];
 | |
|     C[1] = A[0][1];
 | |
|     C[2] = A[0][2];
 | |
|     C[3] = A[0][3];
 | |
|     C[4] = A[0][4];
 | |
| 
 | |
|     for (y = 1; y < 5; y++) {
 | |
|         C[0] ^= A[y][0];
 | |
|         C[1] ^= A[y][1];
 | |
|         C[2] ^= A[y][2];
 | |
|         C[3] ^= A[y][3];
 | |
|         C[4] ^= A[y][4];
 | |
|     }
 | |
| 
 | |
|     D[0] = ROL64(C[1], 1) ^ C[4];
 | |
|     D[1] = ROL64(C[2], 1) ^ C[0];
 | |
|     D[2] = ROL64(C[3], 1) ^ C[1];
 | |
|     D[3] = ROL64(C[4], 1) ^ C[2];
 | |
|     D[4] = ROL64(C[0], 1) ^ C[3];
 | |
| 
 | |
|     for (y = 0; y < 5; y++) {
 | |
|         A[y][0] ^= D[0];
 | |
|         A[y][1] ^= D[1];
 | |
|         A[y][2] ^= D[2];
 | |
|         A[y][3] ^= D[3];
 | |
|         A[y][4] ^= D[4];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void Rho(uint64_t A[5][5])
 | |
| {
 | |
|     size_t y;
 | |
| 
 | |
|     for (y = 0; y < 5; y++) {
 | |
|         A[y][0] = ROL64(A[y][0], rhotates[y][0]);
 | |
|         A[y][1] = ROL64(A[y][1], rhotates[y][1]);
 | |
|         A[y][2] = ROL64(A[y][2], rhotates[y][2]);
 | |
|         A[y][3] = ROL64(A[y][3], rhotates[y][3]);
 | |
|         A[y][4] = ROL64(A[y][4], rhotates[y][4]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void Pi(uint64_t A[5][5])
 | |
| {
 | |
|     uint64_t T[5][5];
 | |
| 
 | |
|     /*
 | |
|      * T = A
 | |
|      * A[y][x] = T[x][(3*y+x)%5]
 | |
|      */
 | |
|     memcpy(T, A, sizeof(T));
 | |
| 
 | |
|     A[0][0] = T[0][0];
 | |
|     A[0][1] = T[1][1];
 | |
|     A[0][2] = T[2][2];
 | |
|     A[0][3] = T[3][3];
 | |
|     A[0][4] = T[4][4];
 | |
| 
 | |
|     A[1][0] = T[0][3];
 | |
|     A[1][1] = T[1][4];
 | |
|     A[1][2] = T[2][0];
 | |
|     A[1][3] = T[3][1];
 | |
|     A[1][4] = T[4][2];
 | |
| 
 | |
|     A[2][0] = T[0][1];
 | |
|     A[2][1] = T[1][2];
 | |
|     A[2][2] = T[2][3];
 | |
|     A[2][3] = T[3][4];
 | |
|     A[2][4] = T[4][0];
 | |
| 
 | |
|     A[3][0] = T[0][4];
 | |
|     A[3][1] = T[1][0];
 | |
|     A[3][2] = T[2][1];
 | |
|     A[3][3] = T[3][2];
 | |
|     A[3][4] = T[4][3];
 | |
| 
 | |
|     A[4][0] = T[0][2];
 | |
|     A[4][1] = T[1][3];
 | |
|     A[4][2] = T[2][4];
 | |
|     A[4][3] = T[3][0];
 | |
|     A[4][4] = T[4][1];
 | |
| }
 | |
| 
 | |
| static void Chi(uint64_t A[5][5])
 | |
| {
 | |
|     uint64_t C[5];
 | |
|     size_t y;
 | |
| 
 | |
|     for (y = 0; y < 5; y++) {
 | |
|         C[0] = A[y][0] ^ (~A[y][1] & A[y][2]);
 | |
|         C[1] = A[y][1] ^ (~A[y][2] & A[y][3]);
 | |
|         C[2] = A[y][2] ^ (~A[y][3] & A[y][4]);
 | |
|         C[3] = A[y][3] ^ (~A[y][4] & A[y][0]);
 | |
|         C[4] = A[y][4] ^ (~A[y][0] & A[y][1]);
 | |
| 
 | |
|         A[y][0] = C[0];
 | |
|         A[y][1] = C[1];
 | |
|         A[y][2] = C[2];
 | |
|         A[y][3] = C[3];
 | |
|         A[y][4] = C[4];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void Iota(uint64_t A[5][5], size_t i)
 | |
| {
 | |
|     assert(i < (sizeof(iotas) / sizeof(iotas[0])));
 | |
|     A[0][0] ^= iotas[i];
 | |
| }
 | |
| 
 | |
| static void KeccakF1600(uint64_t A[5][5])
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < 24; i++) {
 | |
|         Theta(A);
 | |
|         Rho(A);
 | |
|         Pi(A);
 | |
|         Chi(A);
 | |
|         Iota(A, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #elif defined(KECCAK_1X)
 | |
| /*
 | |
|  * This implementation is optimization of above code featuring unroll
 | |
|  * of even y-loops, their fusion and code motion. It also minimizes
 | |
|  * temporary storage. Compiler would normally do all these things for
 | |
|  * you, purpose of manual optimization is to provide "unobscured"
 | |
|  * reference for assembly implementation [in case this approach is
 | |
|  * chosen for implementation on some platform]. In the nutshell it's
 | |
|  * equivalent of "plane-per-plane processing" approach discussed in
 | |
|  * section 2.4 of "Keccak implementation overview".
 | |
|  */
 | |
| static void Round(uint64_t A[5][5], size_t i)
 | |
| {
 | |
|     uint64_t C[5], E[2];        /* registers */
 | |
|     uint64_t D[5], T[2][5];     /* memory    */
 | |
| 
 | |
|     assert(i < (sizeof(iotas) / sizeof(iotas[0])));
 | |
| 
 | |
|     C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
 | |
|     C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
 | |
|     C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
 | |
|     C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
 | |
|     C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
 | |
| 
 | |
| #if defined(__arm__)
 | |
|     D[1] = E[0] = ROL64(C[2], 1) ^ C[0];
 | |
|     D[4] = E[1] = ROL64(C[0], 1) ^ C[3];
 | |
|     D[0] = C[0] = ROL64(C[1], 1) ^ C[4];
 | |
|     D[2] = C[1] = ROL64(C[3], 1) ^ C[1];
 | |
|     D[3] = C[2] = ROL64(C[4], 1) ^ C[2];
 | |
| 
 | |
|     T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */
 | |
|     T[0][1] = A[0][1] ^ E[0]; /* D[1] */
 | |
|     T[0][2] = A[0][2] ^ C[1]; /* D[2] */
 | |
|     T[0][3] = A[0][3] ^ C[2]; /* D[3] */
 | |
|     T[0][4] = A[0][4] ^ E[1]; /* D[4] */
 | |
| 
 | |
|     C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]);   /* D[3] */
 | |
|     C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]);   /* D[4] */
 | |
|     C[0] =       A[0][0] ^ C[0]; /* rotate by 0 */  /* D[0] */
 | |
|     C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]);   /* D[2] */
 | |
|     C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]);   /* D[1] */
 | |
| #else
 | |
|     D[0] = ROL64(C[1], 1) ^ C[4];
 | |
|     D[1] = ROL64(C[2], 1) ^ C[0];
 | |
|     D[2] = ROL64(C[3], 1) ^ C[1];
 | |
|     D[3] = ROL64(C[4], 1) ^ C[2];
 | |
|     D[4] = ROL64(C[0], 1) ^ C[3];
 | |
| 
 | |
|     T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */
 | |
|     T[0][1] = A[0][1] ^ D[1];
 | |
|     T[0][2] = A[0][2] ^ D[2];
 | |
|     T[0][3] = A[0][3] ^ D[3];
 | |
|     T[0][4] = A[0][4] ^ D[4];
 | |
| 
 | |
|     C[0] =       A[0][0] ^ D[0]; /* rotate by 0 */
 | |
|     C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
 | |
|     C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
 | |
|     C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
 | |
|     C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
 | |
| #endif
 | |
|     A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
 | |
|     A[0][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     A[0][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     A[0][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     A[0][4] = C[4] ^ (~C[0] & C[1]);
 | |
| 
 | |
|     T[1][0] = A[1][0] ^ (C[3] = D[0]);
 | |
|     T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */
 | |
|     T[1][2] = A[1][2] ^ (E[0] = D[2]);
 | |
|     T[1][3] = A[1][3] ^ (E[1] = D[3]);
 | |
|     T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */
 | |
| 
 | |
|     C[0] = ROL64(T[0][3],        rhotates[0][3]);
 | |
|     C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]);   /* D[4] */
 | |
|     C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]);   /* D[0] */
 | |
|     C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]);   /* D[1] */
 | |
|     C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]);   /* D[2] */
 | |
| 
 | |
|     A[1][0] = C[0] ^ (~C[1] & C[2]);
 | |
|     A[1][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     A[1][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     A[1][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     A[1][4] = C[4] ^ (~C[0] & C[1]);
 | |
| 
 | |
|     C[0] = ROL64(T[0][1],        rhotates[0][1]);
 | |
|     C[1] = ROL64(T[1][2],        rhotates[1][2]);
 | |
|     C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
 | |
|     C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
 | |
|     C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
 | |
| 
 | |
|     A[2][0] = C[0] ^ (~C[1] & C[2]);
 | |
|     A[2][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     A[2][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     A[2][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     A[2][4] = C[4] ^ (~C[0] & C[1]);
 | |
| 
 | |
|     C[0] = ROL64(T[0][4],        rhotates[0][4]);
 | |
|     C[1] = ROL64(T[1][0],        rhotates[1][0]);
 | |
|     C[2] = ROL64(T[1][1],        rhotates[2][1]); /* originally A[2][1] */
 | |
|     C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
 | |
|     C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
 | |
| 
 | |
|     A[3][0] = C[0] ^ (~C[1] & C[2]);
 | |
|     A[3][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     A[3][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     A[3][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     A[3][4] = C[4] ^ (~C[0] & C[1]);
 | |
| 
 | |
|     C[0] = ROL64(T[0][2],        rhotates[0][2]);
 | |
|     C[1] = ROL64(T[1][3],        rhotates[1][3]);
 | |
|     C[2] = ROL64(T[1][4],        rhotates[2][4]); /* originally A[2][4] */
 | |
|     C[3] = ROL64(T[0][0],        rhotates[3][0]); /* originally A[3][0] */
 | |
|     C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
 | |
| 
 | |
|     A[4][0] = C[0] ^ (~C[1] & C[2]);
 | |
|     A[4][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     A[4][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     A[4][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     A[4][4] = C[4] ^ (~C[0] & C[1]);
 | |
| }
 | |
| 
 | |
| static void KeccakF1600(uint64_t A[5][5])
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < 24; i++) {
 | |
|         Round(A, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #elif defined(KECCAK_1X_ALT)
 | |
| /*
 | |
|  * This is variant of above KECCAK_1X that reduces requirement for
 | |
|  * temporary storage even further, but at cost of more updates to A[][].
 | |
|  * It's less suitable if A[][] is memory bound, but better if it's
 | |
|  * register bound.
 | |
|  */
 | |
| 
 | |
| static void Round(uint64_t A[5][5], size_t i)
 | |
| {
 | |
|     uint64_t C[5], D[5];
 | |
| 
 | |
|     assert(i < (sizeof(iotas) / sizeof(iotas[0])));
 | |
| 
 | |
|     C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
 | |
|     C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
 | |
|     C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
 | |
|     C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
 | |
|     C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
 | |
| 
 | |
|     D[1] = C[0] ^  ROL64(C[2], 1);
 | |
|     D[2] = C[1] ^  ROL64(C[3], 1);
 | |
|     D[3] = C[2] ^= ROL64(C[4], 1);
 | |
|     D[4] = C[3] ^= ROL64(C[0], 1);
 | |
|     D[0] = C[4] ^= ROL64(C[1], 1);
 | |
| 
 | |
|     A[0][1] ^= D[1];
 | |
|     A[1][1] ^= D[1];
 | |
|     A[2][1] ^= D[1];
 | |
|     A[3][1] ^= D[1];
 | |
|     A[4][1] ^= D[1];
 | |
| 
 | |
|     A[0][2] ^= D[2];
 | |
|     A[1][2] ^= D[2];
 | |
|     A[2][2] ^= D[2];
 | |
|     A[3][2] ^= D[2];
 | |
|     A[4][2] ^= D[2];
 | |
| 
 | |
|     A[0][3] ^= C[2];
 | |
|     A[1][3] ^= C[2];
 | |
|     A[2][3] ^= C[2];
 | |
|     A[3][3] ^= C[2];
 | |
|     A[4][3] ^= C[2];
 | |
| 
 | |
|     A[0][4] ^= C[3];
 | |
|     A[1][4] ^= C[3];
 | |
|     A[2][4] ^= C[3];
 | |
|     A[3][4] ^= C[3];
 | |
|     A[4][4] ^= C[3];
 | |
| 
 | |
|     A[0][0] ^= C[4];
 | |
|     A[1][0] ^= C[4];
 | |
|     A[2][0] ^= C[4];
 | |
|     A[3][0] ^= C[4];
 | |
|     A[4][0] ^= C[4];
 | |
| 
 | |
|     C[1] = A[0][1];
 | |
|     C[2] = A[0][2];
 | |
|     C[3] = A[0][3];
 | |
|     C[4] = A[0][4];
 | |
| 
 | |
|     A[0][1] = ROL64(A[1][1], rhotates[1][1]);
 | |
|     A[0][2] = ROL64(A[2][2], rhotates[2][2]);
 | |
|     A[0][3] = ROL64(A[3][3], rhotates[3][3]);
 | |
|     A[0][4] = ROL64(A[4][4], rhotates[4][4]);
 | |
| 
 | |
|     A[1][1] = ROL64(A[1][4], rhotates[1][4]);
 | |
|     A[2][2] = ROL64(A[2][3], rhotates[2][3]);
 | |
|     A[3][3] = ROL64(A[3][2], rhotates[3][2]);
 | |
|     A[4][4] = ROL64(A[4][1], rhotates[4][1]);
 | |
| 
 | |
|     A[1][4] = ROL64(A[4][2], rhotates[4][2]);
 | |
|     A[2][3] = ROL64(A[3][4], rhotates[3][4]);
 | |
|     A[3][2] = ROL64(A[2][1], rhotates[2][1]);
 | |
|     A[4][1] = ROL64(A[1][3], rhotates[1][3]);
 | |
| 
 | |
|     A[4][2] = ROL64(A[2][4], rhotates[2][4]);
 | |
|     A[3][4] = ROL64(A[4][3], rhotates[4][3]);
 | |
|     A[2][1] = ROL64(A[1][2], rhotates[1][2]);
 | |
|     A[1][3] = ROL64(A[3][1], rhotates[3][1]);
 | |
| 
 | |
|     A[2][4] = ROL64(A[4][0], rhotates[4][0]);
 | |
|     A[4][3] = ROL64(A[3][0], rhotates[3][0]);
 | |
|     A[1][2] = ROL64(A[2][0], rhotates[2][0]);
 | |
|     A[3][1] = ROL64(A[1][0], rhotates[1][0]);
 | |
| 
 | |
|     A[1][0] = ROL64(C[3],    rhotates[0][3]);
 | |
|     A[2][0] = ROL64(C[1],    rhotates[0][1]);
 | |
|     A[3][0] = ROL64(C[4],    rhotates[0][4]);
 | |
|     A[4][0] = ROL64(C[2],    rhotates[0][2]);
 | |
| 
 | |
|     C[0] = A[0][0];
 | |
|     C[1] = A[1][0];
 | |
|     D[0] = A[0][1];
 | |
|     D[1] = A[1][1];
 | |
| 
 | |
|     A[0][0] ^= (~A[0][1] & A[0][2]);
 | |
|     A[1][0] ^= (~A[1][1] & A[1][2]);
 | |
|     A[0][1] ^= (~A[0][2] & A[0][3]);
 | |
|     A[1][1] ^= (~A[1][2] & A[1][3]);
 | |
|     A[0][2] ^= (~A[0][3] & A[0][4]);
 | |
|     A[1][2] ^= (~A[1][3] & A[1][4]);
 | |
|     A[0][3] ^= (~A[0][4] & C[0]);
 | |
|     A[1][3] ^= (~A[1][4] & C[1]);
 | |
|     A[0][4] ^= (~C[0]    & D[0]);
 | |
|     A[1][4] ^= (~C[1]    & D[1]);
 | |
| 
 | |
|     C[2] = A[2][0];
 | |
|     C[3] = A[3][0];
 | |
|     D[2] = A[2][1];
 | |
|     D[3] = A[3][1];
 | |
| 
 | |
|     A[2][0] ^= (~A[2][1] & A[2][2]);
 | |
|     A[3][0] ^= (~A[3][1] & A[3][2]);
 | |
|     A[2][1] ^= (~A[2][2] & A[2][3]);
 | |
|     A[3][1] ^= (~A[3][2] & A[3][3]);
 | |
|     A[2][2] ^= (~A[2][3] & A[2][4]);
 | |
|     A[3][2] ^= (~A[3][3] & A[3][4]);
 | |
|     A[2][3] ^= (~A[2][4] & C[2]);
 | |
|     A[3][3] ^= (~A[3][4] & C[3]);
 | |
|     A[2][4] ^= (~C[2]    & D[2]);
 | |
|     A[3][4] ^= (~C[3]    & D[3]);
 | |
| 
 | |
|     C[4] = A[4][0];
 | |
|     D[4] = A[4][1];
 | |
| 
 | |
|     A[4][0] ^= (~A[4][1] & A[4][2]);
 | |
|     A[4][1] ^= (~A[4][2] & A[4][3]);
 | |
|     A[4][2] ^= (~A[4][3] & A[4][4]);
 | |
|     A[4][3] ^= (~A[4][4] & C[4]);
 | |
|     A[4][4] ^= (~C[4]    & D[4]);
 | |
|     A[0][0] ^= iotas[i];
 | |
| }
 | |
| 
 | |
| static void KeccakF1600(uint64_t A[5][5])
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < 24; i++) {
 | |
|         Round(A, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #elif defined(KECCAK_2X)
 | |
| /*
 | |
|  * This implementation is variant of KECCAK_1X above with outer-most
 | |
|  * round loop unrolled twice. This allows to take temporary storage
 | |
|  * out of round procedure and simplify references to it by alternating
 | |
|  * it with actual data (see round loop below). Originally it was meant
 | |
|  * rather as reference for an assembly implementation, but it seems to
 | |
|  * play best with compilers [as well as provide best instruction per
 | |
|  * processed byte ratio at minimal round unroll factor]...
 | |
|  */
 | |
| static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i)
 | |
| {
 | |
|     uint64_t C[5], D[5];
 | |
| 
 | |
|     assert(i < (sizeof(iotas) / sizeof(iotas[0])));
 | |
| 
 | |
|     C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
 | |
|     C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
 | |
|     C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
 | |
|     C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
 | |
|     C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
 | |
| 
 | |
|     D[0] = ROL64(C[1], 1) ^ C[4];
 | |
|     D[1] = ROL64(C[2], 1) ^ C[0];
 | |
|     D[2] = ROL64(C[3], 1) ^ C[1];
 | |
|     D[3] = ROL64(C[4], 1) ^ C[2];
 | |
|     D[4] = ROL64(C[0], 1) ^ C[3];
 | |
| 
 | |
|     C[0] =       A[0][0] ^ D[0]; /* rotate by 0 */
 | |
|     C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
 | |
|     C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
 | |
|     C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
 | |
|     C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
 | |
| 
 | |
| #ifdef KECCAK_COMPLEMENTING_TRANSFORM
 | |
|     R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i];
 | |
|     R[0][1] = C[1] ^ (~C[2] | C[3]);
 | |
|     R[0][2] = C[2] ^ ( C[3] & C[4]);
 | |
|     R[0][3] = C[3] ^ ( C[4] | C[0]);
 | |
|     R[0][4] = C[4] ^ ( C[0] & C[1]);
 | |
| #else
 | |
|     R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i];
 | |
|     R[0][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     R[0][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     R[0][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     R[0][4] = C[4] ^ (~C[0] & C[1]);
 | |
| #endif
 | |
| 
 | |
|     C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
 | |
|     C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
 | |
|     C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
 | |
|     C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
 | |
|     C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
 | |
| 
 | |
| #ifdef KECCAK_COMPLEMENTING_TRANSFORM
 | |
|     R[1][0] = C[0] ^ (C[1] |  C[2]);
 | |
|     R[1][1] = C[1] ^ (C[2] &  C[3]);
 | |
|     R[1][2] = C[2] ^ (C[3] | ~C[4]);
 | |
|     R[1][3] = C[3] ^ (C[4] |  C[0]);
 | |
|     R[1][4] = C[4] ^ (C[0] &  C[1]);
 | |
| #else
 | |
|     R[1][0] = C[0] ^ (~C[1] & C[2]);
 | |
|     R[1][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     R[1][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     R[1][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     R[1][4] = C[4] ^ (~C[0] & C[1]);
 | |
| #endif
 | |
| 
 | |
|     C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
 | |
|     C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
 | |
|     C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
 | |
|     C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
 | |
|     C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
 | |
| 
 | |
| #ifdef KECCAK_COMPLEMENTING_TRANSFORM
 | |
|     R[2][0] =  C[0] ^ ( C[1] | C[2]);
 | |
|     R[2][1] =  C[1] ^ ( C[2] & C[3]);
 | |
|     R[2][2] =  C[2] ^ (~C[3] & C[4]);
 | |
|     R[2][3] = ~C[3] ^ ( C[4] | C[0]);
 | |
|     R[2][4] =  C[4] ^ ( C[0] & C[1]);
 | |
| #else
 | |
|     R[2][0] = C[0] ^ (~C[1] & C[2]);
 | |
|     R[2][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     R[2][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     R[2][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     R[2][4] = C[4] ^ (~C[0] & C[1]);
 | |
| #endif
 | |
| 
 | |
|     C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
 | |
|     C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
 | |
|     C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
 | |
|     C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
 | |
|     C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
 | |
| 
 | |
| #ifdef KECCAK_COMPLEMENTING_TRANSFORM
 | |
|     R[3][0] =  C[0] ^ ( C[1] & C[2]);
 | |
|     R[3][1] =  C[1] ^ ( C[2] | C[3]);
 | |
|     R[3][2] =  C[2] ^ (~C[3] | C[4]);
 | |
|     R[3][3] = ~C[3] ^ ( C[4] & C[0]);
 | |
|     R[3][4] =  C[4] ^ ( C[0] | C[1]);
 | |
| #else
 | |
|     R[3][0] = C[0] ^ (~C[1] & C[2]);
 | |
|     R[3][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     R[3][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     R[3][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     R[3][4] = C[4] ^ (~C[0] & C[1]);
 | |
| #endif
 | |
| 
 | |
|     C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
 | |
|     C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
 | |
|     C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
 | |
|     C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
 | |
|     C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
 | |
| 
 | |
| #ifdef KECCAK_COMPLEMENTING_TRANSFORM
 | |
|     R[4][0] =  C[0] ^ (~C[1] & C[2]);
 | |
|     R[4][1] = ~C[1] ^ ( C[2] | C[3]);
 | |
|     R[4][2] =  C[2] ^ ( C[3] & C[4]);
 | |
|     R[4][3] =  C[3] ^ ( C[4] | C[0]);
 | |
|     R[4][4] =  C[4] ^ ( C[0] & C[1]);
 | |
| #else
 | |
|     R[4][0] = C[0] ^ (~C[1] & C[2]);
 | |
|     R[4][1] = C[1] ^ (~C[2] & C[3]);
 | |
|     R[4][2] = C[2] ^ (~C[3] & C[4]);
 | |
|     R[4][3] = C[3] ^ (~C[4] & C[0]);
 | |
|     R[4][4] = C[4] ^ (~C[0] & C[1]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void KeccakF1600(uint64_t A[5][5])
 | |
| {
 | |
|     uint64_t T[5][5];
 | |
|     size_t i;
 | |
| 
 | |
| #ifdef KECCAK_COMPLEMENTING_TRANSFORM
 | |
|     A[0][1] = ~A[0][1];
 | |
|     A[0][2] = ~A[0][2];
 | |
|     A[1][3] = ~A[1][3];
 | |
|     A[2][2] = ~A[2][2];
 | |
|     A[3][2] = ~A[3][2];
 | |
|     A[4][0] = ~A[4][0];
 | |
| #endif
 | |
| 
 | |
|     for (i = 0; i < 24; i += 2) {
 | |
|         Round(T, A, i);
 | |
|         Round(A, T, i + 1);
 | |
|     }
 | |
| 
 | |
| #ifdef KECCAK_COMPLEMENTING_TRANSFORM
 | |
|     A[0][1] = ~A[0][1];
 | |
|     A[0][2] = ~A[0][2];
 | |
|     A[1][3] = ~A[1][3];
 | |
|     A[2][2] = ~A[2][2];
 | |
|     A[3][2] = ~A[3][2];
 | |
|     A[4][0] = ~A[4][0];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else   /* define KECCAK_INPLACE to compile this code path */
 | |
| /*
 | |
|  * This implementation is KECCAK_1X from above combined 4 times with
 | |
|  * a twist that allows to omit temporary storage and perform in-place
 | |
|  * processing. It's discussed in section 2.5 of "Keccak implementation
 | |
|  * overview". It's likely to be best suited for processors with large
 | |
|  * register bank... On the other hand processor with large register
 | |
|  * bank can as well use KECCAK_1X_ALT, it would be as fast but much
 | |
|  * more compact...
 | |
|  */
 | |
| static void FourRounds(uint64_t A[5][5], size_t i)
 | |
| {
 | |
|     uint64_t B[5], C[5], D[5];
 | |
| 
 | |
|     assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4));
 | |
| 
 | |
|     /* Round 4*n */
 | |
|     C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0];
 | |
|     C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1];
 | |
|     C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2];
 | |
|     C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3];
 | |
|     C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4];
 | |
| 
 | |
|     D[0] = ROL64(C[1], 1) ^ C[4];
 | |
|     D[1] = ROL64(C[2], 1) ^ C[0];
 | |
|     D[2] = ROL64(C[3], 1) ^ C[1];
 | |
|     D[3] = ROL64(C[4], 1) ^ C[2];
 | |
|     D[4] = ROL64(C[0], 1) ^ C[3];
 | |
| 
 | |
|     B[0] =       A[0][0] ^ D[0]; /* rotate by 0 */
 | |
|     B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]);
 | |
|     B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]);
 | |
|     B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]);
 | |
|     B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]);
 | |
| 
 | |
|     C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i];
 | |
|     C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]);
 | |
|     B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
 | |
|     B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]);
 | |
|     B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]);
 | |
|     B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]);
 | |
| 
 | |
|     C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]);
 | |
|     B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]);
 | |
|     B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
 | |
|     B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]);
 | |
|     B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]);
 | |
| 
 | |
|     C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]);
 | |
|     B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]);
 | |
|     B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]);
 | |
|     B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
 | |
|     B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]);
 | |
| 
 | |
|     C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]);
 | |
|     B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]);
 | |
|     B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]);
 | |
|     B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]);
 | |
|     B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
 | |
| 
 | |
|     C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     /* Round 4*n+1 */
 | |
|     D[0] = ROL64(C[1], 1) ^ C[4];
 | |
|     D[1] = ROL64(C[2], 1) ^ C[0];
 | |
|     D[2] = ROL64(C[3], 1) ^ C[1];
 | |
|     D[3] = ROL64(C[4], 1) ^ C[2];
 | |
|     D[4] = ROL64(C[0], 1) ^ C[3];
 | |
| 
 | |
|     B[0] =       A[0][0] ^ D[0]; /* rotate by 0 */
 | |
|     B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]);
 | |
|     B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]);
 | |
|     B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]);
 | |
|     B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]);
 | |
| 
 | |
|     C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1];
 | |
|     C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]);
 | |
|     B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
 | |
|     B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]);
 | |
|     B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]);
 | |
|     B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]);
 | |
| 
 | |
|     C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]);
 | |
|     B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]);
 | |
|     B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
 | |
|     B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]);
 | |
|     B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]);
 | |
| 
 | |
|     C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]);
 | |
|     B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]);
 | |
|     B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]);
 | |
|     B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
 | |
|     B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]);
 | |
| 
 | |
|     C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]);
 | |
|     B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]);
 | |
|     B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]);
 | |
|     B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]);
 | |
|     B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
 | |
| 
 | |
|     C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     /* Round 4*n+2 */
 | |
|     D[0] = ROL64(C[1], 1) ^ C[4];
 | |
|     D[1] = ROL64(C[2], 1) ^ C[0];
 | |
|     D[2] = ROL64(C[3], 1) ^ C[1];
 | |
|     D[3] = ROL64(C[4], 1) ^ C[2];
 | |
|     D[4] = ROL64(C[0], 1) ^ C[3];
 | |
| 
 | |
|     B[0] =       A[0][0] ^ D[0]; /* rotate by 0 */
 | |
|     B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]);
 | |
|     B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]);
 | |
|     B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]);
 | |
|     B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]);
 | |
| 
 | |
|     C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2];
 | |
|     C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]);
 | |
|     B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
 | |
|     B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]);
 | |
|     B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]);
 | |
|     B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]);
 | |
| 
 | |
|     C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]);
 | |
|     B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]);
 | |
|     B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
 | |
|     B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]);
 | |
|     B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]);
 | |
| 
 | |
|     C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]);
 | |
|     B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]);
 | |
|     B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]);
 | |
|     B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
 | |
|     B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]);
 | |
| 
 | |
|     C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]);
 | |
|     B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]);
 | |
|     B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]);
 | |
|     B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]);
 | |
|     B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
 | |
| 
 | |
|     C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     /* Round 4*n+3 */
 | |
|     D[0] = ROL64(C[1], 1) ^ C[4];
 | |
|     D[1] = ROL64(C[2], 1) ^ C[0];
 | |
|     D[2] = ROL64(C[3], 1) ^ C[1];
 | |
|     D[3] = ROL64(C[4], 1) ^ C[2];
 | |
|     D[4] = ROL64(C[0], 1) ^ C[3];
 | |
| 
 | |
|     B[0] =       A[0][0] ^ D[0]; /* rotate by 0 */
 | |
|     B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]);
 | |
|     B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]);
 | |
|     B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]);
 | |
|     B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]);
 | |
| 
 | |
|     /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3];
 | |
|     /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]);
 | |
|     B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]);
 | |
|     B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]);
 | |
|     B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]);
 | |
|     B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]);
 | |
| 
 | |
|     /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]);
 | |
|     B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]);
 | |
|     B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]);
 | |
|     B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]);
 | |
|     B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]);
 | |
| 
 | |
|     /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]);
 | |
|     B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]);
 | |
|     B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]);
 | |
|     B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]);
 | |
|     B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]);
 | |
| 
 | |
|     /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]);
 | |
| 
 | |
|     B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]);
 | |
|     B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]);
 | |
|     B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]);
 | |
|     B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]);
 | |
|     B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]);
 | |
| 
 | |
|     /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]);
 | |
|     /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]);
 | |
|     /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]);
 | |
|     /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]);
 | |
|     /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]);
 | |
| }
 | |
| 
 | |
| static void KeccakF1600(uint64_t A[5][5])
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < 24; i += 4) {
 | |
|         FourRounds(A, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static uint64_t BitInterleave(uint64_t Ai)
 | |
| {
 | |
|     if (BIT_INTERLEAVE) {
 | |
|         uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
 | |
|         uint32_t t0, t1;
 | |
| 
 | |
|         t0 = lo & 0x55555555;
 | |
|         t0 |= t0 >> 1;  t0 &= 0x33333333;
 | |
|         t0 |= t0 >> 2;  t0 &= 0x0f0f0f0f;
 | |
|         t0 |= t0 >> 4;  t0 &= 0x00ff00ff;
 | |
|         t0 |= t0 >> 8;  t0 &= 0x0000ffff;
 | |
| 
 | |
|         t1 = hi & 0x55555555;
 | |
|         t1 |= t1 >> 1;  t1 &= 0x33333333;
 | |
|         t1 |= t1 >> 2;  t1 &= 0x0f0f0f0f;
 | |
|         t1 |= t1 >> 4;  t1 &= 0x00ff00ff;
 | |
|         t1 |= t1 >> 8;  t1 <<= 16;
 | |
| 
 | |
|         lo &= 0xaaaaaaaa;
 | |
|         lo |= lo << 1;  lo &= 0xcccccccc;
 | |
|         lo |= lo << 2;  lo &= 0xf0f0f0f0;
 | |
|         lo |= lo << 4;  lo &= 0xff00ff00;
 | |
|         lo |= lo << 8;  lo >>= 16;
 | |
| 
 | |
|         hi &= 0xaaaaaaaa;
 | |
|         hi |= hi << 1;  hi &= 0xcccccccc;
 | |
|         hi |= hi << 2;  hi &= 0xf0f0f0f0;
 | |
|         hi |= hi << 4;  hi &= 0xff00ff00;
 | |
|         hi |= hi << 8;  hi &= 0xffff0000;
 | |
| 
 | |
|         Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
 | |
|     }
 | |
| 
 | |
|     return Ai;
 | |
| }
 | |
| 
 | |
| static uint64_t BitDeinterleave(uint64_t Ai)
 | |
| {
 | |
|     if (BIT_INTERLEAVE) {
 | |
|         uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai;
 | |
|         uint32_t t0, t1;
 | |
| 
 | |
|         t0 = lo & 0x0000ffff;
 | |
|         t0 |= t0 << 8;  t0 &= 0x00ff00ff;
 | |
|         t0 |= t0 << 4;  t0 &= 0x0f0f0f0f;
 | |
|         t0 |= t0 << 2;  t0 &= 0x33333333;
 | |
|         t0 |= t0 << 1;  t0 &= 0x55555555;
 | |
| 
 | |
|         t1 = hi << 16;
 | |
|         t1 |= t1 >> 8;  t1 &= 0xff00ff00;
 | |
|         t1 |= t1 >> 4;  t1 &= 0xf0f0f0f0;
 | |
|         t1 |= t1 >> 2;  t1 &= 0xcccccccc;
 | |
|         t1 |= t1 >> 1;  t1 &= 0xaaaaaaaa;
 | |
| 
 | |
|         lo >>= 16;
 | |
|         lo |= lo << 8;  lo &= 0x00ff00ff;
 | |
|         lo |= lo << 4;  lo &= 0x0f0f0f0f;
 | |
|         lo |= lo << 2;  lo &= 0x33333333;
 | |
|         lo |= lo << 1;  lo &= 0x55555555;
 | |
| 
 | |
|         hi &= 0xffff0000;
 | |
|         hi |= hi >> 8;  hi &= 0xff00ff00;
 | |
|         hi |= hi >> 4;  hi &= 0xf0f0f0f0;
 | |
|         hi |= hi >> 2;  hi &= 0xcccccccc;
 | |
|         hi |= hi >> 1;  hi &= 0xaaaaaaaa;
 | |
| 
 | |
|         Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0);
 | |
|     }
 | |
| 
 | |
|     return Ai;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SHA3_absorb can be called multiple times, but at each invocation
 | |
|  * largest multiple of |r| out of |len| bytes are processed. Then
 | |
|  * remaining amount of bytes is returned. This is done to spare caller
 | |
|  * trouble of calculating the largest multiple of |r|. |r| can be viewed
 | |
|  * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104,
 | |
|  * 72, but can also be (1600 - 448)/8 = 144. All this means that message
 | |
|  * padding and intermediate sub-block buffering, byte- or bitwise, is
 | |
|  * caller's responsibility.
 | |
|  */
 | |
| size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len,
 | |
|                    size_t r)
 | |
| {
 | |
|     uint64_t *A_flat = (uint64_t *)A;
 | |
|     size_t i, w = r / 8;
 | |
| 
 | |
|     assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
 | |
| 
 | |
|     while (len >= r) {
 | |
|         for (i = 0; i < w; i++) {
 | |
|             uint64_t Ai = (uint64_t)inp[0]       | (uint64_t)inp[1] << 8  |
 | |
|                           (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 |
 | |
|                           (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 |
 | |
|                           (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56;
 | |
|             inp += 8;
 | |
| 
 | |
|             A_flat[i] ^= BitInterleave(Ai);
 | |
|         }
 | |
|         KeccakF1600(A);
 | |
|         len -= r;
 | |
|     }
 | |
| 
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SHA3_squeeze is called once at the end to generate |out| hash value
 | |
|  * of |len| bytes.
 | |
|  */
 | |
| void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r)
 | |
| {
 | |
|     uint64_t *A_flat = (uint64_t *)A;
 | |
|     size_t i, w = r / 8;
 | |
| 
 | |
|     assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0);
 | |
| 
 | |
|     while (len != 0) {
 | |
|         for (i = 0; i < w && len != 0; i++) {
 | |
|             uint64_t Ai = BitDeinterleave(A_flat[i]);
 | |
| 
 | |
|             if (len < 8) {
 | |
|                 for (i = 0; i < len; i++) {
 | |
|                     *out++ = (unsigned char)Ai;
 | |
|                     Ai >>= 8;
 | |
|                 }
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             out[0] = (unsigned char)(Ai);
 | |
|             out[1] = (unsigned char)(Ai >> 8);
 | |
|             out[2] = (unsigned char)(Ai >> 16);
 | |
|             out[3] = (unsigned char)(Ai >> 24);
 | |
|             out[4] = (unsigned char)(Ai >> 32);
 | |
|             out[5] = (unsigned char)(Ai >> 40);
 | |
|             out[6] = (unsigned char)(Ai >> 48);
 | |
|             out[7] = (unsigned char)(Ai >> 56);
 | |
|             out += 8;
 | |
|             len -= 8;
 | |
|         }
 | |
|         if (len)
 | |
|             KeccakF1600(A);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SELFTEST
 | |
| /*
 | |
|  * Post-padding one-shot implementations would look as following:
 | |
|  *
 | |
|  * SHA3_224     SHA3_sponge(inp, len, out, 224/8, (1600-448)/8);
 | |
|  * SHA3_256     SHA3_sponge(inp, len, out, 256/8, (1600-512)/8);
 | |
|  * SHA3_384     SHA3_sponge(inp, len, out, 384/8, (1600-768)/8);
 | |
|  * SHA3_512     SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8);
 | |
|  * SHAKE_128    SHA3_sponge(inp, len, out, d, (1600-256)/8);
 | |
|  * SHAKE_256    SHA3_sponge(inp, len, out, d, (1600-512)/8);
 | |
|  */
 | |
| 
 | |
| void SHA3_sponge(const unsigned char *inp, size_t len,
 | |
|                  unsigned char *out, size_t d, size_t r)
 | |
| {
 | |
|     uint64_t A[5][5];
 | |
| 
 | |
|     memset(A, 0, sizeof(A));
 | |
|     SHA3_absorb(A, inp, len, r);
 | |
|     SHA3_squeeze(A, out, d, r);
 | |
| }
 | |
| 
 | |
| # include <stdio.h>
 | |
| 
 | |
| int main()
 | |
| {
 | |
|     /*
 | |
|      * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing
 | |
|      */
 | |
|     unsigned char test[168] = { '\xf3', '\x3' };
 | |
|     unsigned char out[512];
 | |
|     size_t i;
 | |
|     static const unsigned char result[512] = {
 | |
|         0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B,
 | |
|         0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF,
 | |
|         0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98,
 | |
|         0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA,
 | |
|         0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB,
 | |
|         0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C,
 | |
|         0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C,
 | |
|         0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D,
 | |
|         0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD,
 | |
|         0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F,
 | |
|         0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC,
 | |
|         0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C,
 | |
|         0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6,
 | |
|         0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE,
 | |
|         0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3,
 | |
|         0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64,
 | |
|         0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6,
 | |
|         0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5,
 | |
|         0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38,
 | |
|         0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05,
 | |
|         0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98,
 | |
|         0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2,
 | |
|         0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50,
 | |
|         0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75,
 | |
|         0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0,
 | |
|         0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04,
 | |
|         0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8,
 | |
|         0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03,
 | |
|         0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9,
 | |
|         0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B,
 | |
|         0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B,
 | |
|         0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73,
 | |
|         0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6,
 | |
|         0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C,
 | |
|         0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D,
 | |
|         0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20,
 | |
|         0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D,
 | |
|         0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F,
 | |
|         0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A,
 | |
|         0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15,
 | |
|         0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D,
 | |
|         0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6,
 | |
|         0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2,
 | |
|         0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D,
 | |
|         0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30,
 | |
|         0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C,
 | |
|         0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E,
 | |
|         0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28,
 | |
|         0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A,
 | |
|         0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25,
 | |
|         0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28,
 | |
|         0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C,
 | |
|         0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41,
 | |
|         0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B,
 | |
|         0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C,
 | |
|         0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C,
 | |
|         0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA,
 | |
|         0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F,
 | |
|         0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A,
 | |
|         0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60,
 | |
|         0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6,
 | |
|         0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50,
 | |
|         0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF,
 | |
|         0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9
 | |
|     };
 | |
| 
 | |
|     test[167] = '\x80';
 | |
|     SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test));
 | |
| 
 | |
|     /*
 | |
|      * Rationale behind keeping output [formatted as below] is that
 | |
|      * one should be able to redirect it to a file, then copy-n-paste
 | |
|      * final "output val" from official example to another file, and
 | |
|      * compare the two with diff(1).
 | |
|      */
 | |
|     for (i = 0; i < sizeof(out);) {
 | |
|         printf("%02X", out[i]);
 | |
|         printf(++i % 16 && i != sizeof(out) ? " " : "\n");
 | |
|     }
 | |
| 
 | |
|     if (memcmp(out,result,sizeof(out))) {
 | |
|         fprintf(stderr,"failure\n");
 | |
|         return 1;
 | |
|     } else {
 | |
|         fprintf(stderr,"success\n");
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| #endif
 |