1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-03-09 15:40:10 +00:00

[Tolk] Compilation pipeline, register global symbols in advance

Since I've implemented AST, now I can drop forward declarations.
Instead, I traverse AST of all files and register global symbols
(functions, constants, global vars) as a separate step, in advance.

That's why, while converting AST to Expr/Op, all available symbols are
already registered.
This greatly simplifies "intermediate state" of yet unknown functions
and checking them afterward.

Redeclaration of local variables (inside the same scope)
is now also prohibited.
This commit is contained in:
tolk-vm 2024-10-31 11:04:58 +04:00
parent 80001d1756
commit 5a3e3595d6
No known key found for this signature in database
GPG key ID: 7905DD7FE0324B12
28 changed files with 1266 additions and 1134 deletions

View file

@ -24,264 +24,37 @@
from all source files in the program, then also delete it here.
*/
#include "tolk.h"
#include "pipeline.h"
#include "compiler-state.h"
#include "lexer.h"
#include <getopt.h>
#include "ast-from-tokens.h"
#include "ast-to-legacy.h"
#include <fstream>
#include "td/utils/port/path.h"
#include <sys/stat.h>
#include "ast.h"
namespace tolk {
// returns argument type of a function
// note, that when a function has multiple arguments, its arg type is a tensor (no arguments — an empty tensor)
// in other words, `f(int a, int b)` and `f((int,int) ab)` is the same when we speak about types
const TypeExpr *SymValFunc::get_arg_type() const {
if (!sym_type)
return nullptr;
tolk_assert(sym_type->constr == TypeExpr::te_Map || sym_type->constr == TypeExpr::te_ForAll);
const TypeExpr *te_map = sym_type->constr == TypeExpr::te_ForAll ? sym_type->args[0] : sym_type;
const TypeExpr *arg_type = te_map->args[0];
while (arg_type->constr == TypeExpr::te_Indirect) {
arg_type = arg_type->args[0];
}
return arg_type;
}
bool SymValCodeFunc::does_need_codegen() const {
// when a function is declared, but not referenced from code in any way, don't generate its body
if (!is_really_used && G.pragma_remove_unused_functions.enabled()) {
return false;
}
// when a function is referenced like `var a = some_fn;` (or in some other non-call way), its continuation should exist
if (flags & flagUsedAsNonCall) {
return true;
}
// when a function f() is just `return anotherF(...args)`, it doesn't need to be codegenerated at all,
// since all its usages are inlined
return !is_just_wrapper_for_another_f();
// in the future, we may want to implement a true AST inlining for `inline` functions also
}
void mark_function_used_dfs(const std::unique_ptr<Op>& op);
void mark_function_used(SymValCodeFunc* func_val) {
if (!func_val->code || func_val->is_really_used) { // already handled
return;
}
func_val->is_really_used = true;
mark_function_used_dfs(func_val->code->ops);
}
void mark_global_var_used(SymValGlobVar* glob_val) {
glob_val->is_really_used = true;
}
void mark_function_used_dfs(const std::unique_ptr<Op>& op) {
if (!op) {
return;
}
// op->fun_ref, despite its name, may actually ref global var
// note, that for non-calls, e.g. `var a = some_fn` (Op::_Let), some_fn is Op::_GlobVar
// (in other words, fun_ref exists not only for direct Op::_Call, but for non-call references also)
if (op->fun_ref) {
if (auto* func_val = dynamic_cast<SymValCodeFunc*>(op->fun_ref->value)) {
mark_function_used(func_val);
} else if (auto* glob_val = dynamic_cast<SymValGlobVar*>(op->fun_ref->value)) {
mark_global_var_used(glob_val);
} else if (auto* asm_val = dynamic_cast<SymValAsmFunc*>(op->fun_ref->value)) {
} else {
tolk_assert(false);
}
}
mark_function_used_dfs(op->next);
mark_function_used_dfs(op->block0);
mark_function_used_dfs(op->block1);
}
void mark_used_symbols() {
for (SymDef* func_sym : G.glob_func) {
auto* func_val = dynamic_cast<SymValCodeFunc*>(func_sym->value);
std::string name = G.symbols.get_name(func_sym->sym_idx);
if (func_val->method_id.not_null() ||
name == "main" || name == "recv_internal" || name == "recv_external" ||
name == "run_ticktock" || name == "split_prepare" || name == "split_install") {
mark_function_used(func_val);
}
}
}
/*
*
* OUTPUT CODE GENERATOR
*
*/
void generate_output_func(SymDef* func_sym) {
SymValCodeFunc* func_val = dynamic_cast<SymValCodeFunc*>(func_sym->value);
tolk_assert(func_val);
std::string name = G.symbols.get_name(func_sym->sym_idx);
if (G.is_verbosity(2)) {
std::cerr << "\n\n=========================\nfunction " << name << " : " << func_val->get_type() << std::endl;
}
if (!func_val->code) {
throw ParseError(func_sym->loc, "function `" + name + "` is just declared, not implemented");
} else {
CodeBlob& code = *(func_val->code);
if (G.is_verbosity(3)) {
code.print(std::cerr, 9);
}
code.simplify_var_types();
if (G.is_verbosity(5)) {
std::cerr << "after simplify_var_types: \n";
code.print(std::cerr, 0);
}
code.prune_unreachable_code();
if (G.is_verbosity(5)) {
std::cerr << "after prune_unreachable: \n";
code.print(std::cerr, 0);
}
code.split_vars(true);
if (G.is_verbosity(5)) {
std::cerr << "after split_vars: \n";
code.print(std::cerr, 0);
}
for (int i = 0; i < 8; i++) {
code.compute_used_code_vars();
if (G.is_verbosity(4)) {
std::cerr << "after compute_used_vars: \n";
code.print(std::cerr, 6);
}
code.fwd_analyze();
if (G.is_verbosity(5)) {
std::cerr << "after fwd_analyze: \n";
code.print(std::cerr, 6);
}
code.prune_unreachable_code();
if (G.is_verbosity(5)) {
std::cerr << "after prune_unreachable: \n";
code.print(std::cerr, 6);
}
}
code.mark_noreturn();
if (G.is_verbosity(3)) {
code.print(std::cerr, 15);
}
if (G.is_verbosity(2)) {
std::cerr << "\n---------- resulting code for " << name << " -------------\n";
}
const char* modifier = "";
if (func_val->is_inline()) {
modifier = "INLINE";
} else if (func_val->is_inline_ref()) {
modifier = "REF";
}
std::cout << std::string(2, ' ') << name << " PROC" << modifier << ":<{\n";
int mode = 0;
if (G.settings.stack_layout_comments) {
mode |= Stack::_StkCmt | Stack::_CptStkCmt;
}
if (func_val->is_inline() && code.ops->noreturn()) {
mode |= Stack::_InlineFunc;
}
if (func_val->is_inline() || func_val->is_inline_ref()) {
mode |= Stack::_InlineAny;
}
code.generate_code(std::cout, mode, 2);
std::cout << std::string(2, ' ') << "}>\n";
if (G.is_verbosity(2)) {
std::cerr << "--------------\n";
}
}
}
// this function either throws or successfully prints whole program output to std::cout
void generate_output() {
std::cout << "\"Asm.fif\" include\n";
std::cout << "// automatically generated from " << G.generated_from << std::endl;
std::cout << "PROGRAM{\n";
mark_used_symbols();
for (SymDef* func_sym : G.glob_func) {
SymValCodeFunc* func_val = dynamic_cast<SymValCodeFunc*>(func_sym->value);
tolk_assert(func_val);
if (!func_val->does_need_codegen()) {
if (G.is_verbosity(2)) {
std::cerr << func_sym->name() << ": code not generated, function does not need codegen\n";
}
continue;
}
std::string name = G.symbols.get_name(func_sym->sym_idx);
std::cout << std::string(2, ' ');
if (func_val->method_id.is_null()) {
std::cout << "DECLPROC " << name << "\n";
} else {
std::cout << func_val->method_id << " DECLMETHOD " << name << "\n";
}
}
for (SymDef* gvar_sym : G.glob_vars) {
auto* glob_val = dynamic_cast<SymValGlobVar*>(gvar_sym->value);
tolk_assert(glob_val);
if (!glob_val->is_really_used && G.pragma_remove_unused_functions.enabled()) {
if (G.is_verbosity(2)) {
std::cerr << gvar_sym->name() << ": variable not generated, it's unused\n";
}
continue;
}
std::string name = G.symbols.get_name(gvar_sym->sym_idx);
std::cout << std::string(2, ' ') << "DECLGLOBVAR " << name << "\n";
}
for (SymDef* func_sym : G.glob_func) {
SymValCodeFunc* func_val = dynamic_cast<SymValCodeFunc*>(func_sym->value);
if (!func_val->does_need_codegen()) {
continue;
}
generate_output_func(func_sym);
}
std::cout << "}END>c\n";
if (!G.settings.boc_output_filename.empty()) {
std::cout << "boc>B \"" << G.settings.boc_output_filename << "\" B>file\n";
}
}
int tolk_proceed(const std::string &entrypoint_file_name) {
int tolk_proceed(const std::string &entrypoint_filename) {
define_builtins();
lexer_init();
G.pragma_allow_post_modification.always_on_and_deprecated("0.5.0");
G.pragma_compute_asm_ltr.always_on_and_deprecated("0.5.0");
try {
{
if (G.settings.stdlib_filename.empty()) {
throw Fatal("stdlib filename not specified");
}
td::Result<SrcFile*> locate_res = locate_source_file(G.settings.stdlib_filename);
if (locate_res.is_error()) {
throw Fatal("Failed to locate stdlib: " + locate_res.error().message().str());
}
process_file_ast(parse_src_file_to_ast(locate_res.move_as_ok()));
if (G.settings.stdlib_filename.empty()) {
throw Fatal("stdlib filename not specified");
}
td::Result<SrcFile*> locate_res = locate_source_file(entrypoint_file_name);
if (locate_res.is_error()) {
throw Fatal("Failed to locate " + entrypoint_file_name + ": " + locate_res.error().message().str());
}
process_file_ast(parse_src_file_to_ast(locate_res.move_as_ok()));
// todo #ifdef TOLK_PROFILING + comment
// lexer_measure_performance(all_src_files.get_all_files());
// on any error, an exception is thrown, and the message is printed out below
// (currently, only a single error can be printed)
AllSrcFiles all_files = pipeline_discover_and_parse_sources(G.settings.stdlib_filename, entrypoint_filename);
pipeline_handle_pragmas(all_files);
pipeline_register_global_symbols(all_files);
pipeline_convert_ast_to_legacy_Expr_Op(all_files);
pipeline_find_unused_symbols();
pipeline_generate_fif_output_to_std_cout();
generate_output();
return 0;
} catch (Fatal& fatal) {
std::cerr << "fatal: " << fatal << std::endl;