1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-02-12 11:12:16 +00:00

[Tolk] Support syntax tensorVar.0 and tupleVar.0

It works both for reading and writing:
> var t = (1, 2);
> t.0;      // 1
> t.0 = 5;
> t;        // (5, 2)

It also works for typed/untyped tuples, producing INDEX and SETINDEX.

Global tensors and tuples works. Nesting `t.0.1.2` works. `mutate` works.
Even mixing tuples inside tensors inside a global for writing works.
This commit is contained in:
tolk-vm 2025-01-27 10:29:17 +03:00
parent 565bc59735
commit 7a1602f591
No known key found for this signature in database
GPG key ID: 7905DD7FE0324B12
42 changed files with 1119 additions and 338 deletions

View file

@ -21,23 +21,32 @@ fun tuplePush<T>(mutate self: tuple, value: T): void
asm "TPUSH";
/// Returns the first element of a non-empty tuple.
/// `t.0` is actually the same as `t.tupleFirst()`
@pure
fun tupleFirst<T>(t: tuple): T
fun tupleFirst<T>(self: tuple): T
asm "FIRST";
/// Returns the [`index`]-th element of a tuple.
/// `t.i` is actually the same as `t.tupleAt(i)`
@pure
fun tupleAt<T>(t: tuple, index: int): T
fun tupleAt<T>(self: tuple, index: int): T
builtin;
/// Sets the [`index`]-th element of a tuple to a specified value
/// (element with this index must already exist, a new element isn't created).
/// `t.i = value` is actually the same as `t.tupleSetAt(value, i)`
@pure
fun tupleSetAt<T>(mutate self: tuple, value: T, index: int): void
builtin;
/// Returns the size of a tuple (elements count in it).
@pure
fun tupleSize(t: tuple): int
fun tupleSize(self: tuple): int
asm "TLEN";
/// Returns the last element of a non-empty tuple.
@pure
fun tupleLast<T>(t: tuple): T
fun tupleLast<T>(self: tuple): T
asm "LAST";

View file

@ -78,6 +78,17 @@ fun testStartBalanceCodegen2() {
return first;
}
global cur: [int, int, int];
global next: [int, int, int];
@method_id(95)
fun test95() {
cur = [1, 2, 3];
next = [2, 3, 4];
(cur, next) = (next, [3, 4, 5]);
return (cur, next);
}
/**
method_id | in | out
@testcase | 0 | 101 15 | 100 1
@ -90,6 +101,7 @@ fun testStartBalanceCodegen2() {
@testcase | 89 | 4 | 1 4 1 4
@testcase | 91 | | 10
@testcase | 92 | | 10 32
@testcase | 95 | | [ 2 3 4 ] [ 3 4 5 ]
@fif_codegen
"""
@ -104,9 +116,9 @@ fun testStartBalanceCodegen2() {
testDumpDontPolluteStack PROC:<{
...
DUMPSTK
x{6d79} PUSHSLICE // f s _5
x{6d79} PUSHSLICE // f s '5
STRDUMP DROP
SBITS // f _6
SBITS // f '6
}>
"""
@ -127,4 +139,20 @@ fun testStartBalanceCodegen2() {
FIRST // first
}>
"""
@fif_codegen
"""
test95 PROC:<{
...
next GETGLOB // '10
3 PUSHINT // '10 '12=3
4 PUSHINT // '10 '12=3 '13=4
5 PUSHINT // '10 '12=3 '13=4 '14=5
TRIPLE // '15 '16
next SETGLOB
cur SETGLOB
cur GETGLOB // '17
next GETGLOB // '17 '18
}>
"""
*/

View file

@ -7,7 +7,7 @@ fun main(a: int, b: int, c: int, d: int, e: int, f: int): (int, int) {
@method_id(101)
fun testDivMod(x: int, y: int) {
return [divMod(x, y), modDiv(x, y), mulDivMod(x, y, 10)];
return (divMod(x, y), modDiv(x, y), mulDivMod(x, y, 10));
}
/**
@ -18,5 +18,5 @@ fun testDivMod(x: int, y: int) {
@testcase | 0 | 448 -433 -444 792 150012 -356232 | -218 -572
@testcase | 0 | -40 -821 433 -734 -721629 -741724 | -206 889
@testcase | 0 | -261 -98 -494 868 -166153 733738 | 263 995
@testcase | 101 | 112 3 | [ 37 1 1 37 33 6 ]
@testcase | 101 | 112 3 | 37 1 1 37 33 6
*/

View file

@ -89,12 +89,14 @@ fun test_if_else(x: int): (int, int, int, int, int) {
@method_id(21)
fun test_assign_with_inner(x: int) {
return (x, x += 10, [(x, x += 20, eq(x -= 50), x)], eq2((x, x *= eq(x /= 2))));
var result = (x, x += 10, [x, x += 20, eq(x -= 50), x], eq2((x, x *= eq(x /= 2))));
return result;
}
@method_id(22)
fun test_assign_with_mutate(x: int) {
return (x, mul2(mutate x, x += 5), x.`~inc`(mul2(mutate x, x)), x);
var (result, _) = ((x, mul2(mutate x, x += 5), x.`~inc`(mul2(mutate x, x)), x), 0);
return result;
}
@method_id(23)
@ -138,5 +140,12 @@ fun main() {
inc CALLDICT // self newY
}>
"""
@fif_codegen
"""
test_assign_tensor_global PROC:<{
// x.0 x.1
"""
@code_hash 7627024945492125068389905298530400936797031708759561372406088054030801992712
*/

View file

@ -127,10 +127,10 @@ fun testBoolCompareOptimized(x: bool) {
"""
boolWithBitwiseConst PROC:<{
//
0 PUSHINT // _3
-1 PUSHINT // _3 _5
0 PUSHINT // _3 _5 _7
-1 PUSHINT // _3 _5 _7 _8
0 PUSHINT // '3
-1 PUSHINT // '3 '5
0 PUSHINT // '3 '5 '7
-1 PUSHINT // '3 '5 '7 '8
}>
"""
@ -142,22 +142,22 @@ fun testBoolCompareOptimized(x: bool) {
UNTIL:<{
INC // i n cnt
s2 PUSH // i n cnt i
NOT // i n cnt _6
NOT // i n cnt '6
}> // i n cnt
UNTIL:<{
INC // i n cnt
s2 PUSH // i n cnt i
NOT // i n cnt _9
NOT // i n cnt '9
}> // i n cnt
UNTIL:<{
INC // i n cnt
OVER // i n cnt n
0 EQINT // i n cnt _12
0 EQINT // i n cnt '12
}> // i n cnt
s0 s2 XCHG // cnt n i
NOT // cnt n _13
SWAP // cnt _13 n
0 EQINT // cnt _13 _14
NOT // cnt n '13
SWAP // cnt '13 n
0 EQINT // cnt '13 '14
}>
"""
@ -165,12 +165,12 @@ fun testBoolCompareOptimized(x: bool) {
"""
testConstNegateCodegen PROC:<{
//
TRUE // _0
FALSE // _0 _1
FALSE // _0 _1 _2
TRUE // _0 _1 _2 _3
TRUE // _0 _1 _2 _3 _4
FALSE // _0 _1 _2 _3 _4 _5
TRUE // '0
FALSE // '0 '1
FALSE // '0 '1 '2
TRUE // '0 '1 '2 '3
TRUE // '0 '1 '2 '3 '4
FALSE // '0 '1 '2 '3 '4 '5
}>
"""
@ -179,11 +179,11 @@ fun testBoolCompareOptimized(x: bool) {
testBoolNegateOptimized PROC:<{
// x
DUP // x x
NOT // x _1
OVER // x _1 x
NOT // x _1 _2
NOT // x '1
OVER // x '1 x
NOT // x '1 '2
s2 s(-1) PUXC
TRUE // x _1 x _2 _3
TRUE // x '1 x '2 '3
}>
"""
@ -192,13 +192,13 @@ fun testBoolCompareOptimized(x: bool) {
testBoolCompareOptimized PROC:<{
// x
DUP // x x
NOT // x _1
OVER // x _1 x
eqX CALLDICT // x _1 _2
NOT // x _1 _3
s2 PUSH // x _1 _3 x
eqX CALLDICT // x _1 _3 _4
s3 PUSH // x _1 _3 _4 x
NOT // x '1
OVER // x '1 x
eqX CALLDICT // x '1 '2
NOT // x '1 '3
s2 PUSH // x '1 '3 x
eqX CALLDICT // x '1 '3 '4
s3 PUSH // x '1 '3 '4 x
}>
"""
*/

View file

@ -216,16 +216,16 @@ Note, that since 'compute-asm-ltr' became on be default, chaining methods codege
"""
test6 PROC:<{
//
NEWC // _0
1 PUSHINT // _0 _1=1
SWAP // _1=1 _0
32 STU // _0
2 PUSHINT // _0 _4=2
SWAP // _4=2 _0
32 STU // _0
3 PUSHINT // _0 _7=3
SWAP // _7=3 _0
32 STU // _0
NEWC // '0
1 PUSHINT // '0 '1=1
SWAP // '1=1 '0
32 STU // '0
2 PUSHINT // '0 '4=2
SWAP // '4=2 '0
32 STU // '0
3 PUSHINT // '0 '7=3
SWAP // '7=3 '0
32 STU // '0
}>
"""
*/

View file

@ -35,7 +35,7 @@ Below, I just give examples of @fif_codegen tag:
"""
main PROC:<{
// s
17 PUSHINT // s _1=17
17 PUSHINT // s '1=17
OVER // s z=17 t
WHILE:<{
...
@ -63,7 +63,7 @@ main PROC:<{
@fif_codegen
"""
OVER
0 GTINT // s z t _5
0 GTINT // s z t '5
"""
@fif_codegen
@ -83,7 +83,7 @@ FALSE
}>
"""
@fif_codegen NOT // _8
@fif_codegen NOT // '8
@fif_codegen main PROC:<{
@fif_codegen_avoid PROCINLINE

View file

@ -14,13 +14,19 @@ fun getTwo<X>(): X { return 2 as X; }
fun takeInt(a: int) { return a; }
@method_id(102)
fun test102(): (int, int, int, [(int, int)]) {
fun test102(): (int, int, int, [int, int]) {
var a: int = getTwo();
var _: int = getTwo();
var b = getTwo() as int;
var c: int = 1 ? getTwo() : getTwo();
var c redef = getTwo();
return (eq1<int>(a), eq2<int>(b), takeInt(getTwo()), [(getTwo(), getTwo())]);
var ab_tens = (0, (1, 2));
ab_tens.0 = getTwo();
ab_tens.1.1 = getTwo();
var ab_tup = [0, [1, 2]];
ab_tup.0 = getTwo();
ab_tup.1.1 = getTwo();
return (eq1<int>(a), eq2<int>(b), takeInt(getTwo()), [getTwo(), ab_tens.1.1]);
}
@method_id(103)
@ -43,9 +49,9 @@ fun manyEq<T1, T2, T3>(a: T1, b: T2, c: T3): [T1, T2, T3] {
fun test104(f: int) {
var result = (
manyEq(1 ? 1 : 1, f ? 0 : null, !f ? getTwo() as int : null),
manyEq((f ? null as int : eq2(2), beginCell().storeBool(true).endCell().beginParse().loadBool()), 0, eq4(f))
manyEq(f ? null as int : eq2(2), beginCell().storeBool(true).endCell().beginParse().loadBool(), eq4(f))
);
__expect_type(result, "([int, int, int], [(int, bool), int, int])");
__expect_type(result, "([int, int, int], [int, bool, int])");
return result;
}
@ -74,7 +80,8 @@ fun test106() {
return [
abstractTransform(cellToSlice, calcLoad32, c),
abstractTransform(calcYPlus1<int>, calcYPlus1<int>, 0),
abstractTransform(calcTensorPlus1, calcTensorMul2, (2, 2))
abstractTransform(calcTensorPlus1, calcTensorMul2, (2, 2)).0,
abstractTransform(calcTensorPlus1, calcTensorMul2, (2, 2)).1
];
}
@ -135,7 +142,7 @@ fun main(x: int): (int, [[int, int]]) {
@testcase | 101 | 0 | 0 0 0 [ 0 0 ] 0 0 0 [ 0 0 ] 0 0 0 []
@testcase | 102 | | 2 2 2 [ 2 2 ]
@testcase | 103 | 0 | 0 100 100
@testcase | 104 | 0 | [ 1 (null) 2 ] [ 2 -1 0 0 ]
@testcase | 104 | 0 | [ 1 (null) 2 ] [ 2 -1 0 ]
@testcase | 105 | | 3
@testcase | 106 | | [ 106 2 6 6 ]
@testcase | 107 | | 6 6 1 1 6 6

View file

@ -54,13 +54,13 @@ fun main() {
test3 PROC:<{
// x
DUP // x x
20 NEQINT // x _2
20 NEQINT // x '2
IFNOTJMP:<{ // x
DROP //
20 PUSHINT // _3=20
20 PUSHINT // '3=20
}> // x
DUP // x x
50 EQINT // x _5
50 EQINT // x '5
IFNOTJMP:<{ // x
"""
*/

View file

@ -0,0 +1,287 @@
fun increment(mutate self: int) {
self += 1;
}
fun increment2(mutate a: int, mutate b: int) {
a += 1;
b += 1;
}
fun assign1020(mutate a: int, mutate b: int) {
a = 10;
b = 20;
}
fun plus(mutate self: int, y: int): int {
val newVals = (self + y, y * 10);
self = newVals.0;
return newVals.1;
}
fun eq<X>(v: X): X { return v; }
@method_id(101)
fun test101() {
var t = (1, (2, 3), [4, 5, [6, 7]], 8);
(t.0, t.1.0, t.2.0) = (2, 3, 5);
t.3.increment();
t.2.1 += (t.1.1 += 1) - t.1.1 + 1;
increment2(mutate t.2.2.0, mutate t.2.2.1);
return t;
}
global t102: (int, (int, int), [int, int, [int, int]], int);
@method_id(102)
fun test102() {
t102 = (1, (2, 3), [4, 5, [6, 7]], 8);
(t102.0, t102.1.0, t102.2.0) = (2, 3, 5);
t102.3.increment();
t102.2.1 += (t102.1.1 += 1) - t102.1.1 + 1;
increment2(mutate t102.2.2.0, mutate t102.2.2.1);
return t102;
}
global t103: (int, int);
@method_id(103)
fun test103() {
t103 = (5, 5);
assign1020(mutate t103.0, mutate t103.1);
var t = (5, 5);
assign1020(mutate t.0, mutate t.1);
return (t103, t);
}
global t104: [[int, int]];
@method_id(104)
fun test104() {
var m = [[5, 5]];
(m.0.0, m.0.1) = (10, 20);
t104 = [[5, 5]];
(t104.0.0, t104.0.1) = (10, 20);
return (t104, m);
}
@method_id(105)
fun test105(x: int, y: int): (tuple, int, (int, int), int, int) {
var ab = (createEmptyTuple(), (x, y), tupleSize);
ab.0.tuplePush(1);
tuplePush(mutate ab.0, 2);
ab.1.0 = null;
ab.1.1 += 10;
var cb = ab.2;
return (ab.0, ab.0.1, ab.1, cb(ab.0), ab.2(ab.0));
}
@method_id(106)
fun test106(x: int, y: int) {
var ab = [createEmptyTuple(), [x, y], tupleSize];
ab.0.tuplePush(1);
tuplePush(mutate ab.0, 2);
ab.1.0 = null;
ab.1.1 += 10;
var cb = ab.2;
return (ab.0, ab.1, cb(ab.0), ab.2(ab.0));
}
@method_id(107)
fun test107() {
var ab = createEmptyTuple();
ab.tuplePush(1);
ab.tuplePush(beginCell().storeInt(1, 32));
return (ab.0 as int, getBuilderBitsCount(ab.1));
}
global t108: [int, [int, [int]]];
@method_id(108)
fun test108(last: int) {
t108 = [1, [2, [last]]];
t108.1.1.0.increment();
var t = [1, [2, [last]]];
t.1.1.0.increment();
return (t108, t);
}
@method_id(109)
fun test109(x: (int, int)): (int, int, int, int, int, int, int) {
return (x.1, x.1.plus(x.1 / 20), x.1, x.1 = x.1 * 2, x.1, x.1 += 1, x.1);
}
@method_id(110)
fun test110(f: int, s: int) {
var x = [f, s];
return (x, x.1, x.1.plus(x.1 / 20), x.1, x.1 = x.1 * 2, x.1, x.1 += 1, x.1, x);
}
global xx: (int, int);
@method_id(111)
fun test111(x: (int, int)) {
xx = x;
return (x, xx.1, xx.1.plus(xx.1 / 20), eq(xx.1 += (x.1 *= 0)), xx.1 = xx.1 * 2, xx.1, xx.1 += 1, xx.1, x);
}
global yy: [int, int];
@method_id(112)
fun test112(f: int, s: int) {
yy = [f, s];
return (yy, yy.1, yy.1.plus(yy.1 / 20), eq(yy.1 += (yy.1 *= 0)), yy.1 = yy.1 * 2, yy.1, yy.1 += 1, yy.1, yy);
}
@pure
fun getConstTuple() {
return [1,2];
}
fun testCodegenNoPureIndexedAccess() {
(getConstTuple().1, getConstTuple().0) = (3, 4);
return 0;
}
@method_id(113)
fun test113() {
var x = [[1, 2]];
return (x, x.0, plus(mutate x.0.0, 10), x.0, x, x.0 = [10, 20], x);
}
@method_id(114)
fun test114(f: int, s: int) {
var x = ((), (f, s), ());
return (x, x.1, plus(mutate x.1.0, 10), x.1, x, x.1 = (10, 20), x);
}
@method_id(115)
fun test115() {
var y = [[[[true]]]];
return (y, y.0.0.0.0 = !y.0.0.0.0, y.0);
}
@method_id(116)
fun test116() {
var t = createEmptyTuple();
t.tuplePush(1);
try {
return t.100500 as int;
} catch(excNo) {
return excNo;
}
}
@method_id(117)
fun test117() {
var t = createEmptyTuple();
t.tuplePush(1);
try {
return (t.0 as tuple).0 as int;
} catch(excNo) {
return excNo;
}
}
@method_id(118)
fun testCodegenIndexPostfix1(x: (int, int)) {
var ab = (x.1, x.0);
return ab;
}
@method_id(119)
fun testCodegenIndexPostfix2(x: (int, (int, int), int)) {
var y = x;
return (y.2, y.0, y.1.1);
}
fun getT() { return (1, 2); }
@method_id(120)
fun test120() {
return (getT().0 = 3, getT().0 = 4, [getT().0 = 5, getT().0 = 6]);
}
@method_id(121)
fun test121(zero: int) {
var t = createEmptyTuple();
t.tuplePush(-100);
t.tupleSetAt(0, zero);
(t.0 as int).increment();
(((t.0) as int) as int).increment();
increment(mutate t.0 as int);
return t;
}
fun main(){}
/**
@testcase | 101 | | 2 3 4 [ 5 6 [ 7 8 ] ] 9
@testcase | 102 | | 2 3 4 [ 5 6 [ 7 8 ] ] 9
@testcase | 103 | | 10 20 10 20
@testcase | 104 | | [ [ 10 20 ] ] [ [ 10 20 ] ]
@testcase | 105 | 5 6 | [ 1 2 ] 2 (null) 16 2 2
@testcase | 106 | 5 6 | [ 1 2 ] [ (null) 16 ] 2 2
@testcase | 107 | | 1 32
@testcase | 108 | 3 | [ 1 [ 2 [ 4 ] ] ] [ 1 [ 2 [ 4 ] ] ]
@testcase | 109 | 0 100 | 100 50 105 210 210 211 211
@testcase | 110 | 0 100 | [ 0 100 ] 100 50 105 210 210 211 211 [ 0 211 ]
@testcase | 111 | 0 100 | 0 100 100 50 105 210 210 211 211 0 0
@testcase | 112 | 0 100 | [ 0 100 ] 100 50 105 210 210 211 211 [ 0 211 ]
@testcase | 113 | | [ [ 1 2 ] ] [ 1 2 ] 100 [ 11 2 ] [ [ 11 2 ] ] [ 10 20 ] [ [ 10 20 ] ]
@testcase | 114 | 1 2 | 1 2 1 2 100 11 2 11 2 10 20 10 20
@testcase | 115 | | [ [ [ [ -1 ] ] ] ] 0 [ [ [ 0 ] ] ]
@testcase | 116 | | 5
@testcase | 117 | | 7
@testcase | 118 | 1 2 | 2 1
@testcase | 119 | 1 2 3 4 | 4 1 3
@testcase | 120 | | 3 4 [ 5 6 ]
@testcase | 121 | 0 | [ 3 ]
@fif_codegen
"""
testCodegenNoPureIndexedAccess PROC:<{
//
0 PUSHINT // '8=0
}>
"""
@fif_codegen
"""
test104 PROC:<{
//
5 PUSHINT // '2=5
DUP // '2=5 '3=5
PAIR // '1
SINGLE // m
10 PUSHINT // m '5=10
20 PUSHINT // m '5=10 '6=20
s2 PUSH // m '5=10 '6=20 m
0 INDEX // m '10=10 '12=20 '8
SWAP // m '10=10 '8 '12=20
1 SETINDEX // m '10=10 '8
SWAP // m '8 '10=10
0 SETINDEX // m '8
0 SETINDEX // m
...
"""
@fif_codegen
"""
testCodegenIndexPostfix1 PROC:<{
// x.0 x.1
// ab.1 ab.0
SWAP // ab.0 ab.1
}>
"""
@fif_codegen
"""
testCodegenIndexPostfix2 PROC:<{
// x.0 x.1.0 x.1.1 x.2
s2 POP // y.0 y.2 y.1.1
s1 s2 XCHG // y.2 y.0 y.1.1
}>
"""
*/

View file

@ -0,0 +1,9 @@
fun main() {
var c = 1;
(c, c) = (2, 3);
}
/**
@compilation_should_fail
@stderr one variable modified twice inside the same expression
*/

View file

@ -0,0 +1,11 @@
fun incThree(mutate a: int, mutate b: int, mutate c: int) {}
fun main() {
var c = [[[1, 2]]];
incThree(mutate c.0.0.0, mutate c.0.0.1, mutate c.0.0.0);
}
/**
@compilation_should_fail
@stderr one variable modified twice inside the same expression
*/

View file

@ -0,0 +1,10 @@
global gg: (int, int);
fun main() {
[gg.0, gg.1, gg.0] = [0, 1, 0];
}
/**
@compilation_should_fail
@stderr one variable modified twice inside the same expression
*/

View file

@ -0,0 +1,10 @@
global gg: (int, [int, int]);
fun main() {
(gg.1.0, gg.1, gg.1.1) = (0, [1, 2], 3);
}
/**
@compilation_should_fail
@stderr one variable both modified and read inside the same expression
*/

View file

@ -0,0 +1,9 @@
fun main() {
var ab = (1, 2);
(ab, ab.1) = ((2, 3), 4);
}
/**
@compilation_should_fail
@stderr one variable both modified and read inside the same expression
*/

View file

@ -0,0 +1,9 @@
fun main() {
var t = createEmptyTuple();
t.0 = (1, 2);
}
/**
@compilation_should_fail
@stderr can not put `(int, int)` into a tuple, because it occupies 2 stack slots in TVM, not 1
*/

View file

@ -0,0 +1,8 @@
fun main(cs: slice) {
var cb = cs.tupleSize;
}
/**
@compilation_should_fail
@stderr referencing a method for `tuple` with object of type `slice`
*/

View file

@ -6,5 +6,5 @@ fun main(x: int) {
/**
@compilation_should_fail
@stderr calling a non-function
@stderr non-existing method `asdf` of type `int`
*/

View file

@ -0,0 +1,11 @@
fun takeInvalidTuple(t: [int, (int, builder), int]) {
}
fun main() {
takeInvalidTuple([1, (2, beginCell()), 0]);
}
/**
@compilation_should_fail
@stderr can not put `(int, builder)` into a tuple, because it occupies 2 stack slots in TVM, not 1
*/

View file

@ -0,0 +1,11 @@
fun main() {
var functions = (beginCell, beginCell);
var b = functions.1(); // ok
var c = functions.2(); // error
}
/**
@compilation_should_fail
@stderr invalid tensor index, expected 0..1
@stderr functions.2()
*/

View file

@ -9,6 +9,6 @@ fun main() {
/**
@compilation_should_fail
@stderr undefined symbol `storeUnexisting`
@stderr non-existing method `storeUnexisting` of type `builder`
@stderr .storeUnexisting()
*/

View file

@ -1,8 +1,10 @@
fun get_incoming_value() { return 3; }
fun main() {
var incoming_ton: int = get_incoming_value().3();
}
/**
@compilation_should_fail
@stderr expected method name, got `3`
@stderr type `int` is not indexable
*/

View file

@ -0,0 +1,15 @@
fun getTwo<X>(): X { return 2; }
fun cantDeduceNonArgumentGeneric() {
var t1: [int] = [0];
t1.0 = getTwo(); // ok
var t2 = createEmptyTuple();
t2.tuplePush(0);
t2.0 = getTwo(); // error, can't decude X
}
/**
@compilation_should_fail
@stderr can not deduce X for generic function `getTwo<X>`
@stderr t2.0 = getTwo();
*/

View file

@ -0,0 +1,9 @@
fun failAssignToInvalidTupleIndex() {
var ab = [1, 2];
ab.100500 = 5;
}
/**
@compilation_should_fail
@stderr invalid tuple index, expected 0..1
*/

View file

@ -1,27 +0,0 @@
fun increment(mutate x: int): int {
x = x + 1;
return x;
}
@method_id(101)
fun bugWithModifyingMethodInsideSameExpression() {
/*
The same bug existed in FunC:
#pragma allow-post-modification;
(int, int) ~increment(int x) { x = x + 5; return (x, x); }
int main() { int x = 0; x += x~increment(); return x; }
It's related to using a variable modified by ~method inside the same expression.
*/
var x = 0;
x = x + increment(mutate x);
return x;
}
fun main() {
}
/**
// correct: 2
@testcase | 101 | | 1
*/

View file

@ -210,15 +210,15 @@ fun main() {
compileTimeEval1 PROC:<{
// x
DUP // x x
0 EQINT // x _1
FALSE // x _1 _4
TRUE // x _1 _4 _7
FALSE // x _1 _4 _7 _11
s0 s4 XCHG // _11 _1 _4 _7 x
0 EQINT // _11 _1 _4 _7 _12
-10 EQINT // _11 _1 _4 _7 _14
0 EQINT // x '1
FALSE // x '1 '4
TRUE // x '1 '4 '7
FALSE // x '1 '4 '7 '11
s0 s4 XCHG // '11 '1 '4 '7 x
0 EQINT // '11 '1 '4 '7 '12
-10 EQINT // '11 '1 '4 '7 '14
s3 s4 XCHG
s1 s3 s0 XCHG3 // _1 _4 _7 _11 _14
s1 s3 s0 XCHG3 // '1 '4 '7 '11 '14
}>
"""
@ -230,15 +230,15 @@ fun main() {
OVER // x y x
IFNOTJMP:<{ // x y
2DROP //
10 PUSHINT // _2=10
10 PUSHINT // '2=10
}> // x y
DUP // x y y
IFNOTJMP:<{ // x y
2DROP //
20 PUSHINT // _3=20
20 PUSHINT // '3=20
RETALT
}> // x y
ADD // _4
ADD // '4
}>
"""
@ -297,10 +297,10 @@ These are moments of future optimizations. For now, it's more than enough.
// a b
SWAP // b a
IF:<{ // b
0 NEQINT // _2
0 NEQINT // '2
}>ELSE<{ // b
DROP //
0 PUSHINT // _2=0
0 PUSHINT // '2=0
}>
}>
"""
@ -310,13 +310,13 @@ These are moments of future optimizations. For now, it's more than enough.
testOrSimpleCodegen PROC:<{
// a b
SWAP // b a
0 GTINT // b _3
0 GTINT // b '3
IF:<{ // b
DROP //
-1 PUSHINT // _4=-1
-1 PUSHINT // '4=-1
}>ELSE<{ // b
0 GTINT // _7
0 NEQINT // _4
0 GTINT // '7
0 NEQINT // '4
}>
}>
"""
@ -332,15 +332,15 @@ These are moments of future optimizations. For now, it's more than enough.
DUP // x x
IFNOTJMP:<{ // x
DROP //
1 PUSHINT // _5=1
1 PUSHINT // '5=1
}> // x
DUP // x x
IFNOTJMP:<{ // x
DROP //
1 PUSHINT // _6=1
1 PUSHINT // '6=1
}> // x
100 THROWIFNOT
-4 PUSHINT // _9=-4
-4 PUSHINT // '9=-4
}>
"""

View file

@ -307,7 +307,7 @@ fun main(){}
...
incrementTwoInPlace CALLDICT // x y sum1
-ROT
10 PUSHINT // sum1 x y _10=10
10 PUSHINT // sum1 x y '10=10
incrementTwoInPlace CALLDICT // sum1 x y sum2
s1 s3 s0 XCHG3 // x y sum1 sum2
}>
@ -317,8 +317,8 @@ fun main(){}
"""
load_next PROC:<{
// cs
32 LDI // _4 cs
SWAP // cs _4
32 LDI // '4 cs
SWAP // cs '4
}>
"""
@ -326,7 +326,7 @@ fun main(){}
"""
testStoreUintPureUnusedResult PROC:<{
//
0 PUSHINT // _11=0
0 PUSHINT // '11=0
}>
"""
@ -335,9 +335,9 @@ fun main(){}
testStoreUintImpureUnusedResult PROC:<{
//
NEWC // b
STIX // _2
STIX // '2
DROP //
0 PUSHINT // _11=0
0 PUSHINT // '11=0
}>
"""

View file

@ -104,10 +104,10 @@ fun`main`(){}
DUP // fst1=-1 snd1=-1
2 PUSHINT // fst1=-1 snd1=-1 trd1=2
s1 s1 s0 PUSH3 // fst1=-1 snd1=-1 trd1=2 fst2=-1 snd2=-1 trd2=2
add3 CALLDICT // fst1=-1 snd1=-1 trd1=2 _13
3 -ROLL // _13 fst1=-1 snd1=-1 trd1=2
add3 CALLDICT // _13 _14
PAIR // _12
add3 CALLDICT // fst1=-1 snd1=-1 trd1=2 '13
3 -ROLL // '13 fst1=-1 snd1=-1 trd1=2
add3 CALLDICT // '13 '14
PAIR // '12
}>
"""

View file

@ -99,21 +99,21 @@ fun main() {
test1 PROC:<{
//
PUSHNULL // numbers
1 PUSHINT // numbers _2=1
SWAP // _2=1 numbers
1 PUSHINT // numbers '2=1
SWAP // '2=1 numbers
CONS // numbers
2 PUSHINT // numbers _4=2
SWAP // _4=2 numbers
2 PUSHINT // numbers '4=2
SWAP // '4=2 numbers
CONS // numbers
3 PUSHINT // numbers _6=3
SWAP // _6=3 numbers
3 PUSHINT // numbers '6=3
SWAP // '6=3 numbers
CONS // numbers
4 PUSHINT // numbers _8=4
SWAP // _8=4 numbers
4 PUSHINT // numbers '8=4
SWAP // '8=4 numbers
CONS // numbers
UNCONS // h numbers
DUP // h numbers numbers
CAR // h numbers _13
CAR // h numbers '13
"""
@fif_codegen
@ -121,11 +121,11 @@ fun main() {
main PROC:<{
//
PUSHNULL // i
ISNULL // _2
ISNULL // '2
IFJMP:<{ //
1 PUSHINT // _3=1
1 PUSHINT // '3=1
}> //
10 PUSHINT // _4=10
10 PUSHINT // '4=10
}>
"""
@ -133,14 +133,14 @@ fun main() {
"""
test7 PROC:<{
...
LDOPTREF // b _8 _7
LDOPTREF // b '8 '7
DROP // b c
ISNULL // b _11
10 MULCONST // b _13
SWAP // _13 b
ISNULL // _13 _14
NOT // _13 _15
ADD // _16
ISNULL // b '11
10 MULCONST // b '13
SWAP // '13 b
ISNULL // '13 '14
NOT // '13 '15
ADD // '16
}>
"""
*/

View file

@ -95,26 +95,26 @@ fun main() {
unary_minus_1 PROC:<{
// a b c
-ROT // c a b
ADD // c _3
NEGATE // c _4
SWAP // _4 c
MUL // _5
ADD // c '3
NEGATE // c '4
SWAP // '4 c
MUL // '5
}>
unary_minus_2 PROC:<{
// a b c
-ROT // c a b
ADD // c _3
NEGATE // c _4
SWAP // _4 c
MUL // _5
ADD // c '3
NEGATE // c '4
SWAP // '4 c
MUL // '5
}>
unary_minus_3 PROC:<{
// a b c
-ROT // c a b
ADD // c _3
SWAP // _3 c
MUL // _4
NEGATE // _5
ADD // c '3
SWAP // '3 c
MUL // '4
NEGATE // '5
}>
"""

View file

@ -43,7 +43,7 @@ const demo_20: int = 20;
"""
test1 PROC:<{
//
30 PUSHINT // _10
30 PUSHINT // '10
}>
"""
*/

View file

@ -129,6 +129,15 @@ fun testVarApply3() {
return (getIntAt(t, 0), getTupleFirstInt(t), getTupleLastTuple(t), getTupleLastGetter<tuple>()(t));
}
@method_id(107)
fun testIndexedAccessApply() {
var functions1 = (beginCell, endCell);
var functions2 = [beginParse];
var b = functions1.0().storeInt(1, 16);
b.storeInt(1, 16);
return functions2.0(functions1.1(b)).loadInt(32);
}
fun main() {}
/**
@ -138,4 +147,5 @@ fun main() {}
@testcase | 104 | | 240
@testcase | 105 | | 1
@testcase | 106 | | 1 1 [ 2 ] [ 2 ]
@testcase | 107 | | 65537
*/

View file

@ -26,22 +26,28 @@ namespace tolk {
*
*/
void TmpVar::dump(std::ostream& os) const {
show(os);
os << " : " << v_type << " (width ";
os << v_type->calc_width_on_stack();
os << ")";
os << std::endl;
void TmpVar::show_as_stack_comment(std::ostream& os) const {
if (!name.empty()) {
os << name;
} else {
os << '\'' << ir_idx;
}
#ifdef TOLK_DEBUG
// uncomment for detailed stack output, like `'15(binary-op) '16(glob-var)`
// if (desc) os << desc;
#endif
}
void TmpVar::show(std::ostream& os, int omit_idx) const {
if (v_sym) {
os << v_sym->name;
if (omit_idx >= 2) {
return;
}
void TmpVar::show(std::ostream& os) const {
os << '\'' << ir_idx; // vars are printed out as `'1 '2` (in stack comments, debug info, etc.)
if (!name.empty()) {
os << '_' << name;
}
os << '_' << ir_idx;
#ifdef TOLK_DEBUG
if (desc) {
os << ' ' << desc; // "origin" of implicitly created tmp var, like `'15 (binary-op) '16 (glob-var)`
}
#endif
}
std::ostream& operator<<(std::ostream& os, const TmpVar& var) {
@ -95,7 +101,7 @@ void VarDescr::show(std::ostream& os, const char* name) const {
if (name) {
os << name;
}
os << '_' << idx;
os << '\'' << idx;
show_value(os);
}
@ -333,7 +339,7 @@ void Op::show_var_list(std::ostream& os, const std::vector<var_idx_t>& idx_list,
} else {
os << "(" << vars.at(idx_list[0]);
for (std::size_t i = 1; i < idx_list.size(); i++) {
os << "," << vars.at(idx_list[i]);
os << ", " << vars.at(idx_list[i]);
}
os << ")";
}
@ -378,11 +384,12 @@ void CodeBlob::print(std::ostream& os, int flags) const {
os << "CODE BLOB: " << var_cnt << " variables, " << in_var_cnt << " input\n";
if ((flags & 8) != 0) {
for (const auto& var : vars) {
var.dump(os);
if (var.where.is_defined() && (flags & 1) != 0) {
var.where.show(os);
var.show(os);
os << " : " << var.v_type << std::endl;
if (var.loc.is_defined() && (flags & 1) != 0) {
var.loc.show(os);
os << " defined here:\n";
var.where.show_context(os);
var.loc.show_context(os);
}
}
}
@ -393,21 +400,25 @@ void CodeBlob::print(std::ostream& os, int flags) const {
os << "-------- END ---------\n\n";
}
std::vector<var_idx_t> CodeBlob::create_var(TypePtr var_type, const LocalVarData* v_sym, SrcLocation loc) {
std::vector<var_idx_t> CodeBlob::create_var(TypePtr var_type, SrcLocation loc, std::string name) {
std::vector<var_idx_t> ir_idx;
ir_idx.reserve(var_type->calc_width_on_stack());
int stack_w = var_type->calc_width_on_stack();
ir_idx.reserve(stack_w);
if (const TypeDataTensor* t_tensor = var_type->try_as<TypeDataTensor>()) {
for (TypePtr item : t_tensor->items) {
std::vector<var_idx_t> nested = create_var(item, v_sym, loc);
for (int i = 0; i < t_tensor->size(); ++i) {
std::string sub_name = name.empty() ? name : name + "." + std::to_string(i);
std::vector<var_idx_t> nested = create_var(t_tensor->items[i], loc, std::move(sub_name));
ir_idx.insert(ir_idx.end(), nested.begin(), nested.end());
}
} else if (var_type != TypeDataVoid::create()) {
tolk_assert(var_type->calc_width_on_stack() == 1);
vars.emplace_back(var_cnt, var_type, v_sym, loc);
#ifdef TOLK_DEBUG
tolk_assert(stack_w == 1);
#endif
vars.emplace_back(var_cnt, var_type, std::move(name), loc);
ir_idx.emplace_back(var_cnt);
var_cnt++;
}
tolk_assert(static_cast<int>(ir_idx.size()) == var_type->calc_width_on_stack());
tolk_assert(static_cast<int>(ir_idx.size()) == stack_w);
return ir_idx;
}

View file

@ -302,24 +302,13 @@ Const AsmOpList::get_const(const_idx_t idx) {
}
}
void AsmOpList::show_var(std::ostream& os, var_idx_t idx) const {
if (!var_names_ || (unsigned)idx >= var_names_->size()) {
os << '_' << idx;
} else {
var_names_->at(idx).show(os, 2);
}
}
void AsmOpList::show_var_ext(std::ostream& os, std::pair<var_idx_t, const_idx_t> idx_pair) const {
auto i = idx_pair.first;
auto j = idx_pair.second;
var_idx_t i = idx_pair.first;
const_idx_t j = idx_pair.second;
if (!var_names_ || (unsigned)i >= var_names_->size()) {
os << '_' << i;
os << '\'' << i;
} else {
var_names_->at(i).show(os, 2);
// if (!var_names_->at(i).v_type->is_int()) {
// os << '<'; var_names_->at(i).v_type->print(os); os << '>';
// }
var_names_->at(i).show_as_stack_comment(os);
}
if ((unsigned)j < constants_.size() && constants_[j].not_null()) {
os << '=' << constants_[j];

View file

@ -405,12 +405,15 @@ static AnyExprV parse_expr80(Lexer& lex) {
lex.next();
V<ast_identifier> v_ident = nullptr;
V<ast_instantiationT_list> v_instantiationTs = nullptr;
if (lex.tok() == tok_identifier) {
if (lex.tok() == tok_identifier) { // obj.field / obj.method
v_ident = createV<ast_identifier>(lex.cur_location(), lex.cur_str());
lex.next();
if (lex.tok() == tok_lt) {
v_instantiationTs = parse_maybe_instantiationTs_after_identifier(lex);
}
} else if (lex.tok() == tok_int_const) { // obj.0 (indexed access)
v_ident = createV<ast_identifier>(lex.cur_location(), lex.cur_str());
lex.next();
} else {
lex.unexpected("method name");
}

View file

@ -529,8 +529,14 @@ private:
public:
typedef const FunctionData* DotTarget; // for `t.tupleAt` target is `tupleAt` global function
DotTarget target = nullptr; // filled at type inferring
typedef std::variant<
const FunctionData*, // for `t.tupleAt` target is `tupleAt` global function
int // for `t.0` target is "indexed access" 0
> DotTarget;
DotTarget target = static_cast<FunctionData*>(nullptr); // filled at type inferring
bool is_target_fun_ref() const { return std::holds_alternative<const FunctionData*>(target); }
bool is_target_indexed_access() const { return std::holds_alternative<int>(target); }
AnyExprV get_obj() const { return child; }
auto get_identifier() const { return identifier; }

View file

@ -1060,6 +1060,17 @@ AsmOp compile_tuple_at(std::vector<VarDescr>& res, std::vector<VarDescr>& args,
return exec_op("INDEXVAR", 2, 1);
}
// fun tupleSetAt<X>(mutate self: tuple, value: X, index: int): void asm "SETINDEXVAR";
AsmOp compile_tuple_set_at(std::vector<VarDescr>& res, std::vector<VarDescr>& args, SrcLocation) {
tolk_assert(args.size() == 3 && res.size() == 1);
auto& y = args[2];
if (y.is_int_const() && y.int_const >= 0 && y.int_const < 16) {
y.unused();
return exec_arg_op("SETINDEX", y.int_const, 1, 1);
}
return exec_op("SETINDEXVAR", 2, 1);
}
// fun __isNull<X>(X arg): bool
AsmOp compile_is_null(std::vector<VarDescr>& res, std::vector<VarDescr>& args, SrcLocation) {
tolk_assert(args.size() == 1 && res.size() == 1);
@ -1246,6 +1257,9 @@ void define_builtins() {
define_builtin_func("tupleAt", {Tuple, Int}, typeT, declGenericT,
compile_tuple_at,
FunctionData::flagMarkedAsPure | FunctionData::flagAcceptsSelf);
define_builtin_func("tupleSetAt", {Tuple, typeT, Int}, Unit, declGenericT,
compile_tuple_set_at,
FunctionData::flagMarkedAsPure | FunctionData::flagHasMutateParams | FunctionData::flagAcceptsSelf);
define_builtin_func("debugPrint", {typeT}, Unit, declGenericT,
AsmOp::Custom("s0 DUMP DROP", 1, 1),
0);

View file

@ -132,7 +132,7 @@ int Stack::drop_vars_except(const VarDescrList& var_info, int excl_var) {
return dropped;
}
void Stack::show(int flags) {
void Stack::show() {
std::ostringstream os;
for (auto i : s) {
os << ' ';

View file

@ -21,6 +21,7 @@
#include "type-system.h"
#include "common/refint.h"
#include "constant-evaluator.h"
#include <unordered_set>
/*
* This pipe is the last one operating AST: it transforms AST to IR.
@ -28,38 +29,218 @@
* kernel (initially forked from FunC) comes into play.
* Up to this point, all types have been inferred, all validity checks have been passed, etc.
* All properties in AST nodes are assigned and can be safely used (fun_ref, etc.).
* So, if execution reaches this pass, the input is correct, and code generation should succeed.
* So, if execution reaches this pass, the input is (almost) correct, and code generation should succeed.
* The only thing additionally checked during this pass is tricky lvalue, like one and the same variable
* assigned/mutated multiple times in same expression, e.g. `(t.0, t.0) = rhs` / `f(mutate x.1.2, mutate x)`.
*/
namespace tolk {
struct LValGlobs {
std::vector<std::pair<const GlobalVarData*, std::vector<var_idx_t>>> globs;
// fire error on cases like `(a, a) = rhs` / `f(mutate t.1.0, mutate t.1.0)`
GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD
static void fire_error_variable_modified_twice_inside_same_expression(SrcLocation loc) {
throw ParseError(loc, "one variable modified twice inside the same expression");
}
void add_modified_glob(const GlobalVarData* g_sym, std::vector<var_idx_t> local_ir_idx) {
globs.emplace_back(g_sym, std::move(local_ir_idx));
// fire error on cases like `(m.1.0, m.1) = rhs` (m.1 inside m.1.0 is "rval inside lval")
GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD
static void fire_error_variable_modified_and_read_inside_same_expression(SrcLocation loc) {
throw ParseError(loc, "one variable both modified and read inside the same expression");
}
// Main goal of LValContext is to handle non-primitive lvalues. At IR level, a usual local variable
// exists, but on its change, something non-trivial should happen.
// Example: `globalVar = 9` actually does `Const $5 = 9` + `Let $6 = $5` + `SetGlob "globVar" = $6`
// Example: `tupleVar.0 = 9` actually does `Const $5 = 9` + `Let $6 = $5` + `Const $7 = 0` + `Call tupleSetAt($4, $6, $7)`
// Of course, mixing globals with tuples should also be supported.
// To achieve this, treat tupleObj inside "tupleObj.i" like "rvalue inside lvalue".
// For instance, `globalTuple.0 = 9` reads global (like rvalue), assigns 9 to tmp var, modifies tuple, writes global.
// A challenging thing is handling "unique" parts, to be read/updated only once.
// Example: `f(mutate globalTensor.0, mutate globalTensor.1)`, then globalTensor should be read/written once.
// Example: `(t.0.0, t.0.1) = rhs` (m is [[int, int]]), then t.0 should be read/updated once.
// Solving this by calculating hashes of every lvalue or rvalue inside lvalue automatically gives an ability
// to detect and fire "multiple writes inside expression", like `(a, a) = rhs` / `[t.0, (t.0.1, c)] = rhs`.
// Note, that tensors (not tuples) `tensorVar.0 = 9` do not emit anything special (unless global).
class LValContext {
// every global variable used as lvalue is registered here
// example: `globalInt = 9`, implicit var is created `$tmp = 9`, and `SetGlob "globalInt" $tmp` is done after
// global tensors are stored as tuples (unpacked on reading, packed on writing), then multiple tmp vars are created
struct ModifiedGlob {
const GlobalVarData* glob_ref;
std::vector<var_idx_t> local_ir_idx; // typically 1, generally calc_width_on_stack() of global var (tensors)
void apply(CodeBlob& code, SrcLocation loc) const {
Op& op = code.emplace_back(loc, Op::_SetGlob, std::vector<var_idx_t>{}, local_ir_idx, glob_ref);
op.set_impure_flag();
}
};
// every tuple index used as lvalue is registered here
// example: `t.0 = 9`, implicit var is created `$tmp = 9`, as well as `$tmp_idx = 0` and `tupleSetAt()` is done after
// for `t.0.0` if t is `[[int, ...]]`, `tupleAt()` for it is done since it's rvalue, and `tupleSetAt()` is done 2 times
struct ModifiedTupleIndex {
uint64_t hash;
var_idx_t tuple_ir_idx;
var_idx_t index_ir_idx;
var_idx_t field_ir_idx;
void apply(CodeBlob& code, SrcLocation loc) const {
const FunctionData* builtin_sym = lookup_global_symbol("tupleSetAt")->as<FunctionData>();
code.emplace_back(loc, Op::_Call, std::vector{tuple_ir_idx}, std::vector{tuple_ir_idx, field_ir_idx, index_ir_idx}, builtin_sym);
}
};
int level_rval_inside_lval = 0;
std::vector<std::variant<ModifiedGlob, ModifiedTupleIndex>> modifications;
std::unordered_set<uint64_t> all_modified_hashes;
void fire_if_one_variable_modified_twice(SrcLocation loc, uint64_t modified_hash) {
if (!is_rval_inside_lval()) {
if (!all_modified_hashes.insert(modified_hash).second) {
fire_error_variable_modified_twice_inside_same_expression(loc);
}
if (all_modified_hashes.contains(~modified_hash)) {
fire_error_variable_modified_and_read_inside_same_expression(loc);
}
} else {
all_modified_hashes.insert(~modified_hash);
if (all_modified_hashes.contains(modified_hash)) {
fire_error_variable_modified_and_read_inside_same_expression(loc);
}
}
}
void gen_ops_set_globs(CodeBlob& code, SrcLocation loc) const {
for (const auto& [g_sym, ir_idx] : globs) {
Op& op = code.emplace_back(loc, Op::_SetGlob, std::vector<var_idx_t>{}, ir_idx, g_sym);
op.set_impure_flag();
public:
void enter_rval_inside_lval() { level_rval_inside_lval++; }
void exit_rval_inside_lval() { level_rval_inside_lval--; }
bool is_rval_inside_lval() const { return level_rval_inside_lval > 0; }
uint64_t register_lval(SrcLocation loc, const LocalVarData* var_ref) {
uint64_t hash = reinterpret_cast<uint64_t>(var_ref);
fire_if_one_variable_modified_twice(loc, hash);
return hash;
}
uint64_t register_lval(SrcLocation loc, const GlobalVarData* glob_ref) {
uint64_t hash = reinterpret_cast<uint64_t>(glob_ref);
fire_if_one_variable_modified_twice(loc, hash);
return hash;
}
uint64_t register_lval(SrcLocation loc, V<ast_dot_access> v) {
uint64_t hash = 7;
AnyExprV leftmost_obj = v;
while (auto v_dot = leftmost_obj->try_as<ast_dot_access>()) {
if (!v_dot->is_target_indexed_access()) {
break;
}
hash = hash * 1915239017 + std::get<int>(v_dot->target);
leftmost_obj = v_dot->get_obj();
}
if (auto v_ref = leftmost_obj->try_as<ast_reference>()) {
hash *= reinterpret_cast<uint64_t>(v_ref->sym); // `v.0` and `v.0` in 2 places is the same
} else {
hash *= reinterpret_cast<uint64_t>(leftmost_obj); // unlike `f().0` and `f().0` (pointers to AST nodes differ)
}
fire_if_one_variable_modified_twice(loc, hash);
return hash;
}
const std::vector<var_idx_t>* exists_already_known_global(const GlobalVarData* glob_ref) const {
for (const auto& m : modifications) {
if (const auto* m_glob = std::get_if<ModifiedGlob>(&m); m_glob && m_glob->glob_ref == glob_ref) {
return &m_glob->local_ir_idx;
}
}
return nullptr;
}
const var_idx_t* exists_already_known_tuple_index(uint64_t hash) const {
for (const auto& m : modifications) {
if (const auto* m_tup = std::get_if<ModifiedTupleIndex>(&m); m_tup && m_tup->hash == hash) {
return &m_tup->field_ir_idx;
}
}
return nullptr;
}
void register_modified_global(const GlobalVarData* glob_ref, std::vector<var_idx_t> local_ir_idx) {
modifications.emplace_back(ModifiedGlob{glob_ref, std::move(local_ir_idx)});
}
void register_modified_tuple_index(uint64_t hash, var_idx_t tuple_ir_idx, var_idx_t index_ir_idx, var_idx_t field_ir_idx) {
modifications.emplace_back(ModifiedTupleIndex{hash, tuple_ir_idx, index_ir_idx, field_ir_idx});
}
void gen_ops_if_nonempty(CodeBlob& code, SrcLocation loc) const {
for (auto it = modifications.rbegin(); it != modifications.rend(); ++it) { // reverse, it's important
if (const auto* m_glob = std::get_if<ModifiedGlob>(&*it)) {
m_glob->apply(code, loc);
} else if (const auto* m_tup = std::get_if<ModifiedTupleIndex>(&*it)) {
m_tup->apply(code, loc);
}
}
}
};
std::vector<var_idx_t> pre_compile_expr(AnyExprV v, CodeBlob& code, LValGlobs* lval_globs = nullptr);
// The goal of VarsModificationWatcher is to detect such cases: `return (x, x += y, x)`.
// Without any changes, ops will be { _Call $2 = +($0_x, $1_y); _Return $0_x, $2, $0_x } - incorrect
// Correct will be to introduce tmp var: { _Let $3 = $0_x; _Call $2 = ...; _Return $3, $2, $0_x }
// This "introducing" is done when compiling tensors, whereas this class allows to watch vars for modification.
class VarsModificationWatcher {
struct WatchedVar {
var_idx_t ir_idx;
std::function<void(SrcLocation, var_idx_t)> on_modification_callback;
WatchedVar(var_idx_t ir_idx, std::function<void(SrcLocation, var_idx_t)> on_modification_callback)
: ir_idx(ir_idx), on_modification_callback(std::move(on_modification_callback)) {}
};
std::vector<WatchedVar> all_callbacks;
public:
bool empty() const { return all_callbacks.empty(); }
void push_callback(var_idx_t ir_idx, std::function<void(SrcLocation, var_idx_t)> callback) {
all_callbacks.emplace_back(ir_idx, std::move(callback));
}
void pop_callback(var_idx_t ir_idx) {
for (auto it = all_callbacks.rbegin(); it != all_callbacks.rend(); ++it) {
if (it->ir_idx == ir_idx) {
all_callbacks.erase((it + 1).base());
return;
}
}
tolk_assert(false);
}
void trigger_callbacks(const std::vector<var_idx_t>& left_lval_indices, SrcLocation loc) const {
for (const WatchedVar& w : all_callbacks) {
for (var_idx_t changed_var : left_lval_indices) {
if (w.ir_idx == changed_var) {
w.on_modification_callback(loc, w.ir_idx);
}
}
}
}
};
static VarsModificationWatcher vars_modification_watcher;
std::vector<var_idx_t> pre_compile_expr(AnyExprV v, CodeBlob& code, LValContext* lval_ctx = nullptr);
void process_any_statement(AnyV v, CodeBlob& code);
static std::vector<std::vector<var_idx_t>> pre_compile_tensor_inner(CodeBlob& code, const std::vector<AnyExprV>& args,
LValGlobs* lval_globs) {
LValContext* lval_ctx) {
const int n = static_cast<int>(args.size());
if (n == 0) { // just `()`
return {};
}
if (n == 1) { // just `(x)`: even if x is modified (e.g. `f(x=x+2)`), there are no next arguments
return {pre_compile_expr(args[0], code, lval_globs)};
return {pre_compile_expr(args[0], code, lval_ctx)};
}
// the purpose is to handle such cases: `return (x, x += y, x)`
@ -81,9 +262,9 @@ static std::vector<std::vector<var_idx_t>> pre_compile_tensor_inner(CodeBlob& co
void add_and_watch_modifications(std::vector<var_idx_t>&& vars_of_ith_arg, CodeBlob& code) {
for (var_idx_t ir_idx : vars_of_ith_arg) {
if (code.vars[ir_idx].v_sym && !is_watched(ir_idx)) {
if (!code.vars[ir_idx].name.empty() && !is_watched(ir_idx)) {
watched_vars.emplace_back(ir_idx);
code.vars[ir_idx].on_modification.emplace_back([this, &code, ir_idx](SrcLocation loc) {
vars_modification_watcher.push_callback(ir_idx, [this, &code](SrcLocation loc, var_idx_t ir_idx) {
on_var_modified(ir_idx, loc, code);
});
}
@ -93,7 +274,7 @@ static std::vector<std::vector<var_idx_t>> pre_compile_tensor_inner(CodeBlob& co
void on_var_modified(var_idx_t ir_idx, SrcLocation loc, CodeBlob& code) {
tolk_assert(is_watched(ir_idx));
std::vector<var_idx_t> tmp_idx_arr = code.create_tmp_var(code.vars[ir_idx].v_type, loc);
std::vector<var_idx_t> tmp_idx_arr = code.create_tmp_var(code.vars[ir_idx].v_type, loc, "(pre-modified)");
tolk_assert(tmp_idx_arr.size() == 1);
var_idx_t tmp_idx = tmp_idx_arr[0];
code.emplace_back(loc, Op::_Let, std::vector{tmp_idx}, std::vector{ir_idx});
@ -102,9 +283,9 @@ static std::vector<std::vector<var_idx_t>> pre_compile_tensor_inner(CodeBlob& co
}
}
std::vector<std::vector<var_idx_t>> clear_and_stop_watching(CodeBlob& code) {
std::vector<std::vector<var_idx_t>> clear_and_stop_watching() {
for (var_idx_t ir_idx : watched_vars) {
code.vars[ir_idx].on_modification.pop_back();
vars_modification_watcher.pop_callback(ir_idx);
}
watched_vars.clear();
return std::move(res_lists);
@ -113,15 +294,15 @@ static std::vector<std::vector<var_idx_t>> pre_compile_tensor_inner(CodeBlob& co
WatchingVarList watched_vars(n);
for (int arg_idx = 0; arg_idx < n; ++arg_idx) {
std::vector<var_idx_t> vars_of_ith_arg = pre_compile_expr(args[arg_idx], code, lval_globs);
std::vector<var_idx_t> vars_of_ith_arg = pre_compile_expr(args[arg_idx], code, lval_ctx);
watched_vars.add_and_watch_modifications(std::move(vars_of_ith_arg), code);
}
return watched_vars.clear_and_stop_watching(code);
return watched_vars.clear_and_stop_watching();
}
static std::vector<var_idx_t> pre_compile_tensor(CodeBlob& code, const std::vector<AnyExprV>& args,
LValGlobs* lval_globs = nullptr) {
std::vector<std::vector<var_idx_t>> res_lists = pre_compile_tensor_inner(code, args, lval_globs);
LValContext* lval_ctx = nullptr) {
std::vector<std::vector<var_idx_t>> res_lists = pre_compile_tensor_inner(code, args, lval_ctx);
std::vector<var_idx_t> res;
for (const std::vector<var_idx_t>& list : res_lists) {
res.insert(res.end(), list.cbegin(), list.cend());
@ -133,11 +314,11 @@ static std::vector<var_idx_t> pre_compile_let(CodeBlob& code, AnyExprV lhs, AnyE
// [lhs] = [rhs]; since type checking is ok, it's the same as "lhs = rhs"
if (lhs->type == ast_typed_tuple && rhs->type == ast_typed_tuple) {
std::vector<var_idx_t> right = pre_compile_tensor(code, rhs->as<ast_typed_tuple>()->get_items());
LValGlobs globs;
std::vector<var_idx_t> left = pre_compile_tensor(code, lhs->as<ast_typed_tuple>()->get_items(), &globs);
code.on_var_modification(left, loc);
LValContext local_lval;
std::vector<var_idx_t> left = pre_compile_tensor(code, lhs->as<ast_typed_tuple>()->get_items(), &local_lval);
vars_modification_watcher.trigger_callbacks(left, loc);
code.emplace_back(loc, Op::_Let, std::move(left), right);
globs.gen_ops_set_globs(code, loc);
local_lval.gen_ops_if_nonempty(code, loc);
return right;
}
// [lhs] = rhs; it's un-tuple to N left vars
@ -145,29 +326,37 @@ static std::vector<var_idx_t> pre_compile_let(CodeBlob& code, AnyExprV lhs, AnyE
std::vector<var_idx_t> right = pre_compile_expr(rhs, code);
const TypeDataTypedTuple* inferred_tuple = rhs->inferred_type->try_as<TypeDataTypedTuple>();
std::vector<TypePtr> types_list = inferred_tuple->items;
std::vector<var_idx_t> rvect = code.create_tmp_var(TypeDataTensor::create(std::move(types_list)), rhs->loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(TypeDataTensor::create(std::move(types_list)), rhs->loc, "(unpack-tuple)");
code.emplace_back(lhs->loc, Op::_UnTuple, rvect, std::move(right));
LValGlobs globs;
std::vector<var_idx_t> left = pre_compile_tensor(code, lhs->as<ast_typed_tuple>()->get_items(), &globs);
code.on_var_modification(left, loc);
LValContext local_lval;
std::vector<var_idx_t> left = pre_compile_tensor(code, lhs->as<ast_typed_tuple>()->get_items(), &local_lval);
vars_modification_watcher.trigger_callbacks(left, loc);
code.emplace_back(loc, Op::_Let, std::move(left), rvect);
globs.gen_ops_set_globs(code, loc);
local_lval.gen_ops_if_nonempty(code, loc);
return rvect;
}
// small optimization: `var x = rhs` or `local_var = rhs` (90% cases), LValContext not needed actually
if (lhs->type == ast_local_var_lhs || (lhs->type == ast_reference && lhs->as<ast_reference>()->sym->try_as<LocalVarData>())) {
std::vector<var_idx_t> right = pre_compile_expr(rhs, code);
std::vector<var_idx_t> left = pre_compile_expr(lhs, code); // effectively, local_var->ir_idx
vars_modification_watcher.trigger_callbacks(left, loc);
code.emplace_back(loc, Op::_Let, std::move(left), right);
return right;
}
// lhs = rhs
std::vector<var_idx_t> right = pre_compile_expr(rhs, code);
LValGlobs globs;
std::vector<var_idx_t> left = pre_compile_expr(lhs, code, &globs);
code.on_var_modification(left, loc);
LValContext local_lval;
std::vector<var_idx_t> left = pre_compile_expr(lhs, code, &local_lval);
vars_modification_watcher.trigger_callbacks(left, loc);
code.emplace_back(loc, Op::_Let, std::move(left), right);
globs.gen_ops_set_globs(code, loc);
local_lval.gen_ops_if_nonempty(code, loc);
return right;
}
static std::vector<var_idx_t> gen_op_call(CodeBlob& code, TypePtr ret_type, SrcLocation here,
std::vector<var_idx_t>&& args_vars, const FunctionData* fun_ref) {
std::vector<var_idx_t> rvect = code.create_tmp_var(ret_type, here);
Op& op = code.emplace_back(here, Op::_Call, rvect, std::move(args_vars), fun_ref);
static std::vector<var_idx_t> gen_op_call(CodeBlob& code, TypePtr ret_type, SrcLocation loc,
std::vector<var_idx_t>&& args_vars, const FunctionData* fun_ref, const char* debug_desc) {
std::vector<var_idx_t> rvect = code.create_tmp_var(ret_type, loc, debug_desc);
Op& op = code.emplace_back(loc, Op::_Call, rvect, std::move(args_vars), fun_ref);
if (!fun_ref->is_marked_as_pure()) {
op.set_impure_flag();
}
@ -175,30 +364,42 @@ static std::vector<var_idx_t> gen_op_call(CodeBlob& code, TypePtr ret_type, SrcL
}
static std::vector<var_idx_t> process_symbol(SrcLocation loc, const Symbol* sym, CodeBlob& code, LValGlobs* lval_globs) {
static std::vector<var_idx_t> pre_compile_symbol(SrcLocation loc, const Symbol* sym, CodeBlob& code, LValContext* lval_ctx) {
if (const auto* glob_ref = sym->try_as<GlobalVarData>()) {
std::vector<var_idx_t> rvect = code.create_tmp_var(glob_ref->declared_type, loc);
if (lval_globs) {
lval_globs->add_modified_glob(glob_ref, rvect);
return rvect;
if (!lval_ctx) {
// `globalVar` is used for reading, just create local IR var to represent its value, Op GlobVar will fill it
// note, that global tensors are stored as a tuple an unpacked to N vars on read, N determined by declared_type
std::vector<var_idx_t> local_ir_idx = code.create_tmp_var(glob_ref->declared_type, loc, "(glob-var)");
code.emplace_back(loc, Op::_GlobVar, local_ir_idx, std::vector<var_idx_t>{}, glob_ref);
return local_ir_idx;
} else {
code.emplace_back(loc, Op::_GlobVar, rvect, std::vector<var_idx_t>{}, glob_ref);
return rvect;
// `globalVar = rhs` / `mutate globalVar` / `globalTuple.0 = rhs`
lval_ctx->register_lval(loc, glob_ref);
if (const std::vector<var_idx_t>* local_ir_idx = lval_ctx->exists_already_known_global(glob_ref)) {
return *local_ir_idx; // `f(mutate g.0, mutate g.1)`, then g will be read only once
}
std::vector<var_idx_t> local_ir_idx = code.create_tmp_var(glob_ref->declared_type, loc, "(glob-var)");
if (lval_ctx->is_rval_inside_lval()) { // for `globalVar.0` "globalVar" is rvalue inside lvalue
// for `globalVar = rhs` don't read a global actually, but for `globalVar.0 = rhs` do
code.emplace_back(loc, Op::_GlobVar, local_ir_idx, std::vector<var_idx_t>{}, glob_ref);
}
lval_ctx->register_modified_global(glob_ref, local_ir_idx);
return local_ir_idx;
}
}
if (const auto* const_ref = sym->try_as<GlobalConstData>()) {
if (const_ref->is_int_const()) {
std::vector<var_idx_t> rvect = code.create_tmp_var(TypeDataInt::create(), loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(TypeDataInt::create(), loc, "(glob-const)");
code.emplace_back(loc, Op::_IntConst, rvect, const_ref->as_int_const());
return rvect;
} else {
std::vector<var_idx_t> rvect = code.create_tmp_var(TypeDataSlice::create(), loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(TypeDataSlice::create(), loc, "(glob-const)");
code.emplace_back(loc, Op::_SliceConst, rvect, const_ref->as_slice_const());
return rvect;
}
}
if (const auto* fun_ref = sym->try_as<FunctionData>()) {
std::vector<var_idx_t> rvect = code.create_tmp_var(fun_ref->inferred_full_type, loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(fun_ref->inferred_full_type, loc, "(glob-var-fun)");
code.emplace_back(loc, Op::_GlobVar, rvect, std::vector<var_idx_t>{}, fun_ref);
return rvect;
}
@ -206,9 +407,12 @@ static std::vector<var_idx_t> process_symbol(SrcLocation loc, const Symbol* sym,
#ifdef TOLK_DEBUG
tolk_assert(static_cast<int>(var_ref->ir_idx.size()) == var_ref->declared_type->calc_width_on_stack());
#endif
if (lval_ctx) {
lval_ctx->register_lval(loc, var_ref);
}
return var_ref->ir_idx;
}
throw Fatal("process_symbol");
throw Fatal("pre_compile_symbol");
}
static std::vector<var_idx_t> process_assign(V<ast_assign> v, CodeBlob& code) {
@ -234,7 +438,7 @@ static std::vector<var_idx_t> process_binary_operator(V<ast_binary_operator> v,
if (v->fun_ref) { // almost all operators, fun_ref was assigned at type inferring
std::vector<var_idx_t> args_vars = pre_compile_tensor(code, {v->get_lhs(), v->get_rhs()});
return gen_op_call(code, v->inferred_type, v->loc, std::move(args_vars), v->fun_ref);
return gen_op_call(code, v->inferred_type, v->loc, std::move(args_vars), v->fun_ref, "(binary-op)");
}
if (t == tok_logical_and || t == tok_logical_or) {
// do the following transformations:
@ -249,7 +453,7 @@ static std::vector<var_idx_t> process_binary_operator(V<ast_binary_operator> v,
v_b_ne_0->mutate()->assign_fun_ref(lookup_global_symbol("_!=_")->as<FunctionData>());
std::vector<var_idx_t> cond = pre_compile_expr(v->get_lhs(), code);
tolk_assert(cond.size() == 1);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc, "(cond)");
Op& if_op = code.emplace_back(v->loc, Op::_If, cond);
code.push_set_cur(if_op.block0);
code.emplace_back(v->loc, Op::_Let, rvect, pre_compile_expr(t == tok_logical_and ? v_b_ne_0 : v_1, code));
@ -265,13 +469,13 @@ static std::vector<var_idx_t> process_binary_operator(V<ast_binary_operator> v,
static std::vector<var_idx_t> process_unary_operator(V<ast_unary_operator> v, CodeBlob& code) {
std::vector<var_idx_t> args_vars = pre_compile_tensor(code, {v->get_rhs()});
return gen_op_call(code, v->inferred_type, v->loc, std::move(args_vars), v->fun_ref);
return gen_op_call(code, v->inferred_type, v->loc, std::move(args_vars), v->fun_ref, "(unary-op)");
}
static std::vector<var_idx_t> process_ternary_operator(V<ast_ternary_operator> v, CodeBlob& code) {
std::vector<var_idx_t> cond = pre_compile_expr(v->get_cond(), code);
tolk_assert(cond.size() == 1);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc, "(cond)");
Op& if_op = code.emplace_back(v->loc, Op::_If, cond);
code.push_set_cur(if_op.block0);
code.emplace_back(v->get_when_true()->loc, Op::_Let, rvect, pre_compile_expr(v->get_when_true(), code));
@ -282,13 +486,67 @@ static std::vector<var_idx_t> process_ternary_operator(V<ast_ternary_operator> v
return rvect;
}
static std::vector<var_idx_t> process_dot_access(V<ast_dot_access> v, CodeBlob& code, LValGlobs* lval_globs) {
static std::vector<var_idx_t> process_dot_access(V<ast_dot_access> v, CodeBlob& code, LValContext* lval_ctx) {
// it's NOT a method call `t.tupleSize()` (since such cases are handled by process_function_call)
// it's `t.0`, `getUser().id`, and `t.tupleSize` (as a reference, not as a call)
// currently, nothing except a global function can be a target of dot access
const FunctionData* fun_ref = v->target;
if (!v->is_target_fun_ref()) {
TypePtr obj_type = v->get_obj()->inferred_type;
int index_at = std::get<int>(v->target);
// `tensorVar.0`; since a tensor of N elems are N vars on a stack actually, calculate offset
if (const auto* t_tensor = obj_type->try_as<TypeDataTensor>()) {
if (lval_ctx) lval_ctx->register_lval(v->loc, v);
if (lval_ctx) lval_ctx->enter_rval_inside_lval();
std::vector<var_idx_t> lhs_vars = pre_compile_expr(v->get_obj(), code, lval_ctx);
if (lval_ctx) lval_ctx->exit_rval_inside_lval();
int stack_width = t_tensor->items[index_at]->calc_width_on_stack();
int stack_offset = 0;
for (int i = 0; i < index_at; ++i) {
stack_offset += t_tensor->items[i]->calc_width_on_stack();
}
return {lhs_vars.begin() + stack_offset, lhs_vars.begin() + stack_offset + stack_width};
}
// `tupleVar.0`; not to mess up, separate rvalue and lvalue cases
if (obj_type->try_as<TypeDataTypedTuple>() || obj_type->try_as<TypeDataTuple>()) {
if (!lval_ctx) {
// `tupleVar.0` as rvalue: the same as "tupleAt(tupleVar, 0)" written in terms of IR vars
std::vector<var_idx_t> tuple_ir_idx = pre_compile_expr(v->get_obj(), code);
std::vector<var_idx_t> index_ir_idx = code.create_tmp_var(TypeDataInt::create(), v->get_identifier()->loc, "(tuple-idx)");
code.emplace_back(v->loc, Op::_IntConst, index_ir_idx, td::make_refint(index_at));
std::vector<var_idx_t> field_ir_idx = code.create_tmp_var(v->inferred_type, v->loc, "(tuple-field)");
tolk_assert(tuple_ir_idx.size() == 1 && field_ir_idx.size() == 1); // tuples contain only 1-slot values
const FunctionData* builtin_sym = lookup_global_symbol("tupleAt")->as<FunctionData>();
code.emplace_back(v->loc, Op::_Call, field_ir_idx, std::vector{tuple_ir_idx[0], index_ir_idx[0]}, builtin_sym);
return field_ir_idx;
} else {
// `tupleVar.0 = rhs`: finally "tupleSetAt(tupleVar, rhs, 0)" will be done
uint64_t hash = lval_ctx->register_lval(v->loc, v);
if (const var_idx_t* field_ir_idx = lval_ctx->exists_already_known_tuple_index(hash)) {
return {*field_ir_idx}; // `(t.0.0, t.0.1) = rhs`, then "t.0" will be read (tupleAt) once
}
lval_ctx->enter_rval_inside_lval();
std::vector<var_idx_t> tuple_ir_idx = pre_compile_expr(v->get_obj(), code, lval_ctx);
lval_ctx->exit_rval_inside_lval();
std::vector<var_idx_t> index_ir_idx = code.create_tmp_var(TypeDataInt::create(), v->get_identifier()->loc, "(tuple-idx)");
code.emplace_back(v->loc, Op::_IntConst, index_ir_idx, td::make_refint(index_at));
std::vector<var_idx_t> field_ir_idx = code.create_tmp_var(v->inferred_type, v->loc, "(tuple-field)");
if (lval_ctx->is_rval_inside_lval()) { // for `t.0.1 = rhs` "t.0" is rvalue inside lvalue
// for `t.0 = rhs` don't call tupleAt, but for `t.0.1 = rhs` do for t.0 (still don't for t.0.1)
const FunctionData* builtin_sym = lookup_global_symbol("tupleAt")->as<FunctionData>();
code.emplace_back(v->loc, Op::_Call, field_ir_idx, std::vector{tuple_ir_idx[0], index_ir_idx[0]}, builtin_sym);
}
lval_ctx->register_modified_tuple_index(hash, tuple_ir_idx[0], index_ir_idx[0], field_ir_idx[0]);
vars_modification_watcher.trigger_callbacks(tuple_ir_idx, v->loc);
return field_ir_idx;
}
}
tolk_assert(false);
}
// okay, v->target refs a function, like `obj.method`, filled at type inferring
// (currently, nothing except a global function can be referenced, no object-scope methods exist)
const FunctionData* fun_ref = std::get<const FunctionData*>(v->target);
tolk_assert(fun_ref);
return process_symbol(v->loc, fun_ref, code, lval_globs);
return pre_compile_symbol(v->loc, fun_ref, code, lval_ctx);
}
static std::vector<var_idx_t> process_function_call(V<ast_function_call> v, CodeBlob& code) {
@ -304,7 +562,7 @@ static std::vector<var_idx_t> process_function_call(V<ast_function_call> v, Code
std::vector<var_idx_t> tfunc = pre_compile_expr(v->get_callee(), code);
tolk_assert(tfunc.size() == 1);
args_vars.push_back(tfunc[0]);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc, "(call-ind)");
Op& op = code.emplace_back(v->loc, Op::_CallInd, rvect, std::move(args_vars));
op.set_impure_flag();
return rvect;
@ -349,28 +607,28 @@ static std::vector<var_idx_t> process_function_call(V<ast_function_call> v, Code
for (const std::vector<var_idx_t>& list : vars_per_arg) {
args_vars.insert(args_vars.end(), list.cbegin(), list.cend());
}
std::vector<var_idx_t> rvect_apply = gen_op_call(code, op_call_type, v->loc, std::move(args_vars), fun_ref);
std::vector<var_idx_t> rvect_apply = gen_op_call(code, op_call_type, v->loc, std::move(args_vars), fun_ref, "(fun-call)");
if (fun_ref->has_mutate_params()) {
LValGlobs local_globs;
LValContext local_lval;
std::vector<var_idx_t> left;
for (int i = 0; i < delta_self + v->get_num_args(); ++i) {
if (fun_ref->parameters[i].is_mutate_parameter()) {
AnyExprV arg_i = obj_leftmost && i == 0 ? obj_leftmost : args[i];
tolk_assert(arg_i->is_lvalue || i == 0);
if (arg_i->is_lvalue) {
std::vector<var_idx_t> ith_var_idx = pre_compile_expr(arg_i, code, &local_globs);
std::vector<var_idx_t> ith_var_idx = pre_compile_expr(arg_i, code, &local_lval);
left.insert(left.end(), ith_var_idx.begin(), ith_var_idx.end());
} else {
left.insert(left.end(), vars_per_arg[0].begin(), vars_per_arg[0].end());
}
}
}
std::vector<var_idx_t> rvect = code.create_tmp_var(real_ret_type, v->loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(real_ret_type, v->loc, "(fun-call)");
left.insert(left.end(), rvect.begin(), rvect.end());
code.on_var_modification(left, v->loc);
vars_modification_watcher.trigger_callbacks(left, v->loc);
code.emplace_back(v->loc, Op::_Let, std::move(left), rvect_apply);
local_globs.gen_ops_set_globs(code, v->loc);
local_lval.gen_ops_if_nonempty(code, v->loc);
rvect_apply = rvect;
}
@ -385,29 +643,29 @@ static std::vector<var_idx_t> process_function_call(V<ast_function_call> v, Code
return rvect_apply;
}
static std::vector<var_idx_t> process_tensor(V<ast_tensor> v, CodeBlob& code, LValGlobs* lval_globs) {
return pre_compile_tensor(code, v->get_items(), lval_globs);
static std::vector<var_idx_t> process_tensor(V<ast_tensor> v, CodeBlob& code, LValContext* lval_ctx) {
return pre_compile_tensor(code, v->get_items(), lval_ctx);
}
static std::vector<var_idx_t> process_typed_tuple(V<ast_typed_tuple> v, CodeBlob& code, LValGlobs* lval_globs) {
if (lval_globs) { // todo some time, make "var (a, [b,c]) = (1, [2,3])" work
static std::vector<var_idx_t> process_typed_tuple(V<ast_typed_tuple> v, CodeBlob& code, LValContext* lval_ctx) {
if (lval_ctx) { // todo some time, make "var (a, [b,c]) = (1, [2,3])" work
v->error("[...] can not be used as lvalue here");
}
std::vector<var_idx_t> left = code.create_tmp_var(v->inferred_type, v->loc);
std::vector<var_idx_t> right = pre_compile_tensor(code, v->get_items());
std::vector<var_idx_t> left = code.create_tmp_var(v->inferred_type, v->loc, "(pack-tuple)");
std::vector<var_idx_t> right = pre_compile_tensor(code, v->get_items(), lval_ctx);
code.emplace_back(v->loc, Op::_Tuple, left, std::move(right));
return left;
}
static std::vector<var_idx_t> process_int_const(V<ast_int_const> v, CodeBlob& code) {
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc, "(int-const)");
code.emplace_back(v->loc, Op::_IntConst, rvect, v->intval);
return rvect;
}
static std::vector<var_idx_t> process_string_const(V<ast_string_const> v, CodeBlob& code) {
ConstantValue value = eval_const_init_value(v);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc);
std::vector<var_idx_t> rvect = code.create_tmp_var(v->inferred_type, v->loc, "(str-const)");
if (value.is_int()) {
code.emplace_back(v->loc, Op::_IntConst, rvect, value.as_int());
} else {
@ -418,21 +676,21 @@ static std::vector<var_idx_t> process_string_const(V<ast_string_const> v, CodeBl
static std::vector<var_idx_t> process_bool_const(V<ast_bool_const> v, CodeBlob& code) {
const FunctionData* builtin_sym = lookup_global_symbol(v->bool_val ? "__true" : "__false")->as<FunctionData>();
return gen_op_call(code, v->inferred_type, v->loc, {}, builtin_sym);
return gen_op_call(code, v->inferred_type, v->loc, {}, builtin_sym, "(bool-const)");
}
static std::vector<var_idx_t> process_null_keyword(V<ast_null_keyword> v, CodeBlob& code) {
const FunctionData* builtin_sym = lookup_global_symbol("__null")->as<FunctionData>();
return gen_op_call(code, v->inferred_type, v->loc, {}, builtin_sym);
return gen_op_call(code, v->inferred_type, v->loc, {}, builtin_sym, "(null-literal)");
}
static std::vector<var_idx_t> process_local_var(V<ast_local_var_lhs> v, CodeBlob& code) {
if (v->marked_as_redef) {
return process_symbol(v->loc, v->var_ref, code, nullptr);
return pre_compile_symbol(v->loc, v->var_ref, code, nullptr);
}
tolk_assert(v->var_ref->ir_idx.empty());
v->var_ref->mutate()->assign_ir_idx(code.create_var(v->inferred_type, v->var_ref, v->loc));
v->var_ref->mutate()->assign_ir_idx(code.create_var(v->inferred_type, v->loc, v->var_ref->name));
return v->var_ref->ir_idx;
}
@ -444,13 +702,13 @@ static std::vector<var_idx_t> process_local_vars_declaration(V<ast_local_vars_de
static std::vector<var_idx_t> process_underscore(V<ast_underscore> v, CodeBlob& code) {
// when _ is used as left side of assignment, like `(cs, _) = cs.loadAndReturn()`
return code.create_tmp_var(v->inferred_type, v->loc);
return code.create_tmp_var(v->inferred_type, v->loc, "(underscore)");
}
std::vector<var_idx_t> pre_compile_expr(AnyExprV v, CodeBlob& code, LValGlobs* lval_globs) {
std::vector<var_idx_t> pre_compile_expr(AnyExprV v, CodeBlob& code, LValContext* lval_ctx) {
switch (v->type) {
case ast_reference:
return process_symbol(v->loc, v->as<ast_reference>()->sym, code, lval_globs);
return pre_compile_symbol(v->loc, v->as<ast_reference>()->sym, code, lval_ctx);
case ast_assign:
return process_assign(v->as<ast_assign>(), code);
case ast_set_assign:
@ -462,17 +720,17 @@ std::vector<var_idx_t> pre_compile_expr(AnyExprV v, CodeBlob& code, LValGlobs* l
case ast_ternary_operator:
return process_ternary_operator(v->as<ast_ternary_operator>(), code);
case ast_cast_as_operator:
return pre_compile_expr(v->as<ast_cast_as_operator>()->get_expr(), code, lval_globs);
return pre_compile_expr(v->as<ast_cast_as_operator>()->get_expr(), code, lval_ctx);
case ast_dot_access:
return process_dot_access(v->as<ast_dot_access>(), code, lval_globs);
return process_dot_access(v->as<ast_dot_access>(), code, lval_ctx);
case ast_function_call:
return process_function_call(v->as<ast_function_call>(), code);
case ast_parenthesized_expression:
return pre_compile_expr(v->as<ast_parenthesized_expression>()->get_expr(), code, lval_globs);
return pre_compile_expr(v->as<ast_parenthesized_expression>()->get_expr(), code, lval_ctx);
case ast_tensor:
return process_tensor(v->as<ast_tensor>(), code, lval_globs);
return process_tensor(v->as<ast_tensor>(), code, lval_ctx);
case ast_typed_tuple:
return process_typed_tuple(v->as<ast_typed_tuple>(), code, lval_globs);
return process_typed_tuple(v->as<ast_typed_tuple>(), code, lval_ctx);
case ast_int_const:
return process_int_const(v->as<ast_int_const>(), code);
case ast_string_const:
@ -515,14 +773,14 @@ static void process_assert_statement(V<ast_assert_statement> v, CodeBlob& code)
const FunctionData* builtin_sym = lookup_global_symbol("__throw_if_unless")->as<FunctionData>();
std::vector<var_idx_t> args_vars = pre_compile_tensor(code, args);
gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym);
gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym, "(throw-call)");
}
static void process_catch_variable(AnyExprV v_catch_var, CodeBlob& code) {
if (auto v_ref = v_catch_var->try_as<ast_reference>(); v_ref && v_ref->sym) { // not underscore
const LocalVarData* var_ref = v_ref->sym->as<LocalVarData>();
tolk_assert(var_ref->ir_idx.empty());
var_ref->mutate()->assign_ir_idx(code.create_var(v_catch_var->inferred_type, var_ref, v_catch_var->loc));
var_ref->mutate()->assign_ir_idx(code.create_var(v_catch_var->inferred_type, v_catch_var->loc, var_ref->name));
}
}
@ -621,11 +879,11 @@ static void process_throw_statement(V<ast_throw_statement> v, CodeBlob& code) {
if (v->has_thrown_arg()) {
const FunctionData* builtin_sym = lookup_global_symbol("__throw_arg")->as<FunctionData>();
std::vector<var_idx_t> args_vars = pre_compile_tensor(code, {v->get_thrown_arg(), v->get_thrown_code()});
gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym);
gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym, "(throw-call)");
} else {
const FunctionData* builtin_sym = lookup_global_symbol("__throw")->as<FunctionData>();
std::vector<var_idx_t> args_vars = pre_compile_tensor(code, {v->get_thrown_code()});
gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym);
gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym, "(throw-call)");
}
}
@ -699,7 +957,7 @@ static void convert_function_body_to_CodeBlob(const FunctionData* fun_ref, Funct
for (int i = 0; i < fun_ref->get_num_params(); ++i) {
const LocalVarData& param_i = fun_ref->parameters[i];
std::vector<var_idx_t> ir_idx = blob->create_var(param_i.declared_type, &param_i, param_i.loc);
std::vector<var_idx_t> ir_idx = blob->create_var(param_i.declared_type, param_i.loc, param_i.name);
rvect_import.insert(rvect_import.end(), ir_idx.begin(), ir_idx.end());
param_i.mutate()->assign_ir_idx(std::move(ir_idx));
}
@ -716,6 +974,7 @@ static void convert_function_body_to_CodeBlob(const FunctionData* fun_ref, Funct
blob->close_blk(v_body->loc_end);
code_body->set_code(blob);
tolk_assert(vars_modification_watcher.empty());
}
static void convert_asm_body_to_AsmOp(const FunctionData* fun_ref, FunctionBodyAsm* asm_body) {

View file

@ -123,8 +123,8 @@ class CheckRValueLvalueVisitor final : public ASTVisitorFunctionBody {
void visit(V<ast_dot_access> v) override {
// a reference to a method used as rvalue, like `var v = t.tupleAt`
if (const FunctionData* fun_ref = v->target; v->is_rvalue) {
validate_function_used_as_noncall(v, fun_ref);
if (v->is_rvalue && v->is_target_fun_ref()) {
validate_function_used_as_noncall(v, std::get<const FunctionData*>(v->target));
}
}

View file

@ -124,6 +124,19 @@ static void fire_error_cannot_apply_operator(SrcLocation loc, std::string_view o
throw ParseError(loc, "can not apply operator `" + op + "` to " + to_string(lhs->inferred_type) + " and " + to_string(rhs->inferred_type));
}
// fire an error on `untypedTupleVar.0` when used without a hint
GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD
static void fire_error_cannot_deduce_untyped_tuple_access(SrcLocation loc, int index) {
std::string idx_access = "<tuple>." + std::to_string(index);
throw ParseError(loc, "can not deduce type of `" + idx_access + "`; either assign it to variable like `var c: int = " + idx_access + "` or cast the result like `" + idx_access + " as int`");
}
// fire an error on `untypedTupleVar.0` when inferred as (int,int), or `[int, (int,int)]`, or other non-1 width in a tuple
GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD
static void fire_error_cannot_put_non1_stack_width_arg_to_tuple(SrcLocation loc, TypePtr inferred_type) {
throw ParseError(loc, "can not put " + to_string(inferred_type) + " into a tuple, because it occupies " + std::to_string(inferred_type->calc_width_on_stack()) + " stack slots in TVM, not 1");
}
// check correctness of called arguments counts and their type matching
static void check_function_arguments(const FunctionData* fun_ref, V<ast_argument_list> v, AnyExprV lhs_of_dot_call) {
int delta_self = lhs_of_dot_call ? 1 : 0;
@ -466,6 +479,22 @@ class InferCheckTypesAndCallsAndFieldsVisitor final {
return TypeDataTypedTuple::create(std::move(sub_hints));
}
// `a.0 = rhs` / `b.1.0 = rhs` (remember, its target is not assigned yet)
if (auto lhs_dot = lhs->try_as<ast_dot_access>()) {
TypePtr obj_hint = calc_hint_from_assignment_lhs(lhs_dot->get_obj());
std::string_view field_name = lhs_dot->get_field_name();
if (field_name[0] >= '0' && field_name[0] <= '9') {
int index_at = std::stoi(std::string(field_name));
if (const auto* t_tensor = obj_hint->try_as<TypeDataTensor>(); t_tensor && index_at < t_tensor->size()) {
return t_tensor->items[index_at];
}
if (const auto* t_tuple = obj_hint->try_as<TypeDataTypedTuple>(); t_tuple && index_at < t_tuple->size()) {
return t_tuple->items[index_at];
}
}
return TypeDataUnknown::create();
}
return TypeDataUnknown::create();
}
@ -562,8 +591,8 @@ class InferCheckTypesAndCallsAndFieldsVisitor final {
return;
}
// here is something strange and unhandled, like `f() = rhs`
// it will fail on later compilation steps (like rvalue/lvalue checks), but type inferring should pass
// here is something unhandled like `a.0 = rhs`, run regular inferring on rhs
// for something strange like `f() = rhs` type inferring will pass, but will fail later
infer_any_expr(lhs, rhs_type);
if (!lhs->inferred_type->can_rhs_be_assigned(rhs_type)) {
err_loc->error("can not assign " + to_string(rhs_type) + " to " + to_string(lhs));
@ -839,25 +868,56 @@ class InferCheckTypesAndCallsAndFieldsVisitor final {
// it's NOT a method call `t.tupleSize()` (since such cases are handled by infer_function_call)
// it's `t.0`, `getUser().id`, and `t.tupleSize` (as a reference, not as a call)
infer_any_expr(v->get_obj());
TypePtr obj_type = v->get_obj()->inferred_type;
// our goal is to fill v->target knowing type of obj
V<ast_identifier> v_ident = v->get_identifier(); // field/method name vertex
V<ast_instantiationT_list> v_instantiationTs = v->get_instantiationTs();
std::string_view field_name = v_ident->name;
// for now, Tolk doesn't have structures, properties, and object-scoped methods
// so, only `t.tupleSize` is allowed, look up a global function
const Symbol* sym = lookup_global_symbol(field_name);
if (!sym) {
v_ident->error("undefined symbol `" + static_cast<std::string>(field_name) + "`");
// it can be indexed access (`tensorVar.0`, `tupleVar.1`) or a method (`t.tupleSize`)
// at first, check for indexed access
if (field_name[0] >= '0' && field_name[0] <= '9') {
int index_at = std::stoi(std::string(field_name));
if (const auto* t_tensor = obj_type->try_as<TypeDataTensor>()) {
if (index_at >= t_tensor->size()) {
v_ident->error("invalid tensor index, expected 0.." + std::to_string(t_tensor->items.size() - 1));
}
v->mutate()->assign_target(index_at);
assign_inferred_type(v, t_tensor->items[index_at]);
return;
}
if (const auto* t_tuple = obj_type->try_as<TypeDataTypedTuple>()) {
if (index_at >= t_tuple->size()) {
v_ident->error("invalid tuple index, expected 0.." + std::to_string(t_tuple->items.size() - 1));
}
v->mutate()->assign_target(index_at);
assign_inferred_type(v, t_tuple->items[index_at]);
return;
}
if (obj_type->try_as<TypeDataTuple>()) {
if (hint == nullptr) {
fire_error_cannot_deduce_untyped_tuple_access(v->loc, index_at);
}
if (hint->calc_width_on_stack() != 1) {
fire_error_cannot_put_non1_stack_width_arg_to_tuple(v->loc, hint);
}
v->mutate()->assign_target(index_at);
assign_inferred_type(v, hint);
return;
}
v_ident->error("type " + to_string(obj_type) + " is not indexable");
}
const FunctionData* fun_ref = sym->try_as<FunctionData>();
// for now, Tolk doesn't have fields and object-scoped methods; `t.tupleSize` is a global function `tupleSize`
const Symbol* sym = lookup_global_symbol(field_name);
const FunctionData* fun_ref = sym ? sym->try_as<FunctionData>() : nullptr;
if (!fun_ref) {
v_ident->error("referencing a non-function");
v_ident->error("non-existing field `" + static_cast<std::string>(field_name) + "` of type " + to_string(obj_type));
}
// `t.tupleSize` is ok, `cs.tupleSize` not
if (!fun_ref->parameters[0].declared_type->can_rhs_be_assigned(v->get_obj()->inferred_type)) {
v_ident->error("referencing a method for " + to_string(fun_ref->parameters[0]) + " with an object of type " + to_string(v->get_obj()));
if (!fun_ref->parameters[0].declared_type->can_rhs_be_assigned(obj_type)) {
v_ident->error("referencing a method for " + to_string(fun_ref->parameters[0]) + " with object of type " + to_string(obj_type));
}
if (fun_ref->is_generic_function() && !v_instantiationTs) {
@ -896,21 +956,24 @@ class InferCheckTypesAndCallsAndFieldsVisitor final {
} else if (auto v_dot = callee->try_as<ast_dot_access>()) {
// `obj.someMethod()` / `obj.someMethod<int>()` / `getF().someMethod()` / `obj.SOME_CONST()`
// note, that dot_obj->target is not filled yet, since callee was not inferred yet
delta_self = 1;
dot_obj = v_dot->get_obj();
v_instantiationTs = v_dot->get_instantiationTs(); // present for `obj.someMethod<int>()`
infer_any_expr(dot_obj);
// for now, Tolk doesn't have object-scoped methods, so method resolving doesn't depend on obj type
// (in other words, `globalFunction(a)` = `a.globalFunction()`)
std::string_view method_name = v_dot->get_field_name();
const Symbol* sym = lookup_global_symbol(method_name);
if (!sym) {
v_dot->get_identifier()->error("undefined symbol `" + static_cast<std::string>(method_name) + "`");
}
fun_ref = sym->try_as<FunctionData>();
if (!fun_ref) {
v_dot->get_identifier()->error("calling a non-function");
// it can be indexed access (`tensorVar.0()`, `tupleVar.1()`) or a method (`t.tupleSize()`)
std::string_view field_name = v_dot->get_field_name();
if (field_name[0] >= '0' && field_name[0] <= '9') {
// indexed access `ab.2()`, then treat `ab.2` just like an expression, fun_ref remains nullptr
// infer_dot_access() will be called for a callee, it will check type, index correctness, etc.
} else {
// for now, Tolk doesn't have fields and object-scoped methods; `t.tupleSize` is a global function `tupleSize`
const Symbol* sym = lookup_global_symbol(field_name);
fun_ref = sym ? sym->try_as<FunctionData>() : nullptr;
if (!fun_ref) {
v_dot->get_identifier()->error("non-existing method `" + static_cast<std::string>(field_name) + "` of type " + to_string(dot_obj));
}
}
} else {
@ -926,7 +989,7 @@ class InferCheckTypesAndCallsAndFieldsVisitor final {
assign_inferred_type(arg_i, arg_i->get_expr());
}
// handle `local_var()` / `getF()()` / `5()` / `SOME_CONST()` / `obj.method()()()`
// handle `local_var()` / `getF()()` / `5()` / `SOME_CONST()` / `obj.method()()()` / `tensorVar.0()`
if (!fun_ref) {
// treat callee like a usual expression, which must have "callable" inferred type
infer_any_expr(callee);
@ -1017,6 +1080,9 @@ class InferCheckTypesAndCallsAndFieldsVisitor final {
for (int i = 0; i < v->size(); ++i) {
AnyExprV item = v->get_item(i);
infer_any_expr(item, tuple_hint && i < tuple_hint->size() ? tuple_hint->items[i] : nullptr);
if (item->inferred_type->calc_width_on_stack() != 1) {
fire_error_cannot_put_non1_stack_width_arg_to_tuple(v->get_item(i)->loc, item->inferred_type);
}
types_list.emplace_back(item->inferred_type);
}
assign_inferred_type(v, TypeDataTypedTuple::create(std::move(types_list)));

View file

@ -44,21 +44,23 @@ typedef int var_idx_t;
typedef int const_idx_t;
struct TmpVar {
TypePtr v_type;
var_idx_t ir_idx;
const LocalVarData* v_sym; // points to var defined in code; nullptr for implicitly created tmp vars
SrcLocation where;
std::vector<std::function<void(SrcLocation)>> on_modification;
var_idx_t ir_idx; // every var in IR represents 1 stack slot
TypePtr v_type; // calc_width_on_stack() is 1
std::string name; // "x" for vars originated from user sources; "x.0" for tensor components; empty for implicitly created tmp vars
SrcLocation loc; // location of var declaration in sources or where a tmp var was originated
#ifdef TOLK_DEBUG
const char* desc = nullptr; // "origin" of tmp var, for debug output like `'15 (binary-op) '16 (glob-var)`
#endif
TmpVar(var_idx_t ir_idx, TypePtr type, const LocalVarData* v_sym, SrcLocation loc)
: v_type(type)
, ir_idx(ir_idx)
, v_sym(v_sym)
, where(loc) {
TmpVar(var_idx_t ir_idx, TypePtr v_type, std::string name, SrcLocation loc)
: ir_idx(ir_idx)
, v_type(v_type)
, name(std::move(name))
, loc(loc) {
}
void show(std::ostream& os, int omit_idx = 0) const;
void dump(std::ostream& os) const;
void show_as_stack_comment(std::ostream& os) const;
void show(std::ostream& os) const;
};
struct VarDescr {
@ -602,7 +604,6 @@ struct AsmOpList {
}
const_idx_t register_const(Const new_const);
Const get_const(const_idx_t idx);
void show_var(std::ostream& os, var_idx_t idx) const;
void show_var_ext(std::ostream& os, std::pair<var_idx_t, const_idx_t> idx_pair) const;
void adjust_last() {
if (list_.back().is_nop()) {
@ -1018,13 +1019,10 @@ struct Stack {
void rearrange_top(var_idx_t top, bool last);
void merge_const(const Stack& req_stack);
void merge_state(const Stack& req_stack);
void show(int _mode);
void show() {
show(mode);
}
void show();
void opt_show() {
if ((mode & (_StkCmt | _Shown)) == _StkCmt) {
show(mode);
show();
}
}
bool operator==(const Stack& y) const & {
@ -1108,9 +1106,15 @@ struct CodeBlob {
#endif
return res;
}
std::vector<var_idx_t> create_var(TypePtr var_type, const LocalVarData* v_sym, SrcLocation loc);
std::vector<var_idx_t> create_tmp_var(TypePtr var_type, SrcLocation loc) {
return create_var(var_type, nullptr, loc);
std::vector<var_idx_t> create_var(TypePtr var_type, SrcLocation loc, std::string name);
std::vector<var_idx_t> create_tmp_var(TypePtr var_type, SrcLocation loc, const char* desc) {
std::vector<var_idx_t> ir_idx = create_var(var_type, loc, {});
#ifdef TOLK_DEBUG
for (var_idx_t v : ir_idx) {
vars[v].desc = desc;
}
#endif
return ir_idx;
}
bool compute_used_code_vars();
bool compute_used_code_vars(std::unique_ptr<Op>& ops, const VarDescrList& var_info, bool edit) const;
@ -1135,14 +1139,6 @@ struct CodeBlob {
void mark_noreturn();
void generate_code(AsmOpList& out_list, int mode = 0);
void generate_code(std::ostream& os, int mode = 0, int indent = 0);
void on_var_modification(const std::vector<var_idx_t>& left_lval_indices, SrcLocation here) const {
for (var_idx_t ir_idx : left_lval_indices) {
for (auto& f : vars.at(ir_idx).on_modification) {
f(here);
}
}
}
};
// defined in builtins.cpp