1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-03-09 15:40:10 +00:00

Add PRNG with normal distribution to mathlib.fc (#646)

* Add random with normal distribution

* Fix hex arguments in mathlib testcases
This commit is contained in:
EmelyanenkoK 2023-03-13 16:49:30 +03:00 committed by GitHub
parent 4d5ded5761
commit 7da30e1e7f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 385 additions and 131 deletions

View file

@ -3,7 +3,10 @@
- FunC fixed-point mathematical library
-
-}
#include "stdlib.fc";
#pragma version >=0.4.2;
{---------------- HIGH-LEVEL FUNCTION DECLARATIONS -----------------}
{-
Most functions declared here work either with integers or with fixed-point numbers of type `fixed248`.
@ -63,6 +66,17 @@ int fixed248::atan(int x) inline_ref;
;; fixed248 acot(fixed248 x);
int fixed248::acot(int x) inline_ref;
;; random number uniformly distributed in [0..1)
;; fixed248 random();
int fixed248::random() impure inline;
;; random number with standard normal distribution (2100 gas on average)
;; fixed248 nrand();
int fixed248::nrand() impure inline;
;; generates a random number approximately distributed according to the standard normal distribution (1200 gas)
;; (fails chi-squared test, but it is shorter and faster than fixed248::nrand())
;; fixed248 nrand_fast();
int fixed248::nrand_fast() impure inline;
-} ;; end (declarations)
{-------------------- INTERMEDIATE FUNCTIONS -----------------------}
@ -125,30 +139,27 @@ int asin_f255(int x);
;; fixed254 acos(fixed255 x);
int acos_f255(int x);
;; generates normally distributed pseudo-random number
;; fixed252 nrand();
int nrand_f252(int x);
;; a faster and shorter variant of nrand_f252() that fails chi-squared test
;; (should suffice for most purposes)
;; fixed252 nrand_fast();
int nrand_fast_f252(int x);
-} ;; end (declarations)
{---------------- MISSING OPERATIONS AND BUILT-INS -----------------}
int sgn(int x) asm "SGN";
int abs(int x) asm "ABS";
int min(int x, int y) asm "MIN";
;; compute floor(log2(x))+1
int log2_floor_p1(int x) asm "UBITSIZE";
;; FunC compiler emits MULDIVC instruction, but Asm.fif usually does not know it
;; add the following line to your Asm.fif if necessary
;; x{A986} @Defop MULDIVC
;; the following instructions might have been emitted by muldivmod() and muldivmodr() builtins, but FunC does not have these
;; x{A9A5} @Defop MULRSHIFTR
int mulrshiftr(int x, int y, int s) asm "MULRSHIFTR";
;; x{A9B5} @Defop(8u+1) MULRSHIFTR#
int mulrshiftr256(int x, int y) asm "256 MULRSHIFTR#";
;; x{A9BC} @Defop(8u+1) MULRSHIFT#MOD
(int, int) mulrshift256mod(int x, int y) asm "256 MULRSHIFT#MOD";
;; x{A9BD} @Defop(8u+1) MULRSHIFTR#MOD
(int, int) mulrshiftr256mod(int x, int y) asm "256 MULRSHIFTR#MOD";
(int, int) mulrshiftr255mod(int x, int y) asm "255 MULRSHIFTR#MOD";
(int, int) mulrshiftr248mod(int x, int y) asm "248 MULRSHIFTR#MOD";
@ -156,39 +167,34 @@ int mulrshiftr256(int x, int y) asm "256 MULRSHIFTR#";
(int, int) mulrshiftr6mod(int x, int y) asm "6 MULRSHIFTR#MOD";
(int, int) mulrshiftr7mod(int x, int y) asm "7 MULRSHIFTR#MOD";
;; these instructions might have been emitted by muldivmodr(..., 1 << N, ...) built-ins
;; x{A9D5} @Defop(8u+1) LSHIFT#DIVR
int lshift256divr(int x, int y) asm "256 LSHIFT#DIVR";
;; x{A9DD} @Defop(8u+1) LSHIFT#DIVMODR
(int, int) lshift256divmodr(int x, int y) asm "256 LSHIFT#DIVMODR";
(int, int) lshift255divmodr(int x, int y) asm "255 LSHIFT#DIVMODR";
(int, int) lshift2divmodr(int x, int y) asm "2 LSHIFT#DIVMODR";
(int, int) lshift7divmodr(int x, int y) asm "7 LSHIFT#DIVMODR";
;; x{A9CD} @Defop LSHIFTDIVMODR
(int, int) lshiftdivmodr(int x, int y, int s) asm "LSHIFTDIVMODR";
;; these instructions might have been emitted by divmodr(..., 1 << NN) or divmod(..., 1 << N) built-ins
;; but FunC does not have divmodr(), and divmod() always compiles to "DIVMOD"
;; x{A93D} @Defop(8u+1) RSHIFTR#MOD
(int, int) rshiftr256mod(int x) asm "256 RSHIFTR#MOD";
(int, int) rshiftr248mod(int x) asm "248 RSHIFTR#MOD";
(int, int) rshiftr4mod(int x) asm "4 RSHIFTR#MOD";
;; x{A93C} @Defop(8u+1) RSHIFT#MOD
(int, int) rshift3mod(int x) asm "3 RSHIFT#MOD";
;; computes y - x (FunC compiler does not try to use this by itself)
int sub_rev(int x, int y) asm "SUBR";
int nan() asm "PUSHNAN";
int is_nan(int x) asm "ISNAN";
{------------------------ SQUARE ROOTS ----------------------------}
;; computes sqrt(a*b) exactly rounded to the nearest integer
;; for all 0 <= a, b <= 2^256-1
;; may be used with b=1 or b=scale of fixed-point numbers
int geom_mean(int a, int b) inline_ref {
if (min(a, b) <= 0) {
ifnot (min(a, b)) {
return 0;
}
int s = log2_floor_p1(a);
int s = log2_floor_p1(a); ;; throws out of range error if a < 0 or b < 0
int t = log2_floor_p1(b);
;; NB: (a-b)/2+b == (a+b)/2, but without overflow for large a and b
int x = (s == t ? (a - b) / 2 + b : 1 << ((s + t) / 2));
@ -313,9 +319,6 @@ int expm1_f257(int x) inline_ref {
return x - muldivr(x2, t / 2, a + mulrshiftr256(x, t) ~/ 4) ~/ 4; ;; x - x^2 * (x-a) / (a + x*(x-a))
}
;; used to avoid broken optimisations in older versions of FunC
int minus_one() asm "-1 PUSHINT";
;; expm1_f257() may be used to implement specific fixed-point exponentials
;; example:
;; fixed248 exp(fixed248 x)
@ -327,8 +330,7 @@ int fixed248::exp(int x) inline_ref {
x = 2 * x - muldivr(q, l2d, 1 << 127);
int y = expm1_f257(x);
;; result is (1 + y) * (2^q) --> ((1 << 257) + y) >> (9 - q)
return (y ~>> (9 - q)) - (minus_one() << (248 + q));
;; (-1 << (248 + q)) is compiled into non-existent instruction NEGPOW2
return (y ~>> (9 - q)) - (-1 << (248 + q));
;; note that (y ~>> (9 - q)) + (1 << (248 + q)) leads to overflow when q=8
}
@ -339,7 +341,7 @@ int fixed248::exp2(int x) inline_ref {
(int q, x) = rshiftr248mod(x);
x = muldivr(x, log2_const_f256(), 1 << 247);
int y = expm1_f257(x);
return (y ~>> (9 - q)) - (minus_one() << (248 + q));
return (y ~>> (9 - q)) - (-1 << (248 + q));
}
{--------------------- TRIGONOMETRIC FUNCTIONS -----------------------}
@ -662,7 +664,7 @@ int fixed248::pow(int x, int y) inline_ref {
return - (sq == 0); ;; underflow
}
int y = expm1_f257(mulrshiftr256(ll, log2_const_f256()));
return (y ~>> (9 - q)) - (minus_one() << sq);
return (y ~>> (9 - q)) - (-1 << sq);
}
{--------------------- INVERSE TRIGONOMETRIC FUNCTIONS -------------------}
@ -795,7 +797,7 @@ int atan_f256_small(int x) inline_ref {
;; fixed255 asin(fixed255 x);
int asin_f255(int x) inline_ref {
int a = fixed255::One - fixed255::sqr(x); ;; a:=1-x^2
if (a <= 0) {
ifnot (a) {
return sgn(x) * Pi_const_f254(); ;; Pi/2 or -Pi/2
}
int y = fixed255::sqrt(a); ;; sqrt(1-x^2)
@ -806,7 +808,7 @@ int asin_f255(int x) inline_ref {
;; fixed254 acos(fixed255 x);
int acos_f255(int x) inline_ref {
int Pi = Pi_const_f254();
if (x <= (-1 << 255)) {
if (x == (-1 << 255)) {
return Pi; ;; acos(-1) = Pi
}
Pi /= 2;
@ -858,3 +860,65 @@ int fixed248::acot(int x) inline_ref {
;; now acot(x) = - z - q*atan(1/32) + s*(Pi/2), z is fixed261
return (s * Pi_const_f254() - z ~/ 64 - muldivr(q, Atan1_32_f261(), 64)) ~/ 128; ;; compute in fixed255, then convert
}
{--------------------- PSEUDO-RANDOM NUMBERS -------------------}
;; random number with standard normal distribution N(0,1)
;; generated by Kinderman--Monahan ratio method modified by J.Leva
;; spends ~ 2k..3k gas on average
;; fixed252 nrand();
int nrand_f252() impure inline_ref {
var (x, s, t, A, B, r0) = (nan(), touch(29483) << 236, touch(-3167) << 239, 12845, 16693, 9043);
;; 4/sqrt(e*Pi) = 1.369 loop iterations on average
do {
var (u, v) = (random() / 16 + 1, muldivr(random() - (1 << 255), 7027, 1 << 16)); ;; fixed252; 7027=ceil(sqrt(8/e)*2^12)
int va = abs(v);
var (u1, v1) = (u - s, va - t); ;; (u - 29483/2^16, abs(v) + 3167/2^13) as fixed252
;; Q := u1^2 + v1 * (A*v1 - B*u1) as fixed252 where A=12845/2^16, B=16693/2^16
int Q = muldivr(u1, u1, 1 << 252) + muldivr(v1, muldivr(v1, A, 1 << 16) - muldivr(u1, B, 1 << 16), 1 << 252);
;; must have 9043 / 2^15 < Q < 9125 / 2^15, otherwise accept if smaller, reject if larger
int Qd = (Q >> 237) - r0;
if ((Qd < 9125 - 9043) & (va / u < 16)) {
x = muldivr(v, 1 << 252, u); ;; x:=v/u as fixed252; reject immediately if |v/u| >= 16
if (Qd >= 0) { ;; immediately accept if Qd < 0
;; rarely taken branch - 0.012 times per call on average
;; check condition v^2 < -4*u^2*log(u), or equivalent condition u < exp(-x^2/4) for x=v/u
int xx = mulrshiftr256(x, x) ~/ 4; ;; x^2/4 as fixed248
int ex = fixed248::exp(- xx) * 16; ;; exp(-x^2/4) as fixed252
if (u > ex) {
x = nan(); ;; condition false, reject
}
}
}
} until (~ is_nan(x));
return x;
}
;; generates a random number approximately distributed according to the standard normal distribution
;; much faster than nrand_f252(), should be suitable for most purposes when only several random numbers are needed
;; fixed252 nrand_fast();
int nrand_fast_f252() impure inline_ref {
int t = touch(-3) << 253; ;; -6. as fixed252
repeat (12) {
t += random() / 16; ;; add together 12 uniformly random numbers
}
return t;
}
;; random number uniformly distributed in [0..1)
;; fixed248 random();
int fixed248::random() impure inline {
return random() >> 8;
}
;; random number with standard normal distribution
;; fixed248 nrand();
int fixed248::nrand() impure inline {
return nrand_f252() ~>> 4;
}
;; generates a random number approximately distributed according to the standard normal distribution
;; fixed248 nrand_fast();
int fixed248::nrand_fast() impure inline {
return nrand_fast_f252() ~>> 4;
}