1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-03-09 15:40:10 +00:00

initial commit

This commit is contained in:
initial commit 2019-09-07 14:03:22 +04:00 committed by vvaltman
commit c2da007f40
1610 changed files with 398047 additions and 0 deletions

View file

@ -0,0 +1,19 @@
cmake_minimum_required(VERSION 3.0.2 FATAL_ERROR)
set(BENCHMARK_SOURCE
benchmark.cpp
third_party/mp-queue.c
third_party/FAAArrayQueue.h
third_party/LCRQueue.h
third_party/LazyIndexArrayQueue.h
third_party/MoodyCamelQueue.h
)
add_executable(benchmark ${BENCHMARK_SOURCE})
target_include_directories(benchmark PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>)
target_link_libraries(benchmark PRIVATE tdactor)
if (MSVC)
set_property(SOURCE benchmark.cpp APPEND_STRING PROPERTY COMPILE_FLAGS " /wd4457 /wd4316")
endif()

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,371 @@
/******************************************************************************
* Copyright (c) 2014-2016, Pedro Ramalhete, Andreia Correia
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Concurrency Freaks nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
*/
#ifndef _FAA_ARRAY_QUEUE_HP_H_
#define _FAA_ARRAY_QUEUE_HP_H_
#include "HazardPointers.h"
#include <atomic>
#include <stdexcept>
namespace ConcurrencyFreaks {
/**
* <h1> Fetch-And-Add Array Queue </h1>
*
* Each node has one array but we don't search for a vacant entry. Instead, we
* use FAA to obtain an index in the array, for enqueueing or dequeuing.
*
* There are some similarities between this queue and the basic queue in YMC:
* http://chaoran.me/assets/pdf/wfq-ppopp16.pdf
* but it's not the same because the queue in listing 1 is obstruction-free, while
* our algorithm is lock-free.
* In FAAArrayQueue eventually a new node will be inserted (using Michael-Scott's
* algorithm) and it will have an item pre-filled in the first position, which means
* that at most, after BUFFER_SIZE steps, one item will be enqueued (and it can then
* be dequeued). This kind of progress is lock-free.
*
* Each entry in the array may contain one of three possible values:
* - A valid item that has been enqueued;
* - nullptr, which means no item has yet been enqueued in that position;
* - taken, a special value that means there was an item but it has been dequeued;
*
* Enqueue algorithm: FAA + CAS(null,item)
* Dequeue algorithm: FAA + CAS(item,taken)
* Consistency: Linearizable
* enqueue() progress: lock-free
* dequeue() progress: lock-free
* Memory Reclamation: Hazard Pointers (lock-free)
* Uncontended enqueue: 1 FAA + 1 CAS + 1 HP
* Uncontended dequeue: 1 FAA + 1 CAS + 1 HP
*
*
* <p>
* Lock-Free Linked List as described in Maged Michael and Michael Scott's paper:
* {@link http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf}
* <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
* Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms</a>
* <p>
* The paper on Hazard Pointers is named "Hazard Pointers: Safe Memory
* Reclamation for Lock-Free objects" and it is available here:
* http://web.cecs.pdx.edu/~walpole/class/cs510/papers/11.pdf
*
* @author Pedro Ramalhete
* @author Andreia Correia
*/
template <typename T>
class FAAArrayQueue {
static const long BUFFER_SIZE = 1024; // 1024
private:
struct Node {
std::atomic<int> deqidx;
std::atomic<T*> items[BUFFER_SIZE];
std::atomic<int> enqidx;
std::atomic<Node*> next;
// Start with the first entry pre-filled and enqidx at 1
Node(T* item) : deqidx{0}, enqidx{1}, next{nullptr} {
items[0].store(item, std::memory_order_relaxed);
for (long i = 1; i < BUFFER_SIZE; i++) {
items[i].store(nullptr, std::memory_order_relaxed);
}
}
bool casNext(Node* cmp, Node* val) {
return next.compare_exchange_strong(cmp, val);
}
};
bool casTail(Node* cmp, Node* val) {
return tail.compare_exchange_strong(cmp, val);
}
bool casHead(Node* cmp, Node* val) {
return head.compare_exchange_strong(cmp, val);
}
// Pointers to head and tail of the list
alignas(128) std::atomic<Node*> head;
alignas(128) std::atomic<Node*> tail;
static const int MAX_THREADS = 128;
const int maxThreads;
T* taken = (T*)new int(); // Muuuahahah !
// We need just one hazard pointer
HazardPointers<Node> hp{1, maxThreads};
const int kHpTail = 0;
const int kHpHead = 0;
public:
FAAArrayQueue(int maxThreads = MAX_THREADS) : maxThreads{maxThreads} {
Node* sentinelNode = new Node(nullptr);
sentinelNode->enqidx.store(0, std::memory_order_relaxed);
head.store(sentinelNode, std::memory_order_relaxed);
tail.store(sentinelNode, std::memory_order_relaxed);
}
~FAAArrayQueue() {
while (dequeue(0) != nullptr)
; // Drain the queue
delete head.load(); // Delete the last node
delete (int*)taken;
}
std::string className() {
return "FAAArrayQueue";
}
void enqueue(T* item, const int tid) {
while (true) {
Node* ltail = hp.protect(kHpTail, tail, tid);
const int idx = ltail->enqidx.fetch_add(1);
if (idx > BUFFER_SIZE - 1) { // This node is full
if (ltail != tail.load())
continue;
Node* lnext = ltail->next.load();
if (lnext == nullptr) {
Node* newNode = new Node(item);
if (ltail->casNext(nullptr, newNode)) {
casTail(ltail, newNode);
hp.clear(tid);
return;
}
delete newNode;
} else {
casTail(ltail, lnext);
}
continue;
}
T* itemnull = nullptr;
if (ltail->items[idx].compare_exchange_strong(itemnull, item)) {
hp.clear(tid);
return;
}
}
}
T* dequeue(const int tid) {
while (true) {
Node* lhead = hp.protect(kHpHead, head, tid);
if (lhead->deqidx.load() >= lhead->enqidx.load() && lhead->next.load() == nullptr)
break;
const int idx = lhead->deqidx.fetch_add(1);
if (idx > BUFFER_SIZE - 1) { // This node has been drained, check if there is another one
Node* lnext = lhead->next.load();
if (lnext == nullptr)
break; // No more nodes in the queue
if (casHead(lhead, lnext))
hp.retire(lhead, tid);
continue;
}
T* item = lhead->items[idx].exchange(taken);
if (item == nullptr)
continue;
hp.clear(tid);
return item;
}
hp.clear(tid);
return nullptr;
}
};
/**
* <h1> Lazy Index Array Queue </h1>
*
* Same as Linear Array Queue but with lazy indexes for both enqueuers and dequeuers.
*
* This is a lock-free queue where each node contains an array of items.
* Each entry in the array may contain on of three possible values:
* - A valid item that has been enqueued;
* - nullptr, which means no item has yet been enqueued in that position;
* - taken, a special value that means there was an item but it has been dequeued;
* The enqueue() searches for the first nullptr entry in the array and tries
* to CAS from nullptr to its item.
* The dequeue() searches for the first valid item in the array and tries to
* CAS from item to "taken".
*
* Enqueue algorithm: Linear array search starting at lazy index with CAS(nullptr,item)
* Dequeue algorithm: Linear array search starting at lazy index with CAS(item,taken)
* Consistency: Linearizable
* enqueue() progress: lock-free
* dequeue() progress: lock-free
* Memory Reclamation: Hazard Pointers (lock-free)
* Uncontended enqueue: 1 CAS + 1 HP
* Uncontended dequeue: 1 CAS + 1 HP
*
*
* <p>
* Lock-Free Linked List as described in Maged Michael and Michael Scott's paper:
* {@link http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf}
* <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
* Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms</a>
* <p>
* The paper on Hazard Pointers is named "Hazard Pointers: Safe Memory
* Reclamation for Lock-Free objects" and it is available here:
* http://web.cecs.pdx.edu/~walpole/class/cs510/papers/11.pdf
*
* @author Pedro Ramalhete
* @author Andreia Correia
*/
template <typename T>
class LazyIndexArrayQueue {
static const long BUFFER_SIZE = 1024;
private:
struct Node {
std::atomic<int> deqidx;
std::atomic<T*> items[BUFFER_SIZE];
std::atomic<int> enqidx;
std::atomic<Node*> next;
Node(T* item) : deqidx{0}, enqidx{0}, next{nullptr} {
items[0].store(item, std::memory_order_relaxed);
for (int i = 1; i < BUFFER_SIZE; i++) {
items[i].store(nullptr, std::memory_order_relaxed);
}
}
bool casNext(Node* cmp, Node* val) {
return next.compare_exchange_strong(cmp, val);
}
};
bool casTail(Node* cmp, Node* val) {
return tail.compare_exchange_strong(cmp, val);
}
bool casHead(Node* cmp, Node* val) {
return head.compare_exchange_strong(cmp, val);
}
// Pointers to head and tail of the list
alignas(128) std::atomic<Node*> head;
alignas(128) std::atomic<Node*> tail;
static const int MAX_THREADS = 128;
const int maxThreads;
T* taken = (T*)new int(); // Muuuahahah !
// We need just one hazard pointer
HazardPointers<Node> hp{1, maxThreads};
const int kHpTail = 0;
const int kHpHead = 0;
public:
LazyIndexArrayQueue(int maxThreads = MAX_THREADS) : maxThreads{maxThreads} {
Node* sentinelNode = new Node(nullptr);
head.store(sentinelNode, std::memory_order_relaxed);
tail.store(sentinelNode, std::memory_order_relaxed);
}
~LazyIndexArrayQueue() {
while (dequeue(0) != nullptr)
; // Drain the queue
delete head.load(); // Delete the last node
delete (int*)taken;
}
std::string className() {
return "LazyIndexArrayQueue";
}
void enqueue(T* item, const int tid) {
while (true) {
Node* ltail = hp.protect(kHpTail, tail, tid);
if (ltail->items[BUFFER_SIZE - 1].load() != nullptr) { // This node is full
if (ltail != tail.load())
continue;
Node* lnext = ltail->next.load();
if (lnext == nullptr) {
Node* newNode = new Node(item);
if (ltail->casNext(nullptr, newNode)) {
casTail(ltail, newNode);
hp.clear(tid);
return;
}
delete newNode;
} else {
casTail(ltail, lnext);
}
continue;
}
// Find the first null entry in items[] and try to CAS from null to item
for (int i = ltail->enqidx.load(); i < BUFFER_SIZE; i++) {
if (ltail->items[i].load() != nullptr)
continue;
T* itemnull = nullptr;
if (ltail->items[i].compare_exchange_strong(itemnull, item)) {
ltail->enqidx.store(i + 1, std::memory_order_release);
hp.clear(tid);
return;
}
if (ltail != tail.load())
break;
}
}
}
T* dequeue(const int tid) {
while (true) {
Node* lhead = hp.protect(kHpHead, head, tid);
if (lhead->items[BUFFER_SIZE - 1].load() == taken) { // This node has been drained, check if there is another one
Node* lnext = lhead->next.load();
if (lnext == nullptr) { // No more nodes in the queue
hp.clear(tid);
return nullptr;
}
if (casHead(lhead, lnext))
hp.retire(lhead, tid);
continue;
}
// Find the first non taken entry in items[] and try to CAS from item to taken
for (int i = lhead->deqidx.load(); i < BUFFER_SIZE; i++) {
T* item = lhead->items[i].load();
if (item == nullptr) {
hp.clear(tid);
return nullptr; // This node is empty
}
if (item == taken)
continue;
if (lhead->items[i].compare_exchange_strong(item, taken)) {
lhead->deqidx.store(i + 1, std::memory_order_release);
hp.clear(tid);
return item;
}
if (lhead != head.load())
break;
}
}
}
};
} // namespace ConcurrencyFreaks
#endif /* _FAA_ARRAY_QUEUE_HP_H_ */

View file

@ -0,0 +1,152 @@
/******************************************************************************
* Copyright (c) 2014-2016, Pedro Ramalhete, Andreia Correia
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Concurrency Freaks nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
*/
#ifndef _HAZARD_POINTERS_H_
#define _HAZARD_POINTERS_H_
#include <atomic>
#include <vector>
#include <iostream>
namespace ConcurrencyFreaks {
template <typename T>
class HazardPointers {
private:
static const int HP_MAX_THREADS = 128;
static const int HP_MAX_HPS = 4; // This is named 'K' in the HP paper
static const int CLPAD = 128 / sizeof(std::atomic<T*>);
static const int HP_THRESHOLD_R = 0; // This is named 'R' in the HP paper
static const int MAX_RETIRED = HP_MAX_THREADS * HP_MAX_HPS; // Maximum number of retired objects per thread
const int maxHPs;
const int maxThreads;
std::atomic<T*>* hp[HP_MAX_THREADS];
// It's not nice that we have a lot of empty vectors, but we need padding to avoid false sharing
std::vector<T*> retiredList[HP_MAX_THREADS * CLPAD];
public:
HazardPointers(int maxHPs = HP_MAX_HPS, int maxThreads = HP_MAX_THREADS) : maxHPs{maxHPs}, maxThreads{maxThreads} {
for (int ithread = 0; ithread < HP_MAX_THREADS; ithread++) {
hp[ithread] =
new std::atomic<T*>[CLPAD *
2]; // We allocate four cache lines to allow for many hps and without false sharing
for (int ihp = 0; ihp < HP_MAX_HPS; ihp++) {
hp[ithread][ihp].store(nullptr, std::memory_order_relaxed);
}
}
}
~HazardPointers() {
for (int ithread = 0; ithread < HP_MAX_THREADS; ithread++) {
delete[] hp[ithread];
// Clear the current retired nodes
for (unsigned iret = 0; iret < retiredList[ithread * CLPAD].size(); iret++) {
delete retiredList[ithread * CLPAD][iret];
}
}
}
/**
* Progress Condition: wait-free bounded (by maxHPs)
*/
void clear(const int tid) {
for (int ihp = 0; ihp < maxHPs; ihp++) {
hp[tid][ihp].store(nullptr, std::memory_order_release);
}
}
/**
* Progress Condition: wait-free population oblivious
*/
void clearOne(int ihp, const int tid) {
hp[tid][ihp].store(nullptr, std::memory_order_release);
}
/**
* Progress Condition: lock-free
*/
T* protect(int index, const std::atomic<T*>& atom, const int tid) {
T* n = nullptr;
T* ret;
while ((ret = atom.load()) != n) {
hp[tid][index].store(ret);
n = ret;
}
return ret;
}
/**
* This returns the same value that is passed as ptr, which is sometimes useful
* Progress Condition: wait-free population oblivious
*/
T* protectPtr(int index, T* ptr, const int tid) {
hp[tid][index].store(ptr);
return ptr;
}
/**
* This returns the same value that is passed as ptr, which is sometimes useful
* Progress Condition: wait-free population oblivious
*/
T* protectRelease(int index, T* ptr, const int tid) {
hp[tid][index].store(ptr, std::memory_order_release);
return ptr;
}
/**
* Progress Condition: wait-free bounded (by the number of threads squared)
*/
void retire(T* ptr, const int tid) {
retiredList[tid * CLPAD].push_back(ptr);
if (retiredList[tid * CLPAD].size() < HP_THRESHOLD_R)
return;
for (unsigned iret = 0; iret < retiredList[tid * CLPAD].size();) {
auto obj = retiredList[tid * CLPAD][iret];
bool canDelete = true;
for (int tid = 0; tid < maxThreads && canDelete; tid++) {
for (int ihp = maxHPs - 1; ihp >= 0; ihp--) {
if (hp[tid][ihp].load() == obj) {
canDelete = false;
break;
}
}
}
if (canDelete) {
retiredList[tid * CLPAD].erase(retiredList[tid * CLPAD].begin() + iret);
delete obj;
continue;
}
iret++;
}
}
};
} // namespace ConcurrencyFreaks
#endif /* _HAZARD_POINTERS_H_ */

313
tdactor/benchmark/third_party/LCRQueue.h vendored Normal file
View file

@ -0,0 +1,313 @@
/******************************************************************************
* Copyright (c) 2014-2016, Pedro Ramalhete, Andreia Correia
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Concurrency Freaks nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************
*/
#ifndef _LCRQ_QUEUE_HP_H_
#define _LCRQ_QUEUE_HP_H_
#include <atomic>
// CAS2 macro
#define __CAS2(ptr, o1, o2, n1, n2) \
({ \
char __ret; \
__typeof__(o2) __junk; \
__typeof__(*(ptr)) __old1 = (o1); \
__typeof__(o2) __old2 = (o2); \
__typeof__(*(ptr)) __new1 = (n1); \
__typeof__(o2) __new2 = (n2); \
asm volatile("lock cmpxchg16b %2;setz %1" \
: "=d"(__junk), "=a"(__ret), "+m"(*ptr) \
: "b"(__new1), "c"(__new2), "a"(__old1), "d"(__old2)); \
__ret; \
})
#define CAS2(ptr, o1, o2, n1, n2) __CAS2(ptr, o1, o2, n1, n2)
#define BIT_TEST_AND_SET(ptr, b) \
({ \
char __ret; \
asm volatile("lock btsq $63, %0; setnc %1" : "+m"(*ptr), "=a"(__ret) : : "cc"); \
__ret; \
})
/**
* <h1> LCRQ Queue </h1>
*
* This is LCRQ by Adam Morrison and Yehuda Afek
* http://www.cs.tau.ac.il/~mad/publications/ppopp2013-x86queues.pdf
*
* This implementation does NOT obey the C++ memory model rules AND it is x86 specific.
* No guarantees are given on the correctness or consistency of the results if you use this queue.
*
* Bugs fixed:
* tt was not initialized in dequeue();
*
* <p>
* enqueue algorithm: MS enqueue + LCRQ with re-usage
* dequeue algorithm: MS dequeue + LCRQ with re-usage
* Consistency: Linearizable
* enqueue() progress: lock-free
* dequeue() progress: lock-free
* Memory Reclamation: Hazard Pointers (lock-free)
*
* <p>
* The paper on Hazard Pointers is named "Hazard Pointers: Safe Memory
* Reclamation for Lock-Free objects" and it is available here:
* http://web.cecs.pdx.edu/~walpole/class/cs510/papers/11.pdf
*
* @author Pedro Ramalhete
* @author Andreia Correia
*/
namespace ConcurrencyFreaks {
template <typename T>
class LCRQueue {
private:
static const int RING_POW = 10;
static const uint64_t RING_SIZE = 1ull << RING_POW;
struct Cell {
std::atomic<T*> val;
std::atomic<uint64_t> idx;
uint64_t pad[14];
} __attribute__((aligned(128)));
struct Node {
std::atomic<int64_t> head __attribute__((aligned(128)));
std::atomic<int64_t> tail __attribute__((aligned(128)));
std::atomic<Node*> next __attribute__((aligned(128)));
Cell array[RING_SIZE];
Node() {
for (unsigned i = 0; i < RING_SIZE; i++) {
array[i].val.store(nullptr, std::memory_order_relaxed);
array[i].idx.store(i, std::memory_order_relaxed);
}
head.store(0, std::memory_order_relaxed);
tail.store(0, std::memory_order_relaxed);
next.store(nullptr, std::memory_order_relaxed);
}
};
alignas(128) std::atomic<Node*> head;
alignas(128) std::atomic<Node*> tail;
static const int MAX_THREADS = 128;
const int maxThreads;
HazardPointers<Node> hp{1, maxThreads};
const int kHpTail = 0;
const int kHpHead = 0;
/*
* Private methods
*/
int is_empty(T* v) {
return (v == nullptr);
}
uint64_t node_index(uint64_t i) {
return (i & ~(1ull << 63));
}
uint64_t set_unsafe(uint64_t i) {
return (i | (1ull << 63));
}
uint64_t node_unsafe(uint64_t i) {
return (i & (1ull << 63));
}
inline uint64_t tail_index(uint64_t t) {
return (t & ~(1ull << 63));
}
int crq_is_closed(uint64_t t) {
return (t & (1ull << 63)) != 0;
}
void fixState(Node* lhead) {
while (1) {
uint64_t t = lhead->tail.fetch_add(0);
uint64_t h = lhead->head.fetch_add(0);
// TODO: is it ok or not to cast "t" to int64_t ?
if (lhead->tail.load() != (int64_t)t)
continue;
if (h > t) {
int64_t tmp = t;
if (lhead->tail.compare_exchange_strong(tmp, h))
break;
continue;
}
break;
}
}
int close_crq(Node* rq, const uint64_t tailticket, const int tries) {
if (tries < 10) {
int64_t tmp = tailticket + 1;
return rq->tail.compare_exchange_strong(tmp, (tailticket + 1) | (1ull << 63));
} else {
return BIT_TEST_AND_SET(&rq->tail, 63);
}
}
public:
LCRQueue(int maxThreads = MAX_THREADS) : maxThreads{maxThreads} {
// Shared object init
Node* sentinel = new Node;
head.store(sentinel, std::memory_order_relaxed);
tail.store(sentinel, std::memory_order_relaxed);
}
~LCRQueue() {
while (dequeue(0) != nullptr)
; // Drain the queue
delete head.load(); // Delete the last node
}
std::string className() {
return "LCRQueue";
}
void enqueue(T* item, const int tid) {
int try_close = 0;
while (true) {
Node* ltail = hp.protectPtr(kHpTail, tail.load(), tid);
if (ltail != tail.load())
continue;
Node* lnext = ltail->next.load();
if (lnext != nullptr) { // Help advance the tail
tail.compare_exchange_strong(ltail, lnext);
continue;
}
uint64_t tailticket = ltail->tail.fetch_add(1);
if (crq_is_closed(tailticket)) {
Node* newNode = new Node();
// Solo enqueue (superfluous?)
newNode->tail.store(1, std::memory_order_relaxed);
newNode->array[0].val.store(item, std::memory_order_relaxed);
newNode->array[0].idx.store(0, std::memory_order_relaxed);
Node* nullnode = nullptr;
if (ltail->next.compare_exchange_strong(nullnode, newNode)) { // Insert new ring
tail.compare_exchange_strong(ltail, newNode); // Advance the tail
hp.clear(tid);
return;
}
delete newNode;
continue;
}
Cell* cell = &ltail->array[tailticket & (RING_SIZE - 1)];
uint64_t idx = cell->idx.load();
if (cell->val.load() == nullptr) {
if (node_index(idx) <= tailticket) {
// TODO: is the missing cast before "t" ok or not to add?
if ((!node_unsafe(idx) || ltail->head.load() < (int64_t)tailticket)) {
if (CAS2((void**)cell, nullptr, idx, item, tailticket)) {
hp.clear(tid);
return;
}
}
}
}
if (((int64_t)(tailticket - ltail->head.load()) >= (int64_t)RING_SIZE) &&
close_crq(ltail, tailticket, ++try_close))
continue;
}
}
T* dequeue(const int tid) {
while (true) {
Node* lhead = hp.protectPtr(kHpHead, head.load(), tid);
if (lhead != head.load())
continue;
uint64_t headticket = lhead->head.fetch_add(1);
Cell* cell = &lhead->array[headticket & (RING_SIZE - 1)];
int r = 0;
uint64_t tt = 0;
while (true) {
uint64_t cell_idx = cell->idx.load();
uint64_t unsafe = node_unsafe(cell_idx);
uint64_t idx = node_index(cell_idx);
T* val = cell->val.load();
if (idx > headticket)
break;
if (val != nullptr) {
if (idx == headticket) {
if (CAS2((void**)cell, val, cell_idx, nullptr, unsafe | (headticket + RING_SIZE))) {
hp.clear(tid);
return val;
}
} else {
if (CAS2((void**)cell, val, cell_idx, val, set_unsafe(idx)))
break;
}
} else {
if ((r & ((1ull << 10) - 1)) == 0)
tt = lhead->tail.load();
// Optimization: try to bail quickly if queue is closed.
int crq_closed = crq_is_closed(tt);
uint64_t t = tail_index(tt);
if (unsafe) { // Nothing to do, move along
if (CAS2((void**)cell, val, cell_idx, val, unsafe | (headticket + RING_SIZE)))
break;
} else if (t < headticket + 1 || r > 200000 || crq_closed) {
if (CAS2((void**)cell, val, idx, val, headticket + RING_SIZE)) {
if (r > 200000 && tt > RING_SIZE)
BIT_TEST_AND_SET(&lhead->tail, 63);
break;
}
} else {
++r;
}
}
}
if (tail_index(lhead->tail.load()) <= headticket + 1) {
fixState(lhead);
// try to return empty
Node* lnext = lhead->next.load();
if (lnext == nullptr) {
hp.clear(tid);
return nullptr; // Queue is empty
}
if (tail_index(lhead->tail) <= headticket + 1) {
if (head.compare_exchange_strong(lhead, lnext))
hp.retire(lhead, tid);
}
}
}
}
};
} // namespace ConcurrencyFreaks
#endif /* _LCRQ_QUEUE_HP_H_ */

View file

File diff suppressed because it is too large Load diff

684
tdactor/benchmark/third_party/mp-queue.c vendored Normal file
View file

@ -0,0 +1,684 @@
/*
This file is part of KittenDB-Engine Library.
KittenDB-Engine Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
KittenDB-Engine Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with KittenDB-Engine Library. If not, see <http://www.gnu.org/licenses/>.
Copyright 2014-2016 Telegraph Inc
2014-2016 Nikolai Durov
2014 Andrey Lopatin
*/
char disable_linker_warning_about_empty_file_mp_queue_cpp;
#ifdef TG_LCR_QUEUE
#include <assert.h>
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <linux/futex.h>
#include <sys/syscall.h>
#include "mp-queue.h"
#undef assert
#ifndef assert
#define assert(x) x
#endif
volatile int mpq_blocks_allocated, mpq_blocks_allocated_max, mpq_blocks_allocations, mpq_blocks_true_allocations,
mpq_blocks_wasted, mpq_blocks_prepared;
volatile int mpq_small_blocks_allocated, mpq_small_blocks_allocated_max;
__thread int mpq_this_thread_id;
__thread void **thread_hazard_pointers;
volatile int mpq_threads;
struct mp_queue MqGarbageBlocks, MqPreparedBlocks;
struct mp_queue MqGarbageSmallBlocks, MqPreparedSmallBlocks;
static inline void barrier(void) {
asm volatile("" : : : "memory");
}
static inline void mfence(void) {
asm volatile("mfence" : : : "memory");
}
/* hazard pointers, one per thread */
void *mqb_hazard_ptr[MAX_MPQ_THREADS][THREAD_HPTRS] __attribute__((aligned(64)));
int is_hazard_ptr(void *ptr, int a, int b) {
barrier();
int k = mpq_threads, q = mpq_this_thread_id;
barrier();
int i, j, r = 0;
for (j = a; j <= b; j++) {
if (mqb_hazard_ptr[q][j] == ptr) {
r = 1;
break;
}
}
for (i = 1; i <= k; i++) {
if (i == q) {
continue;
}
for (j = a; j <= b; j++) {
if (mqb_hazard_ptr[i][j] == ptr) {
barrier();
return r + 2;
}
}
}
barrier();
return r;
}
void clear_thread_ids() {
mpq_threads = 0;
mpq_this_thread_id = 0;
}
/* initialize this thread id and return it */
int get_this_thread_id(void) {
int i = mpq_this_thread_id;
if (i) {
return i;
}
i = __sync_fetch_and_add(&mpq_threads, 1) + 1;
assert(i > 0 && i < MAX_MPQ_THREADS);
thread_hazard_pointers = mqb_hazard_ptr[i];
return mpq_this_thread_id = i;
}
/* custom semaphore implementation using futexes */
int mp_sem_post(mp_sem_t *sem) {
__sync_fetch_and_add(&sem->value, 1);
if (sem->waiting > 0) {
syscall(__NR_futex, &sem->value, FUTEX_WAKE, 1, NULL, 0, 0);
}
return 0;
}
int mp_sem_wait(mp_sem_t *sem) {
int v = sem->value, q = 0;
while (1) {
if (v > 0) {
v = __sync_fetch_and_add(&sem->value, -1);
if (v > 0) {
return 0;
}
v = __sync_add_and_fetch(&sem->value, 1);
} else {
if (v < 0 && q++ < 10) {
barrier();
v = sem->value;
continue;
}
__sync_fetch_and_add(&sem->waiting, 1);
syscall(__NR_futex, &sem->value, FUTEX_WAIT, v, NULL, 0, 0);
__sync_fetch_and_add(&sem->waiting, -1);
v = sem->value;
q = 0;
}
}
}
int mp_sem_trywait(mp_sem_t *sem) {
int v = sem->value;
if (v > 0) {
v = __sync_fetch_and_add(&sem->value, -1);
if (v > 0) {
return 0;
}
__sync_fetch_and_add(&sem->value, 1);
}
return -1;
}
/* functions for one mp_queue_block */
// may invoke mpq_pop()/mpq_push() if allow_recursion=1
struct mp_queue_block *alloc_mpq_block(mqn_value_t first_val, int allow_recursion, int is_small) {
is_small = 0;
struct mp_queue_block *QB = 0;
int prepared = 0, align_bytes = 0;
long size = (is_small ? MPQ_SMALL_BLOCK_SIZE : MPQ_BLOCK_SIZE);
if (allow_recursion) {
QB = mpq_pop(is_small ? &MqGarbageSmallBlocks : &MqGarbageBlocks, MPQF_RECURSIVE);
if (QB) {
if (!is_hazard_ptr(QB, 0, 2)) {
// reclaiming garbage
assert(QB->mqb_magic == MQ_BLOCK_GARBAGE_MAGIC);
__sync_fetch_and_add(&mpq_blocks_wasted, -1);
align_bytes = QB->mqb_align_bytes;
} else {
mpq_push(is_small ? &MqGarbageSmallBlocks : &MqGarbageBlocks, QB, MPQF_RECURSIVE);
QB = 0;
}
}
if (!QB) {
QB = mpq_pop(is_small ? &MqPreparedSmallBlocks : &MqPreparedBlocks, MPQF_RECURSIVE);
if (QB) {
assert(QB->mqb_magic == MQ_BLOCK_PREPARED_MAGIC);
prepared = 1;
__sync_fetch_and_add(&mpq_blocks_prepared, -1);
align_bytes = QB->mqb_align_bytes;
}
}
}
if (!QB) {
char *new_block = malloc(offsetof(struct mp_queue_block, mqb_nodes) + size * (2 * sizeof(void *)) +
MPQ_BLOCK_ALIGNMENT - sizeof(void *));
assert(new_block);
assert(!((long)new_block & (sizeof(void *) - 1)));
align_bytes = -(int)(long)new_block & (MPQ_BLOCK_ALIGNMENT - 1);
QB = (struct mp_queue_block *)(new_block + align_bytes);
__sync_fetch_and_add(&mpq_blocks_true_allocations, 1);
if (is_small) {
int t = __sync_fetch_and_add(&mpq_small_blocks_allocated, 1);
if (t >= mpq_small_blocks_allocated_max) {
__sync_bool_compare_and_swap(&mpq_small_blocks_allocated_max, mpq_small_blocks_allocated_max, t + 1);
}
} else {
int t = __sync_fetch_and_add(&mpq_blocks_allocated, 1);
if (t >= mpq_blocks_allocated_max) {
__sync_bool_compare_and_swap(&mpq_blocks_allocated_max, mpq_blocks_allocated_max, t + 1);
}
}
} else {
assert(QB->mqb_size == size);
}
__sync_fetch_and_add(&mpq_blocks_allocations, 1);
memset(QB, 0, offsetof(struct mp_queue_block, mqb_nodes));
QB->mqb_align_bytes = align_bytes;
QB->mqb_size = size;
QB->mqb_nodes[0].idx = MQN_SAFE;
QB->mqb_nodes[0].val = first_val;
if (!prepared) {
long i;
for (i = 1; i < size; i++) {
QB->mqb_nodes[i].idx = MQN_SAFE + i;
QB->mqb_nodes[i].val = 0;
}
}
if (first_val) {
QB->mqb_tail = 1;
}
QB->mqb_magic = MQ_BLOCK_USED_MAGIC;
return QB;
}
void free_mpq_block(struct mp_queue_block *QB) {
assert(QB->mqb_magic == MQ_BLOCK_USED_MAGIC);
assert((unsigned)QB->mqb_align_bytes < MPQ_BLOCK_ALIGNMENT && !(QB->mqb_align_bytes & (sizeof(void *) - 1)));
QB->mqb_magic = MQ_BLOCK_FREE_MAGIC;
if (QB->mqb_size == MPQ_SMALL_BLOCK_SIZE) {
__sync_fetch_and_add(&mpq_small_blocks_allocated, -1);
} else {
assert(QB->mqb_size == MPQ_BLOCK_SIZE);
__sync_fetch_and_add(&mpq_blocks_allocated, -1);
}
free((char *)QB - QB->mqb_align_bytes);
}
static inline void mpq_fix_state(struct mp_queue_block *QB) {
long h, t;
while (1) {
barrier();
t = QB->mqb_tail;
barrier();
h = QB->mqb_head;
barrier();
if ((unsigned long)h <= (unsigned long)t) {
break;
}
if (QB->mqb_tail != t) {
continue;
}
// here tail < head ; try to advance tail to head
// (or to some value h such that tail < h <= head)
if (__sync_bool_compare_and_swap(&QB->mqb_tail, t, h)) {
break;
}
}
}
mqn_value_t mpq_block_pop(struct mp_queue_block *QB) {
// fprintf (stderr, "%d:mpq_block_pop(%p)\n", mpq_this_thread_id, QB);
long size = QB->mqb_size;
while (1) {
long h = __sync_fetch_and_add(&QB->mqb_head, 1);
// fprintf (stderr, "%d: mpq_block_pop(%ld)\n", mpq_this_thread_id, h);
mpq_node_t *node = &QB->mqb_nodes[h & (size - 1)];
while (1) {
mpq_node_t d, e;
barrier();
mqn_value_t val = node->val;
barrier();
long safe_idx = node->idx;
barrier();
long idx = safe_idx & MQN_IDX_MASK;
if (idx > h) {
break;
}
d.val = val;
d.idx = safe_idx;
if (val) {
if (idx == h) {
e.idx = safe_idx + size;
e.val = 0;
if (__sync_bool_compare_and_swap(&node->pair, d.pair, e.pair)) {
// fprintf (stderr, "%d: mpq_block_pop(%ld) -> %lx\n", mpq_this_thread_id, h, (long) val);
return val;
}
} else {
e.val = val;
e.idx = idx; // clear 'safe' flag
if (__sync_bool_compare_and_swap(&node->pair, d.pair, e.pair)) {
break;
}
}
} else {
e.idx = (safe_idx & MQN_SAFE) + h + size;
e.val = 0;
if (__sync_bool_compare_and_swap(&node->pair, d.pair, e.pair)) {
break;
}
}
/* somebody changed this element while we were inspecting it, make another loop iteration */
}
barrier();
long t = QB->mqb_tail & MQN_IDX_MASK;
barrier();
if (t <= h + 1) {
mpq_fix_state(QB);
return 0;
}
/* now try again with a new value of h */
}
}
long mpq_block_push(struct mp_queue_block *QB, mqn_value_t val) {
int iterations = 0;
long size = QB->mqb_size;
// fprintf (stderr, "%d:mpq_block_push(%p)\n", mpq_this_thread_id, QB);
while (1) {
long t = __sync_fetch_and_add(&QB->mqb_tail, 1);
// fprintf (stderr, "%d: mpq_block_push(%ld)\n", mpq_this_thread_id, t);
if (t & MQN_SAFE) {
return -1L; // bad luck
}
mpq_node_t *node = &QB->mqb_nodes[t & (size - 1)];
barrier();
mqn_value_t old_val = node->val;
barrier();
long safe_idx = node->idx;
barrier();
long idx = safe_idx & MQN_IDX_MASK;
if (!old_val && idx <= t && ((safe_idx & MQN_SAFE) || QB->mqb_head <= t)) {
mpq_node_t d, e;
d.idx = safe_idx;
d.val = 0;
e.idx = MQN_SAFE + t;
e.val = val;
if (__sync_bool_compare_and_swap(&node->pair, d.pair, e.pair)) {
// fprintf (stderr, "%d: mpq_block_push(%ld) <- %lx\n", mpq_this_thread_id, t, (long) val);
return t; // pushed OK
}
}
barrier();
long h = QB->mqb_head;
barrier();
if (t - h >= size || ++iterations > 10) {
__sync_fetch_and_or(&QB->mqb_tail, MQN_SAFE); // closing queue
return -1L; // bad luck
}
}
}
/* functions for mp_queue = list of mp_queue_block's */
void init_mp_queue(struct mp_queue *MQ) {
assert(MQ->mq_magic != MQ_MAGIC && MQ->mq_magic != MQ_MAGIC_SEM);
memset(MQ, 0, sizeof(struct mp_queue));
MQ->mq_head = MQ->mq_tail = alloc_mpq_block(0, 0, 1);
MQ->mq_magic = MQ_MAGIC;
if (!MqGarbageBlocks.mq_magic) {
init_mp_queue(&MqGarbageBlocks);
init_mp_queue(&MqGarbageSmallBlocks);
} else if (!MqPreparedBlocks.mq_magic) {
init_mp_queue(&MqPreparedBlocks);
init_mp_queue(&MqPreparedSmallBlocks);
}
}
void init_mp_queue_w(struct mp_queue *MQ) {
init_mp_queue(MQ);
#if MPQ_USE_POSIX_SEMAPHORES
sem_init(&MQ->mq_sem, 0, 0);
#endif
MQ->mq_magic = MQ_MAGIC_SEM;
}
struct mp_queue *alloc_mp_queue(void) {
struct mp_queue *MQ = NULL;
assert(!posix_memalign((void **)&MQ, 64, sizeof(*MQ)));
memset(MQ, 0, sizeof(*MQ));
init_mp_queue(MQ);
return MQ;
}
struct mp_queue *alloc_mp_queue_w(void) {
struct mp_queue *MQ = NULL;
assert(!posix_memalign((void **)&MQ, 64, sizeof(*MQ)));
memset(MQ, 0, sizeof(*MQ));
init_mp_queue_w(MQ);
return MQ;
}
/* invoke only if sure that nobody else may be using this mp_queue in parallel */
void clear_mp_queue(struct mp_queue *MQ) {
assert(MQ->mq_magic == MQ_MAGIC || MQ->mq_magic == MQ_MAGIC_SEM);
assert(MQ->mq_head && MQ->mq_tail);
struct mp_queue_block *QB = MQ->mq_head, *QBN;
for (QB = MQ->mq_head; QB; QB = QBN) {
QBN = QB->mqb_next;
assert(QB->mqb_next || QB == MQ->mq_tail);
QB->mqb_next = 0;
free_mpq_block(QB);
}
MQ->mq_head = MQ->mq_tail = 0;
MQ->mq_magic = 0;
}
void free_mp_queue(struct mp_queue *MQ) {
clear_mp_queue(MQ);
free(MQ);
}
// may invoke mpq_push() to discard new empty block
mqn_value_t mpq_pop(struct mp_queue *MQ, int flags) {
void **hptr = &mqb_hazard_ptr[get_this_thread_id()][0];
long r = ((flags & MPQF_RECURSIVE) != 0);
struct mp_queue_block *QB;
mqn_value_t v;
while (1) {
QB = MQ->mq_head;
barrier();
hptr[r] = QB;
barrier();
__sync_synchronize();
if (MQ->mq_head != QB) {
continue;
}
v = mpq_block_pop(QB);
if (v) {
break;
}
barrier();
if (!QB->mqb_next) {
QB = 0;
break;
}
v = mpq_block_pop(QB);
if (v) {
break;
}
if (__sync_bool_compare_and_swap(&MQ->mq_head, QB, QB->mqb_next)) {
// want to free QB here, but this is complicated if somebody else holds a pointer
if (is_hazard_ptr(QB, 0, 2) <= 1) {
free_mpq_block(QB);
} else {
__sync_fetch_and_add(&mpq_blocks_wasted, 1);
// ... put QB into some GC queue? ...
QB->mqb_magic = MQ_BLOCK_GARBAGE_MAGIC;
mpq_push(QB->mqb_size == MPQ_SMALL_BLOCK_SIZE ? &MqGarbageSmallBlocks : &MqGarbageBlocks, QB,
flags & MPQF_RECURSIVE);
}
}
}
if (flags & MPQF_STORE_PTR) {
hptr[2] = QB;
}
hptr[r] = 0;
return v;
}
/* 1 = definitely empty (for some serialization), 0 = possibly non-empty;
may invoke mpq_push() to discard empty block */
int mpq_is_empty(struct mp_queue *MQ) {
void **hptr = &mqb_hazard_ptr[get_this_thread_id()][0];
struct mp_queue_block *QB;
while (1) {
QB = MQ->mq_head;
barrier();
*hptr = QB;
barrier();
__sync_synchronize();
if (MQ->mq_head != QB) {
continue;
}
barrier();
long h = QB->mqb_head;
barrier();
long t = QB->mqb_tail;
barrier();
if (!(t & MQN_SAFE)) {
*hptr = 0;
return t <= h;
}
t &= MQN_IDX_MASK;
if (t > h) {
*hptr = 0;
return 0;
}
barrier();
if (!QB->mqb_next) {
*hptr = 0;
return 1;
}
if (__sync_bool_compare_and_swap(&MQ->mq_head, QB, QB->mqb_next)) {
// want to free QB here, but this is complicated if somebody else holds a pointer
if (is_hazard_ptr(QB, 0, 2) <= 1) {
free_mpq_block(QB);
} else {
__sync_fetch_and_add(&mpq_blocks_wasted, 1);
// ... put QB into some GC queue? ...
QB->mqb_magic = MQ_BLOCK_GARBAGE_MAGIC;
mpq_push(QB->mqb_size == MPQ_SMALL_BLOCK_SIZE ? &MqGarbageSmallBlocks : &MqGarbageBlocks, QB, 0);
}
}
}
*hptr = 0;
return 0;
}
/* may invoke mpq_alloc_block (which recursively invokes mpq_pop)
or mpq_push() (without needing to hold hazard pointer) to deal with blocks */
long mpq_push(struct mp_queue *MQ, mqn_value_t val, int flags) {
void **hptr = mqb_hazard_ptr[get_this_thread_id()];
long r = ((flags & MPQF_RECURSIVE) != 0);
while (1) {
struct mp_queue_block *QB = MQ->mq_tail;
barrier();
hptr[r] = QB;
barrier();
__sync_synchronize();
if (MQ->mq_tail != QB) {
continue;
}
if (QB->mqb_next) {
__sync_bool_compare_and_swap(&MQ->mq_tail, QB, QB->mqb_next);
continue;
}
long pos = mpq_block_push(QB, val);
if (pos >= 0) {
if (flags & MPQF_STORE_PTR) {
hptr[2] = QB;
}
hptr[r] = 0;
return pos;
}
#define DBG(c) // fprintf (stderr, "[%d] pushing %lx to %p,%p: %c\n", mpq_this_thread_id, (long) val, MQ, QB, c);
DBG('A');
/*
if (__sync_fetch_and_add (&QB->mqb_next_allocators, 1)) {
// somebody else will allocate next block; busy wait instead of spuruous alloc/free
DBG('B')
while (!QB->mqb_next) {
barrier ();
}
DBG('C')
continue;
}
*/
int is_small = (QB == MQ->mq_head);
struct mp_queue_block *NQB;
if (!r) {
assert(!hptr[1]);
NQB = alloc_mpq_block(val, 1, is_small);
assert(!hptr[1]);
} else {
NQB = alloc_mpq_block(val, 0, is_small);
}
assert(hptr[r] == QB);
DBG('D')
if (__sync_bool_compare_and_swap(&QB->mqb_next, 0, NQB)) {
__sync_bool_compare_and_swap(&MQ->mq_tail, QB, NQB);
DBG('E')
if (flags & MPQF_STORE_PTR) {
hptr[2] = NQB;
}
hptr[r] = 0;
return 0;
} else {
DBG('F');
NQB->mqb_magic = MQ_BLOCK_PREPARED_MAGIC;
mpq_push(is_small ? &MqPreparedSmallBlocks : &MqPreparedBlocks, NQB, 0);
__sync_fetch_and_add(&mpq_blocks_prepared, 1);
}
}
#undef DBG
}
mqn_value_t mpq_pop_w(struct mp_queue *MQ, int flags) {
assert(MQ->mq_magic == MQ_MAGIC_SEM);
int s = -1, iterations = flags & MPQF_MAX_ITERATIONS;
while (iterations-- > 0) {
#if MPQ_USE_POSIX_SEMAPHORES
s = sem_trywait(&MQ->mq_sem);
#else
s = mp_sem_trywait(&MQ->mq_sem);
#endif
if (!s) {
break;
}
#if MPQ_USE_POSIX_SEMAPHORES
assert(errno == EAGAIN || errno == EINTR);
#endif
}
while (s < 0) {
#if MPQ_USE_POSIX_SEMAPHORES
s = sem_wait(&MQ->mq_sem);
#else
s = mp_sem_wait(&MQ->mq_sem);
#endif
if (!s) {
break;
}
#if MPQ_USE_POSIX_SEMAPHORES
assert(errno == EAGAIN);
#endif
}
mqn_value_t *v = mpq_pop(MQ, flags);
assert(v);
return v;
}
mqn_value_t mpq_pop_nw(struct mp_queue *MQ, int flags) {
assert(MQ->mq_magic == MQ_MAGIC_SEM);
int s = -1, iterations = flags & MPQF_MAX_ITERATIONS;
while (iterations-- > 0) {
#if MPQ_USE_POSIX_SEMAPHORES
s = sem_trywait(&MQ->mq_sem);
#else
s = mp_sem_trywait(&MQ->mq_sem);
#endif
if (s >= 0) {
break;
}
#if MPQ_USE_POSIX_SEMAPHORES
assert(errno == EAGAIN || errno == EINTR);
#endif
}
if (s < 0) {
return 0;
}
mqn_value_t *v = mpq_pop(MQ, flags);
assert(v);
return v;
}
long mpq_push_w(struct mp_queue *MQ, mqn_value_t v, int flags) {
assert(MQ->mq_magic == MQ_MAGIC_SEM);
long res = mpq_push(MQ, v, flags);
#if MPQ_USE_POSIX_SEMAPHORES
assert(sem_post(&MQ->mq_sem) >= 0);
#else
assert(mp_sem_post(&MQ->mq_sem) >= 0);
#endif
return res;
}
void *get_ptr_multithread_copy(void **ptr, void (*incref)(void *ptr)) {
void **hptr = &mqb_hazard_ptr[get_this_thread_id()][COMMON_HAZARD_PTR_NUM];
assert(*hptr == NULL);
void *R;
while (1) {
R = *ptr;
barrier();
*hptr = R;
barrier();
mfence();
if (R != *ptr) {
continue;
}
incref(R);
barrier();
*hptr = NULL;
break;
}
return R;
}
#endif

149
tdactor/benchmark/third_party/mp-queue.h vendored Normal file
View file

@ -0,0 +1,149 @@
/*
This file is part of KittenDB-Engine Library.
KittenDB-Engine Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
KittenDB-Engine Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with KittenDB-Engine Library. If not, see <http://www.gnu.org/licenses/>.
Copyright 2014 Telegraph Inc
2014 Nikolai Durov
2014 Andrey Lopatin
*/
#ifndef __KDB_MP_QUEUE_H__
#define __KDB_MP_QUEUE_H__
#define MPQ_USE_POSIX_SEMAPHORES 0
#if MPQ_USE_POSIX_SEMAPHORES
#include <semaphore.h>
#endif
typedef struct mp_semaphore {
volatile int value;
volatile int waiting;
} mp_sem_t;
#define THREAD_HPTRS 21
#define MPQ_SMALL_BLOCK_SIZE 64
#define MPQ_BLOCK_SIZE 4096 // must be a power of 2
#define MPQ_BLOCK_ALIGNMENT 64
#ifdef _LP64
typedef int int128_t __attribute__((__mode__(TI)));
#define DLONG int128_t
// # define DLONG __int128
#define MQN_SAFE (-1LL << 63)
#else
#define DLONG long long
#define MQN_SAFE (-1L << 31)
#endif
#define MQN_IDX_MASK (~MQN_SAFE)
typedef void *mqn_value_t;
typedef struct mp_queue_node {
union {
struct {
long idx;
union {
long mqn_value;
void *mqn_ptr;
mqn_value_t val;
};
};
DLONG pair;
};
} mpq_node_t;
#define MQ_BLOCK_USED_MAGIC 0x1ebacaef
#define MQ_BLOCK_FREE_MAGIC 0x2e4afeda
#define MQ_BLOCK_GARBAGE_MAGIC 0x3a04dc7d
#define MQ_BLOCK_PREPARED_MAGIC 0x4b9b13cd
#define MQ_MAGIC 0x1aed9b43
#define MQ_MAGIC_SEM 0x1aedcd21
struct mp_queue_block {
long mqb_head __attribute__((aligned(64)));
int mqb_magic;
int mqb_align_bytes;
int mqb_size; // power of 2; one of MPQ_BLOCK_SIZE or MPQ_SMALL_BLOCK_SIZE
long mqb_tail __attribute__((aligned(64)));
struct mp_queue_block *mqb_next;
int mqb_next_allocators;
mpq_node_t mqb_nodes[MPQ_BLOCK_SIZE] __attribute__((aligned(64)));
};
struct mp_queue {
struct mp_queue_block *mq_head __attribute__((aligned(64)));
int mq_magic;
struct mp_queue_block *mq_tail __attribute__((aligned(64)));
#if MPQ_USE_POSIX_SEMAPHORES
sem_t mq_sem __attribute__((aligned(64)));
#else
mp_sem_t mq_sem __attribute__((aligned(64)));
#endif
};
extern volatile int mpq_blocks_allocated, mpq_blocks_allocated_max, mpq_blocks_allocations, mpq_blocks_true_allocations,
mpq_blocks_wasted, mpq_blocks_prepared;
extern volatile int mpq_small_blocks_allocated, mpq_small_blocks_allocated_max;
#define MAX_MPQ_THREADS 22
extern __thread int mpq_this_thread_id;
extern __thread void **thread_hazard_pointers;
extern volatile int mpq_threads;
/* initialize this thread id and return it */
void clear_thread_ids(void);
int get_this_thread_id(void);
/* functions for one mp_queue_block */
struct mp_queue_block *alloc_mpq_block(mqn_value_t first_val, int allow_recursion, int is_small);
void free_mpq_block(struct mp_queue_block *QB);
mqn_value_t mpq_block_pop(struct mp_queue_block *QB);
long mpq_block_push(struct mp_queue_block *QB, mqn_value_t val);
/* functions for mp_queue = list of mp_queue_block's */
void init_mp_queue(struct mp_queue *MQ);
struct mp_queue *alloc_mp_queue(void);
struct mp_queue *alloc_mp_queue_w(void);
void init_mp_queue_w(struct mp_queue *MQ);
void clear_mp_queue(struct mp_queue *MQ); // frees all mpq block chain; invoke only if nobody else is using mp-queue
void free_mp_queue(struct mp_queue *MQ); // same + invoke free()
// flags for mpq_push / mpq_pop functions
#define MPQF_RECURSIVE 8192
#define MPQF_STORE_PTR 4096
#define MPQF_MAX_ITERATIONS (MPQF_STORE_PTR - 1)
long mpq_push(struct mp_queue *MQ, mqn_value_t val, int flags);
mqn_value_t mpq_pop(struct mp_queue *MQ, int flags);
int mpq_is_empty(struct mp_queue *MQ);
long mpq_push_w(struct mp_queue *MQ, mqn_value_t val, int flags);
mqn_value_t mpq_pop_w(struct mp_queue *MQ, int flags);
mqn_value_t mpq_pop_nw(struct mp_queue *MQ, int flags);
int mp_sem_post(mp_sem_t *sem);
int mp_sem_wait(mp_sem_t *sem);
int mp_sem_trywait(mp_sem_t *sem);
#define COMMON_HAZARD_PTR_NUM 3
int is_hazard_ptr(void *ptr, int a, int b);
extern void *mqb_hazard_ptr[MAX_MPQ_THREADS][THREAD_HPTRS];
void *get_ptr_multithread_copy(void **ptr, void (*incref)(void *ptr));
#endif