With the introduction of nullable types, we want the
compiler to be smart in cases like
> if (x == null) return;
> // x is int now
or
> if (x == null) x = 0;
> // x is int now
These are called smart casts: when the type of variable
at particular usage might differ from its declaration.
Implementing smart casts is very challenging. They are based
on building control-flow graph and handling every AST vertex
with care. Actually, I represent cfg not a as a "graph with
edges". Instead, it's a "structured DFS" for the AST:
1) at every point of inferring, we have "current flow facts"
2) when we see an `if (...)`, we create two derived contexts
3) after `if`, finalize them at the end and unify
4) if we detect unreachable code, we mark that context
In other words, we get the effect of a CFG but in a more direct
approach. That's enough for AST-level data-flow.
Smart casts work for local variables and tensor/tuple indices.
Compilation errors have been reworked and now are more friendly.
There are also compilation warnings for always true/false
conditions inside if, assert, etc.
Comparison operators `== / >= /...` return `bool`.
Logical operators `&& ||` return bool.
Constants `true` and `false` have the `bool` type.
Lots of stdlib functions return `bool`, not `int`.
Operator `!x` supports both `int` and `bool`.
Condition of `if` accepts both `int` and `bool`.
Arithmetic operators are restricted to integers.
Logical `&&` and `||` accept both `bool` and `int`.
No arithmetic operations with bools allowed (only bitwise and logical).