This is a huge refactoring focusing on untangling compiler internals
(previously forked from FunC).
The goal is to convert AST directly to Op (a kind of IR representation),
doing all code analysis at AST level.
Noteable changes:
- AST-based semantic kernel includes: registering global symbols,
scope handling and resolving local/global identifiers,
lvalue/rvalue calc and check, implicit return detection,
mutability analysis, pure/impure validity checks,
simple constant folding
- values of `const` variables are calculated NOT based on CodeBlob,
but via a newly-introduced AST-based constant evaluator
- AST vertices are now inherited from expression/statement/other;
expression vertices have common properties (TypeExpr, lvalue/rvalue)
- symbol table is rewritten completely, SymDef/SymVal no longer exist,
lexer now doesn't need to register identifiers
- AST vertices have references to symbols, filled at different
stages of pipeline
- the remaining "FunC legacy part" is almost unchanged besides Expr
which was fully dropped; AST is converted to Ops (IR) directly
Since I've implemented AST, now I can drop forward declarations.
Instead, I traverse AST of all files and register global symbols
(functions, constants, global vars) as a separate step, in advance.
That's why, while converting AST to Expr/Op, all available symbols are
already registered.
This greatly simplifies "intermediate state" of yet unknown functions
and checking them afterward.
Redeclaration of local variables (inside the same scope)
is now also prohibited.
Now, the whole .tolk file can be loaded as AST tree and
then converted to Expr/Op.
This gives a great ability to implement AST transformations.
In the future, more and more code analysis will be moved out of legacy to AST-level.