Unary logical NOT was already implemented earlier.
Logical AND OR are expressed via conditional expression:
* a && b -> a ? (b != 0) : 0
* a || b -> a ? 1 : (b != 0)
They work as expected in any expressions. For instance, having
`cond && f()`, f is called only if cond is true.
For primitive cases, like `a > 0 && b > 0`, Fift code is not optimal,
it could potentially be without IFs.
These are moments of future optimizations. For now, it's more than enough.
Instead on 'ton_crypto', Tolk now depends on 'ton_crypto_core'.
The only purpose of ton_crypto (in FunC also, btw) is address parsing:
"EQCRDM9...", "0:52b3..." and so on.
Such parsing has been implemented manually exactly the same way.
This is a very big change.
If FunC has `.methods()` and `~methods()`, Tolk has only dot,
one and only way to call a `.method()`.
A method may mutate an object, or may not.
It's a behavioral and semantic difference from FunC.
- `cs.loadInt(32)` modifies a slice and returns an integer
- `b.storeInt(x, 32)` modifies a builder
- `b = b.storeInt()` also works, since it not only modifies, but returns
- chained methods also work, they return `self`
- everything works exactly as expected, similar to JS
- no runtime overhead, exactly same Fift instructions
- custom methods are created with ease
- tilda `~` does not exist in Tolk at all
- split stdlib.tolk into multiple files (tolk-stdlib/ folder)
(the "core" common.tolk is auto-imported, the rest are
needed to be explicitly imported like "@stdlib/tvm-dicts.tolk")
- all functions were renamed to long and clear names
- new naming is camelCase
Lots of changes, actually. Most noticeable are:
- traditional //comments
- #include -> import
- a rule "import what you use"
- ~ found -> !found (for -1/0)
- null() -> null
- is_null?(v) -> v == null
- throw is a keyword
- catch with swapped arguments
- throw_if, throw_unless -> assert
- do until -> do while
- elseif -> else if
- drop ifnot, elseifnot
- drop rarely used operators
A testing framework also appears here. All tests existed earlier,
but due to significant syntax changes, their history is useless.
Since I've implemented AST, now I can drop forward declarations.
Instead, I traverse AST of all files and register global symbols
(functions, constants, global vars) as a separate step, in advance.
That's why, while converting AST to Expr/Op, all available symbols are
already registered.
This greatly simplifies "intermediate state" of yet unknown functions
and checking them afterward.
Redeclaration of local variables (inside the same scope)
is now also prohibited.