/* This file is part of TON Blockchain Library. TON Blockchain Library is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. TON Blockchain Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with TON Blockchain Library. If not, see . */ #include "tolk.h" #include "src-file.h" #include "ast.h" #include "ast-visitor.h" #include "generics-helpers.h" #include "type-system.h" /* * This is a complicated and crucial part of the pipeline. It simultaneously does the following: * * infers types of all expressions; example: `2 + 3` both are TypeDataInt, result is also * * AND checks types for assignment, arguments passing, etc.; example: `fInt(cs)` is error passing slice to int * * AND binds function/method calls (assigns fun_ref); example: `globalF()`, fun_ref is assigned to `globalF` (unless generic) * * AND instantiates generic functions; example: `t.tuplePush(2)` creates `tuplePush` and assigns fun_ref to dot field * * AND infers return type of functions if it's omitted (`fun f() { ... }` means "auto infer", not "void") * * It's important to do all these parts simultaneously, they can't be split or separated. * For example, we can't bind `f(2)` earlier, because if `f` is a generic `f`, we should instantiate it, * and in order to do it, we need to know argument types. * For example, we can't bind `c.cellHash()` earlier, because in the future we'll have overloads (`cell.hash()` and `slice.hash()`), * and in order to bind it, we need to know object type. * And vice versa, to infer type of expression in the middle, we need to have inferred all expressions preceding it, * which may also include generics, etc. * * About generics. They are more like "C++ templates". If `f` and `f` called from somewhere, * there will be TWO new functions, inserted into symtable, and both will be code generated to Fift. * Body of a generic function is NOT analyzed. Hence, `fun f(v: T) { v.method(); }` we don't know * whether `v.method()` is a valid call until instantiate it with `f` for example. * Same for `v + 2`, we don't know whether + operator can be applied until instantiation. * In other words, we have a closed type system, not open. * That's why generic functions' bodies aren't traversed here (and in most following pipes). * Instead, when an instantiated function is created, it follows all the preceding pipeline (registering symbols, etc.), * and type inferring is done inside instantiated functions (which can recursively instantiate another, etc.). * * A noticeable part of inferring is "hints". * Example: `var a: User = { id: 3, name: "" }`. To infer type of `{...}` we need to know it's `User`. This hint is taken from lhs. * Example: `fun tupleAt(t: tuple, idx: int):T`, just `t.tupleGet(2)` can't be deduced (T left unspecified), * but for assignment with left-defined type, or a call to `fInt(t.tupleGet(2))` hint "int" helps deduce T. * * Unlike other pipes, inferring can dig recursively on demand. * Example: * fun getInt() { return 1; } * fun main() { var i = getInt(); } * If `main` is handled the first, it should know the return type if `getInt`. It's not declared, so we need * to launch type inferring for `getInt` and then proceed back to `main`. * When a generic function is instantiated, type inferring inside it is also run. */ namespace tolk { static void infer_and_save_return_type_of_function(const FunctionData* fun_ref); static TypePtr get_or_infer_return_type(const FunctionData* fun_ref) { if (!fun_ref->inferred_return_type) { infer_and_save_return_type_of_function(fun_ref); } return fun_ref->inferred_return_type; } GNU_ATTRIBUTE_NOINLINE static std::string to_string(TypePtr type) { return "`" + type->as_human_readable() + "`"; } GNU_ATTRIBUTE_NOINLINE static std::string to_string(AnyExprV v_with_type) { return "`" + v_with_type->inferred_type->as_human_readable() + "`"; } GNU_ATTRIBUTE_NOINLINE static std::string to_string(const LocalVarData& var_ref) { return "`" + var_ref.declared_type->as_human_readable() + "`"; } GNU_ATTRIBUTE_NOINLINE static std::string to_string(const FunctionData* fun_ref) { return "`" + fun_ref->as_human_readable() + "`"; } // fire an error when `fun f(...) asm ...` is called with T=(int,int) or other non-1 width on stack // asm functions generally can't handle it, they expect T to be a TVM primitive // (in FunC, `forall` type just couldn't be unified with non-primitives; in Tolk, generic T is expectedly inferred) GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD static void fire_error_calling_asm_function_with_non1_stack_width_arg(SrcLocation loc, const FunctionData* fun_ref, const std::vector& substitutions, int arg_idx) { throw ParseError(loc, "can not call `" + fun_ref->as_human_readable() + "` with " + fun_ref->genericTs->get_nameT(arg_idx) + "=" + substitutions[arg_idx]->as_human_readable() + ", because it occupies " + std::to_string(substitutions[arg_idx]->calc_width_on_stack()) + " stack slots in TVM, not 1"); } // fire an error on `var n = null` // technically it's correct, type of `n` is TypeDataNullLiteral, but it's not what the user wanted // so, it's better to see an error on assignment, that later, on `n` usage and types mismatch // (most common is situation above, but generally, `var (x,n) = xn` where xn is a tensor with 2-nd always-null, can be) GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD static void fire_error_assign_always_null_to_variable(SrcLocation loc, const LocalVarData* assigned_var, bool is_assigned_null_literal) { std::string var_name = assigned_var->name; throw ParseError(loc, "can not infer type of `" + var_name + "`, it's always null; specify its type with `" + var_name + ": `" + (is_assigned_null_literal ? " or use `null as `" : "")); } // fire an error on `!cell` / `+slice` GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD static void fire_error_cannot_apply_operator(SrcLocation loc, std::string_view operator_name, AnyExprV unary_expr) { std::string op = static_cast(operator_name); throw ParseError(loc, "can not apply operator `" + op + "` to " + to_string(unary_expr->inferred_type)); } // fire an error on `int + cell` / `slice & int` GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD static void fire_error_cannot_apply_operator(SrcLocation loc, std::string_view operator_name, AnyExprV lhs, AnyExprV rhs) { std::string op = static_cast(operator_name); throw ParseError(loc, "can not apply operator `" + op + "` to " + to_string(lhs->inferred_type) + " and " + to_string(rhs->inferred_type)); } // fire an error on `untypedTupleVar.0` when used without a hint GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD static void fire_error_cannot_deduce_untyped_tuple_access(SrcLocation loc, int index) { std::string idx_access = "." + std::to_string(index); throw ParseError(loc, "can not deduce type of `" + idx_access + "`; either assign it to variable like `var c: int = " + idx_access + "` or cast the result like `" + idx_access + " as int`"); } // fire an error on `untypedTupleVar.0` when inferred as (int,int), or `[int, (int,int)]`, or other non-1 width in a tuple GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD static void fire_error_cannot_put_non1_stack_width_arg_to_tuple(SrcLocation loc, TypePtr inferred_type) { throw ParseError(loc, "can not put " + to_string(inferred_type) + " into a tuple, because it occupies " + std::to_string(inferred_type->calc_width_on_stack()) + " stack slots in TVM, not 1"); } // check correctness of called arguments counts and their type matching static void check_function_arguments(const FunctionData* fun_ref, V v, AnyExprV lhs_of_dot_call) { int delta_self = lhs_of_dot_call ? 1 : 0; int n_arguments = v->size() + delta_self; int n_parameters = fun_ref->get_num_params(); // Tolk doesn't have optional parameters currently, so just compare counts if (!n_parameters && lhs_of_dot_call) { v->error("`" + fun_ref->name + "` has no parameters and can not be called as method"); } if (n_parameters < n_arguments) { v->error("too many arguments in call to `" + fun_ref->name + "`, expected " + std::to_string(n_parameters - delta_self) + ", have " + std::to_string(n_arguments - delta_self)); } if (n_arguments < n_parameters) { v->error("too few arguments in call to `" + fun_ref->name + "`, expected " + std::to_string(n_parameters - delta_self) + ", have " + std::to_string(n_arguments - delta_self)); } if (lhs_of_dot_call) { if (!fun_ref->parameters[0].declared_type->can_rhs_be_assigned(lhs_of_dot_call->inferred_type)) { lhs_of_dot_call->error("can not call method for " + to_string(fun_ref->parameters[0]) + " with object of type " + to_string(lhs_of_dot_call)); } } for (int i = 0; i < v->size(); ++i) { if (!fun_ref->parameters[i + delta_self].declared_type->can_rhs_be_assigned(v->get_arg(i)->inferred_type)) { v->get_arg(i)->error("can not pass " + to_string(v->get_arg(i)) + " to " + to_string(fun_ref->parameters[i + delta_self])); } } } /* * TypeInferringUnifyStrategy unifies types from various branches to a common result (lca). * It's used to auto infer function return type based on return statements, like in TypeScript. * Example: `fun f() { ... return 1; ... return null; }` inferred as `int`. * * Besides function returns, it's also useful for ternary `return cond ? 1 : null` and `match` expression. * If types can't be unified (a function returns int and cell, for example), `unify()` returns false, handled outside. * BTW, don't confuse this way of inferring with Hindley-Milner, they have nothing in common. */ class TypeInferringUnifyStrategy { TypePtr unified_result = nullptr; static TypePtr calculate_type_lca(TypePtr t1, TypePtr t2) { if (t1 == t2) { return t1; } if (t1->can_rhs_be_assigned(t2)) { return t1; } if (t2->can_rhs_be_assigned(t1)) { return t2; } const auto* tensor1 = t1->try_as(); const auto* tensor2 = t2->try_as(); if (tensor1 && tensor2 && tensor1->size() == tensor2->size()) { std::vector types_lca; types_lca.reserve(tensor1->size()); for (int i = 0; i < tensor1->size(); ++i) { TypePtr next = calculate_type_lca(tensor1->items[i], tensor2->items[i]); if (next == nullptr) { return nullptr; } types_lca.push_back(next); } return TypeDataTensor::create(std::move(types_lca)); } const auto* tuple1 = t1->try_as(); const auto* tuple2 = t2->try_as(); if (tuple1 && tuple2 && tuple1->size() == tuple2->size()) { std::vector types_lca; types_lca.reserve(tuple1->size()); for (int i = 0; i < tuple1->size(); ++i) { TypePtr next = calculate_type_lca(tuple1->items[i], tuple2->items[i]); if (next == nullptr) { return nullptr; } types_lca.push_back(next); } return TypeDataTypedTuple::create(std::move(types_lca)); } return nullptr; } public: bool unify_with(TypePtr next) { if (unified_result == nullptr) { unified_result = next; return true; } if (unified_result == next) { return true; } TypePtr combined = calculate_type_lca(unified_result, next); if (!combined) { return false; } unified_result = combined; return true; } bool unify_with_implicit_return_void() { if (unified_result == nullptr) { unified_result = TypeDataVoid::create(); return true; } return unified_result == TypeDataVoid::create(); } TypePtr get_result() const { return unified_result; } }; // handle __expect_type(expr, "type") call // this is used in compiler tests GNU_ATTRIBUTE_NOINLINE GNU_ATTRIBUTE_COLD static void handle_possible_compiler_internal_call(const FunctionData* current_function, V v) { const FunctionData* fun_ref = v->fun_maybe; tolk_assert(fun_ref && fun_ref->is_builtin_function()); static_cast(current_function); if (fun_ref->name == "__expect_type") { tolk_assert(v->get_num_args() == 2); TypePtr expected_type = parse_type_from_string(v->get_arg(1)->get_expr()->as()->str_val); TypePtr expr_type = v->get_arg(0)->inferred_type; if (expected_type != expr_type) { v->error("__expect_type failed: expected " + to_string(expected_type) + ", got " + to_string(expr_type)); } } } /* * This class handles all types of AST vertices and traverses them, filling all AnyExprV::inferred_type. * Note, that it isn't derived from ASTVisitor, it has manual `switch` over all existing vertex types. * There are two reasons for this: * 1) when a new AST node type is introduced, I want it to fail here, not to be left un-inferred with UB at next steps * 2) easy to maintain a hint (see comments at the top of the file) */ class InferCheckTypesAndCallsAndFieldsVisitor final { const FunctionData* current_function = nullptr; TypeInferringUnifyStrategy return_unifier; GNU_ATTRIBUTE_ALWAYS_INLINE static void assign_inferred_type(AnyExprV dst, AnyExprV src) { #ifdef TOLK_DEBUG tolk_assert(src->inferred_type != nullptr && !src->inferred_type->has_unresolved_inside() && !src->inferred_type->has_genericT_inside()); #endif dst->mutate()->assign_inferred_type(src->inferred_type); } GNU_ATTRIBUTE_ALWAYS_INLINE static void assign_inferred_type(AnyExprV dst, TypePtr inferred_type) { #ifdef TOLK_DEBUG tolk_assert(inferred_type != nullptr && !inferred_type->has_unresolved_inside() && !inferred_type->has_genericT_inside()); #endif dst->mutate()->assign_inferred_type(inferred_type); } static void assign_inferred_type(const LocalVarData* local_var_or_param, TypePtr inferred_type) { #ifdef TOLK_DEBUG tolk_assert(inferred_type != nullptr && !inferred_type->has_unresolved_inside() && !inferred_type->has_genericT_inside()); #endif local_var_or_param->mutate()->assign_inferred_type(inferred_type); } static void assign_inferred_type(const FunctionData* fun_ref, TypePtr inferred_return_type, TypePtr inferred_full_type) { #ifdef TOLK_DEBUG tolk_assert(inferred_return_type != nullptr && !inferred_return_type->has_unresolved_inside() && !inferred_return_type->has_genericT_inside()); #endif fun_ref->mutate()->assign_inferred_type(inferred_return_type, inferred_full_type); } // traverse children in any statement void process_any_statement(AnyV v) { switch (v->type) { case ast_sequence: return process_sequence(v->as()); case ast_return_statement: return process_return_statement(v->as()); case ast_if_statement: return process_if_statement(v->as()); case ast_repeat_statement: return process_repeat_statement(v->as()); case ast_while_statement: return process_while_statement(v->as()); case ast_do_while_statement: return process_do_while_statement(v->as()); case ast_throw_statement: return process_throw_statement(v->as()); case ast_assert_statement: return process_assert_statement(v->as()); case ast_try_catch_statement: return process_try_catch_statement(v->as()); case ast_empty_statement: return; default: infer_any_expr(reinterpret_cast(v)); } } // assigns inferred_type for any expression (by calling assign_inferred_type) void infer_any_expr(AnyExprV v, TypePtr hint = nullptr) { switch (v->type) { case ast_int_const: return infer_int_const(v->as()); case ast_string_const: return infer_string_const(v->as()); case ast_bool_const: return infer_bool_const(v->as()); case ast_local_vars_declaration: return infer_local_vars_declaration(v->as()); case ast_assign: return infer_assignment(v->as()); case ast_set_assign: return infer_set_assign(v->as()); case ast_unary_operator: return infer_unary_operator(v->as()); case ast_binary_operator: return infer_binary_operator(v->as()); case ast_ternary_operator: return infer_ternary_operator(v->as(), hint); case ast_cast_as_operator: return infer_cast_as_operator(v->as()); case ast_parenthesized_expression: return infer_parenthesized(v->as(), hint); case ast_reference: return infer_reference(v->as()); case ast_dot_access: return infer_dot_access(v->as(), hint); case ast_function_call: return infer_function_call(v->as(), hint); case ast_tensor: return infer_tensor(v->as(), hint); case ast_typed_tuple: return infer_typed_tuple(v->as(), hint); case ast_null_keyword: return infer_null_keyword(v->as()); case ast_underscore: return infer_underscore(v->as(), hint); case ast_empty_expression: return infer_empty_expression(v->as()); default: throw UnexpectedASTNodeType(v, "infer_any_expr"); } } static bool expect_integer(AnyExprV v_inferred) { return v_inferred->inferred_type == TypeDataInt::create(); } static bool expect_boolean(AnyExprV v_inferred) { return v_inferred->inferred_type == TypeDataBool::create(); } static void infer_int_const(V v) { assign_inferred_type(v, TypeDataInt::create()); } static void infer_string_const(V v) { if (v->is_bitslice()) { assign_inferred_type(v, TypeDataSlice::create()); } else { assign_inferred_type(v, TypeDataInt::create()); } } static void infer_bool_const(V v) { assign_inferred_type(v, TypeDataBool::create()); } static void infer_local_vars_declaration(V) { // it can not appear as a standalone expression // `var ... = rhs` is handled by ast_assign tolk_assert(false); } void infer_assignment(V v) { // v is assignment: `x = 5` / `var x = 5` / `var x: slice = 5` / `(cs,_) = f()` / `val (a,[b],_) = (a,t,0)` // it's a tricky node to handle, because to infer rhs, at first we need to create hint from lhs // and then to apply/check inferred rhs onto lhs // about a hint: `var i: int = t.tupleAt(0)` is ok, but `var i = t.tupleAt(0)` not, since `tupleAt(t,i): T` AnyExprV lhs = v->get_lhs(); AnyExprV rhs = v->get_rhs(); infer_any_expr(rhs, calc_hint_from_assignment_lhs(lhs)); process_assignment_lhs_after_infer_rhs(lhs, rhs->inferred_type, rhs); assign_inferred_type(v, lhs); } // having assignment like `var (i: int, s) = rhs` (its lhs is local vars declaration), // create a contextual infer hint for rhs, `(int, unknown)` in this case // this hint helps to deduce generics and to resolve unknown types while inferring rhs static TypePtr calc_hint_from_assignment_lhs(AnyExprV lhs) { // `var ... = rhs` - dig into left part if (auto lhs_decl = lhs->try_as()) { return calc_hint_from_assignment_lhs(lhs_decl->get_expr()); } // inside `var v: int = rhs` / `var _ = rhs` / `var v redef = rhs` (lhs is "v" / "_" / "v") if (auto lhs_var = lhs->try_as()) { if (lhs_var->marked_as_redef) { return lhs_var->var_ref->declared_type; } if (lhs_var->declared_type) { return lhs_var->declared_type; } return TypeDataUnknown::create(); } // `v = rhs` / `(c1, c2) = rhs` (lhs is "v" / "_" / "c1" / "c2" after recursion) if (auto lhs_ref = lhs->try_as()) { if (const auto* var_ref = lhs_ref->sym->try_as()) { return var_ref->declared_type; } if (const auto* glob_ref = lhs_ref->sym->try_as()) { return glob_ref->declared_type; } return TypeDataUnknown::create(); } // `(v1, v2) = rhs` / `var (v1, v2) = rhs` if (auto lhs_tensor = lhs->try_as()) { std::vector sub_hints; sub_hints.reserve(lhs_tensor->size()); for (AnyExprV item : lhs_tensor->get_items()) { sub_hints.push_back(calc_hint_from_assignment_lhs(item)); } return TypeDataTensor::create(std::move(sub_hints)); } // `[v1, v2] = rhs` / `var [v1, v2] = rhs` if (auto lhs_tuple = lhs->try_as()) { std::vector sub_hints; sub_hints.reserve(lhs_tuple->size()); for (AnyExprV item : lhs_tuple->get_items()) { sub_hints.push_back(calc_hint_from_assignment_lhs(item)); } return TypeDataTypedTuple::create(std::move(sub_hints)); } // `a.0 = rhs` / `b.1.0 = rhs` (remember, its target is not assigned yet) if (auto lhs_dot = lhs->try_as()) { TypePtr obj_hint = calc_hint_from_assignment_lhs(lhs_dot->get_obj()); std::string_view field_name = lhs_dot->get_field_name(); if (field_name[0] >= '0' && field_name[0] <= '9') { int index_at = std::stoi(std::string(field_name)); if (const auto* t_tensor = obj_hint->try_as(); t_tensor && index_at < t_tensor->size()) { return t_tensor->items[index_at]; } if (const auto* t_tuple = obj_hint->try_as(); t_tuple && index_at < t_tuple->size()) { return t_tuple->items[index_at]; } } return TypeDataUnknown::create(); } return TypeDataUnknown::create(); } // handle (and dig recursively) into `var lhs = rhs` // examples: `var z = 5`, `var (x, [y]) = (2, [3])`, `var (x, [y]) = xy` // while recursing, keep track of rhs if lhs and rhs have common shape (5 for z, 2 for x, [3] for [y], 3 for y) // (so that on type mismatch, point to corresponding rhs, example: `var (x, y:slice) = (1, 2)` point to 2 void process_assignment_lhs_after_infer_rhs(AnyExprV lhs, TypePtr rhs_type, AnyExprV corresponding_maybe_rhs) { AnyExprV err_loc = corresponding_maybe_rhs ? corresponding_maybe_rhs : lhs; // `var ... = rhs` - dig into left part if (auto lhs_decl = lhs->try_as()) { process_assignment_lhs_after_infer_rhs(lhs_decl->get_expr(), rhs_type, corresponding_maybe_rhs); assign_inferred_type(lhs, lhs_decl->get_expr()->inferred_type); return; } // inside `var v: int = rhs` / `var _ = rhs` / `var v redef = rhs` (lhs is "v" / "_" / "v") if (auto lhs_var = lhs->try_as()) { TypePtr declared_type = lhs_var->declared_type; // `var v: int = rhs` (otherwise, nullptr) if (lhs_var->marked_as_redef) { tolk_assert(lhs_var->var_ref && lhs_var->var_ref->declared_type); declared_type = lhs_var->var_ref->declared_type; } if (declared_type) { if (!declared_type->can_rhs_be_assigned(rhs_type)) { err_loc->error("can not assign " + to_string(rhs_type) + " to variable of type " + to_string(declared_type)); } assign_inferred_type(lhs, declared_type); } else { if (rhs_type == TypeDataNullLiteral::create()) { fire_error_assign_always_null_to_variable(err_loc->loc, lhs_var->var_ref->try_as(), corresponding_maybe_rhs && corresponding_maybe_rhs->type == ast_null_keyword); } assign_inferred_type(lhs, rhs_type); assign_inferred_type(lhs_var->var_ref, lhs_var->inferred_type); } return; } // `v = rhs` / `(c1, c2) = rhs` (lhs is "v" / "_" / "c1" / "c2" after recursion) if (lhs->try_as()) { infer_any_expr(lhs); if (!lhs->inferred_type->can_rhs_be_assigned(rhs_type)) { err_loc->error("can not assign " + to_string(rhs_type) + " to variable of type " + to_string(lhs)); } return; } // `(v1, v2) = rhs` / `var (v1, v2) = rhs` (rhs may be `(1,2)` or `tensorVar` or `someF()`, doesn't matter) // dig recursively into v1 and v2 with corresponding rhs i-th item of a tensor if (auto lhs_tensor = lhs->try_as()) { const TypeDataTensor* rhs_type_tensor = rhs_type->try_as(); if (!rhs_type_tensor) { err_loc->error("can not assign " + to_string(rhs_type) + " to a tensor"); } if (lhs_tensor->size() != rhs_type_tensor->size()) { err_loc->error("can not assign " + to_string(rhs_type) + ", sizes mismatch"); } V rhs_tensor_maybe = corresponding_maybe_rhs ? corresponding_maybe_rhs->try_as() : nullptr; std::vector types_list; types_list.reserve(lhs_tensor->size()); for (int i = 0; i < lhs_tensor->size(); ++i) { process_assignment_lhs_after_infer_rhs(lhs_tensor->get_item(i), rhs_type_tensor->items[i], rhs_tensor_maybe ? rhs_tensor_maybe->get_item(i) : nullptr); types_list.push_back(lhs_tensor->get_item(i)->inferred_type); } assign_inferred_type(lhs, TypeDataTensor::create(std::move(types_list))); return; } // `[v1, v2] = rhs` / `var [v1, v2] = rhs` (rhs may be `[1,2]` or `tupleVar` or `someF()`, doesn't matter) // dig recursively into v1 and v2 with corresponding rhs i-th item of a tuple if (auto lhs_tuple = lhs->try_as()) { const TypeDataTypedTuple* rhs_type_tuple = rhs_type->try_as(); if (!rhs_type_tuple) { err_loc->error("can not assign " + to_string(rhs_type) + " to a tuple"); } if (lhs_tuple->size() != rhs_type_tuple->size()) { err_loc->error("can not assign " + to_string(rhs_type) + ", sizes mismatch"); } V rhs_tuple_maybe = corresponding_maybe_rhs ? corresponding_maybe_rhs->try_as() : nullptr; std::vector types_list; types_list.reserve(lhs_tuple->size()); for (int i = 0; i < lhs_tuple->size(); ++i) { process_assignment_lhs_after_infer_rhs(lhs_tuple->get_item(i), rhs_type_tuple->items[i], rhs_tuple_maybe ? rhs_tuple_maybe->get_item(i) : nullptr); types_list.push_back(lhs_tuple->get_item(i)->inferred_type); } assign_inferred_type(lhs, TypeDataTypedTuple::create(std::move(types_list))); return; } // `_ = rhs` if (lhs->type == ast_underscore) { assign_inferred_type(lhs, TypeDataUnknown::create()); return; } // here is something unhandled like `a.0 = rhs`, run regular inferring on rhs // for something strange like `f() = rhs` type inferring will pass, but will fail later infer_any_expr(lhs, rhs_type); if (!lhs->inferred_type->can_rhs_be_assigned(rhs_type)) { err_loc->error("can not assign " + to_string(rhs_type) + " to " + to_string(lhs)); } } void infer_set_assign(V v) { AnyExprV lhs = v->get_lhs(); AnyExprV rhs = v->get_rhs(); infer_any_expr(lhs); infer_any_expr(rhs, lhs->inferred_type); // almost all operators implementation is hardcoded by built-in functions `_+_` and similar std::string_view builtin_func = v->operator_name; // "+" for operator += switch (v->tok) { // &= |= ^= are "overloaded" both for integers and booleans, (int &= bool) is NOT allowed case tok_set_bitwise_and: case tok_set_bitwise_or: case tok_set_bitwise_xor: { bool both_int = expect_integer(lhs) && expect_integer(rhs); bool both_bool = expect_boolean(lhs) && expect_boolean(rhs); if (!both_int && !both_bool) { fire_error_cannot_apply_operator(v->loc, v->operator_name, lhs, rhs); } break; } // others are mathematical: += *= ... default: if (!expect_integer(lhs) || !expect_integer(rhs)) { fire_error_cannot_apply_operator(v->loc, v->operator_name, lhs, rhs); } } assign_inferred_type(v, lhs); if (!builtin_func.empty()) { const FunctionData* builtin_sym = lookup_global_symbol("_" + static_cast(builtin_func) + "_")->as(); tolk_assert(builtin_sym); v->mutate()->assign_fun_ref(builtin_sym); } } void infer_unary_operator(V v) { AnyExprV rhs = v->get_rhs(); infer_any_expr(rhs); // all operators implementation is hardcoded by built-in functions `~_` and similar std::string_view builtin_func = v->operator_name; switch (v->tok) { case tok_minus: case tok_plus: case tok_bitwise_not: if (!expect_integer(rhs)) { fire_error_cannot_apply_operator(v->loc, v->operator_name, rhs); } assign_inferred_type(v, TypeDataInt::create()); break; case tok_logical_not: if (expect_boolean(rhs)) { builtin_func = "!b"; // "overloaded" for bool } else if (!expect_integer(rhs)) { fire_error_cannot_apply_operator(v->loc, v->operator_name, rhs); } assign_inferred_type(v, TypeDataBool::create()); break; default: tolk_assert(false); } if (!builtin_func.empty()) { const FunctionData* builtin_sym = lookup_global_symbol(static_cast(builtin_func) + "_")->as(); tolk_assert(builtin_sym); v->mutate()->assign_fun_ref(builtin_sym); } } void infer_binary_operator(V v) { AnyExprV lhs = v->get_lhs(); AnyExprV rhs = v->get_rhs(); infer_any_expr(lhs); infer_any_expr(rhs); // almost all operators implementation is hardcoded by built-in functions `_+_` and similar std::string_view builtin_func = v->operator_name; switch (v->tok) { // == != can compare both integers and booleans, (int == bool) is NOT allowed case tok_eq: case tok_neq: { bool both_int = expect_integer(lhs) && expect_integer(rhs); bool both_bool = expect_boolean(lhs) && expect_boolean(rhs); if (!both_int && !both_bool) { if (lhs->inferred_type == rhs->inferred_type) { // compare slice with slice v->error("type " + to_string(lhs) + " can not be compared with `== !=`"); } else { fire_error_cannot_apply_operator(v->loc, v->operator_name, lhs, rhs); } } assign_inferred_type(v, TypeDataBool::create()); break; } // < > can compare only integers case tok_lt: case tok_gt: case tok_leq: case tok_geq: case tok_spaceship: { if (!expect_integer(lhs) || !expect_integer(rhs)) { fire_error_cannot_apply_operator(v->loc, v->operator_name, lhs, rhs); } assign_inferred_type(v, TypeDataBool::create()); break; } // & | ^ are "overloaded" both for integers and booleans, (int & bool) is NOT allowed case tok_bitwise_and: case tok_bitwise_or: case tok_bitwise_xor: { bool both_int = expect_integer(lhs) && expect_integer(rhs); bool both_bool = expect_boolean(lhs) && expect_boolean(rhs); if (!both_int && !both_bool) { fire_error_cannot_apply_operator(v->loc, v->operator_name, lhs, rhs); } assign_inferred_type(v, rhs); // (int & int) is int, (bool & bool) is bool break; } // && || can work with integers and booleans, (int && bool) is allowed case tok_logical_and: case tok_logical_or: { bool lhs_ok = expect_integer(lhs) || expect_boolean(lhs); bool rhs_ok = expect_integer(rhs) || expect_boolean(rhs); if (!lhs_ok || !rhs_ok) { fire_error_cannot_apply_operator(v->loc, v->operator_name, lhs, rhs); } assign_inferred_type(v, TypeDataBool::create()); builtin_func = {}; // no built-in functions, logical operators are expressed as IFs at IR level break; } // others are mathematical: + * ... default: if (!expect_integer(lhs) || !expect_integer(rhs)) { fire_error_cannot_apply_operator(v->loc, v->operator_name, lhs, rhs); } assign_inferred_type(v, TypeDataInt::create()); } if (!builtin_func.empty()) { const FunctionData* builtin_sym = lookup_global_symbol("_" + static_cast(builtin_func) + "_")->as(); tolk_assert(builtin_sym); v->mutate()->assign_fun_ref(builtin_sym); } } void infer_ternary_operator(V v, TypePtr hint) { AnyExprV cond = v->get_cond(); infer_any_expr(cond); if (!expect_integer(cond) && !expect_boolean(cond)) { cond->error("can not use " + to_string(cond) + " as a boolean condition"); } infer_any_expr(v->get_when_true(), hint); infer_any_expr(v->get_when_false(), hint); TypeInferringUnifyStrategy tern_type; tern_type.unify_with(v->get_when_true()->inferred_type); if (!tern_type.unify_with(v->get_when_false()->inferred_type)) { v->error("types of ternary branches are incompatible"); } assign_inferred_type(v, tern_type.get_result()); } void infer_cast_as_operator(V v) { // for `expr as `, use this type for hint, so that `t.tupleAt(0) as int` is ok infer_any_expr(v->get_expr(), v->cast_to_type); if (!v->get_expr()->inferred_type->can_be_casted_with_as_operator(v->cast_to_type)) { v->error("type " + to_string(v->get_expr()) + " can not be cast to " + to_string(v->cast_to_type)); } assign_inferred_type(v, v->cast_to_type); } void infer_parenthesized(V v, TypePtr hint) { infer_any_expr(v->get_expr(), hint); assign_inferred_type(v, v->get_expr()); } static void infer_reference(V v) { if (const auto* var_ref = v->sym->try_as()) { assign_inferred_type(v, var_ref->declared_type); } else if (const auto* const_ref = v->sym->try_as()) { assign_inferred_type(v, const_ref->is_int_const() ? TypeDataInt::create() : TypeDataSlice::create()); } else if (const auto* glob_ref = v->sym->try_as()) { assign_inferred_type(v, glob_ref->declared_type); } else if (const auto* fun_ref = v->sym->try_as()) { // it's `globalF` / `globalF` - references to functions used as non-call V v_instantiationTs = v->get_instantiationTs(); if (fun_ref->is_generic_function() && !v_instantiationTs) { // `genericFn` is invalid as non-call, can't be used without v->error("can not use a generic function " + to_string(fun_ref) + " as non-call"); } else if (fun_ref->is_generic_function()) { // `genericFn` is valid, it's a reference to instantiation std::vector substitutions = collect_fun_generic_substitutions_from_manually_specified(v->loc, fun_ref, v_instantiationTs); fun_ref = check_and_instantiate_generic_function(v->loc, fun_ref, std::move(substitutions)); v->mutate()->assign_sym(fun_ref); } else if (UNLIKELY(v_instantiationTs != nullptr)) { // non-generic function referenced like `return beginCell;` v_instantiationTs->error("not generic function used with generic T"); } fun_ref->mutate()->assign_is_used_as_noncall(); get_or_infer_return_type(fun_ref); assign_inferred_type(v, fun_ref->inferred_full_type); return; } else { tolk_assert(false); } // for non-functions: `local_var` and similar not allowed if (UNLIKELY(v->has_instantiationTs())) { v->get_instantiationTs()->error("generic T not expected here"); } } // given `genericF` / `t.tupleFirst` (the user manually specified instantiation Ts), // validate and collect them // returns: [int, slice] / [cell] static std::vector collect_fun_generic_substitutions_from_manually_specified(SrcLocation loc, const FunctionData* fun_ref, V instantiationT_list) { if (fun_ref->genericTs->size() != instantiationT_list->get_items().size()) { throw ParseError(loc, "wrong count of generic T: expected " + std::to_string(fun_ref->genericTs->size()) + ", got " + std::to_string(instantiationT_list->size())); } std::vector substitutions; substitutions.reserve(instantiationT_list->size()); for (int i = 0; i < instantiationT_list->size(); ++i) { substitutions.push_back(instantiationT_list->get_item(i)->substituted_type); } return substitutions; } // when generic Ts have been collected from user-specified or deduced from arguments, // instantiate a generic function // example: was `t.tuplePush(2)`, deduced , instantiate `tuplePush` // example: was `t.tuplePush(2)`, read , instantiate `tuplePush` (will later fail type check) // example: was `var cb = t.tupleFirst;` (used as reference, as non-call), instantiate `tupleFirst` // returns fun_ref to instantiated function static const FunctionData* check_and_instantiate_generic_function(SrcLocation loc, const FunctionData* fun_ref, std::vector&& substitutionTs) { // T for asm function must be a TVM primitive (width 1), otherwise, asm would act incorrectly if (fun_ref->is_asm_function() || fun_ref->is_builtin_function()) { for (int i = 0; i < static_cast(substitutionTs.size()); ++i) { if (substitutionTs[i]->calc_width_on_stack() != 1) { fire_error_calling_asm_function_with_non1_stack_width_arg(loc, fun_ref, substitutionTs, i); } } } std::string inst_name = generate_instantiated_name(fun_ref->name, substitutionTs); try { // make deep clone of `f` with substitutionTs // (if `f` was already instantiated, it will be immediately returned from a symbol table) return instantiate_generic_function(loc, fun_ref, inst_name, std::move(substitutionTs)); } catch (const ParseError& ex) { throw ParseError(ex.where, "while instantiating generic function `" + inst_name + "` at " + loc.to_string() + ": " + ex.message); } } void infer_dot_access(V v, TypePtr hint) { // it's NOT a method call `t.tupleSize()` (since such cases are handled by infer_function_call) // it's `t.0`, `getUser().id`, and `t.tupleSize` (as a reference, not as a call) infer_any_expr(v->get_obj()); TypePtr obj_type = v->get_obj()->inferred_type; // our goal is to fill v->target knowing type of obj V v_ident = v->get_identifier(); // field/method name vertex V v_instantiationTs = v->get_instantiationTs(); std::string_view field_name = v_ident->name; // it can be indexed access (`tensorVar.0`, `tupleVar.1`) or a method (`t.tupleSize`) // at first, check for indexed access if (field_name[0] >= '0' && field_name[0] <= '9') { int index_at = std::stoi(std::string(field_name)); if (const auto* t_tensor = obj_type->try_as()) { if (index_at >= t_tensor->size()) { v_ident->error("invalid tensor index, expected 0.." + std::to_string(t_tensor->items.size() - 1)); } v->mutate()->assign_target(index_at); assign_inferred_type(v, t_tensor->items[index_at]); return; } if (const auto* t_tuple = obj_type->try_as()) { if (index_at >= t_tuple->size()) { v_ident->error("invalid tuple index, expected 0.." + std::to_string(t_tuple->items.size() - 1)); } v->mutate()->assign_target(index_at); assign_inferred_type(v, t_tuple->items[index_at]); return; } if (obj_type->try_as()) { if (hint == nullptr) { fire_error_cannot_deduce_untyped_tuple_access(v->loc, index_at); } if (hint->calc_width_on_stack() != 1) { fire_error_cannot_put_non1_stack_width_arg_to_tuple(v->loc, hint); } v->mutate()->assign_target(index_at); assign_inferred_type(v, hint); return; } v_ident->error("type " + to_string(obj_type) + " is not indexable"); } // for now, Tolk doesn't have fields and object-scoped methods; `t.tupleSize` is a global function `tupleSize` const Symbol* sym = lookup_global_symbol(field_name); const FunctionData* fun_ref = sym ? sym->try_as() : nullptr; if (!fun_ref) { v_ident->error("non-existing field `" + static_cast(field_name) + "` of type " + to_string(obj_type)); } // `t.tupleSize` is ok, `cs.tupleSize` not if (!fun_ref->parameters[0].declared_type->can_rhs_be_assigned(obj_type)) { v_ident->error("referencing a method for " + to_string(fun_ref->parameters[0]) + " with object of type " + to_string(obj_type)); } if (fun_ref->is_generic_function() && !v_instantiationTs) { // `genericFn` and `t.tupleAt` are invalid as non-call, they can't be used without v->error("can not use a generic function " + to_string(fun_ref) + " as non-call"); } else if (fun_ref->is_generic_function()) { // `t.tupleAt` is valid, it's a reference to instantiation std::vector substitutions = collect_fun_generic_substitutions_from_manually_specified(v->loc, fun_ref, v_instantiationTs); fun_ref = check_and_instantiate_generic_function(v->loc, fun_ref, std::move(substitutions)); } else if (UNLIKELY(v_instantiationTs != nullptr)) { // non-generic method referenced like `var cb = c.cellHash;` v_instantiationTs->error("not generic function used with generic T"); } fun_ref->mutate()->assign_is_used_as_noncall(); v->mutate()->assign_target(fun_ref); get_or_infer_return_type(fun_ref); assign_inferred_type(v, fun_ref->inferred_full_type); // type of `t.tupleSize` is TypeDataFunCallable } void infer_function_call(V v, TypePtr hint) { AnyExprV callee = v->get_callee(); // v is `globalF(args)` / `globalF(args)` / `obj.method(args)` / `local_var(args)` / `getF()(args)` int delta_self = 0; AnyExprV dot_obj = nullptr; const FunctionData* fun_ref = nullptr; V v_instantiationTs = nullptr; if (auto v_ref = callee->try_as()) { // `globalF()` / `globalF()` / `local_var()` / `SOME_CONST()` fun_ref = v_ref->sym->try_as(); // not null for `globalF` v_instantiationTs = v_ref->get_instantiationTs(); // present for `globalF()` } else if (auto v_dot = callee->try_as()) { // `obj.someMethod()` / `obj.someMethod()` / `getF().someMethod()` / `obj.SOME_CONST()` // note, that dot_obj->target is not filled yet, since callee was not inferred yet delta_self = 1; dot_obj = v_dot->get_obj(); v_instantiationTs = v_dot->get_instantiationTs(); // present for `obj.someMethod()` infer_any_expr(dot_obj); // it can be indexed access (`tensorVar.0()`, `tupleVar.1()`) or a method (`t.tupleSize()`) std::string_view field_name = v_dot->get_field_name(); if (field_name[0] >= '0' && field_name[0] <= '9') { // indexed access `ab.2()`, then treat `ab.2` just like an expression, fun_ref remains nullptr // infer_dot_access() will be called for a callee, it will check type, index correctness, etc. } else { // for now, Tolk doesn't have fields and object-scoped methods; `t.tupleSize` is a global function `tupleSize` const Symbol* sym = lookup_global_symbol(field_name); fun_ref = sym ? sym->try_as() : nullptr; if (!fun_ref) { v_dot->get_identifier()->error("non-existing method `" + static_cast(field_name) + "` of type " + to_string(dot_obj)); } } } else { // `getF()()` / `5()` // fun_ref remains nullptr } // infer argument types, looking at fun_ref's parameters as hints for (int i = 0; i < v->get_num_args(); ++i) { TypePtr param_type = fun_ref && i < fun_ref->get_num_params() - delta_self ? fun_ref->parameters[delta_self + i].declared_type : nullptr; auto arg_i = v->get_arg(i); infer_any_expr(arg_i->get_expr(), param_type && !param_type->has_genericT_inside() ? param_type : nullptr); assign_inferred_type(arg_i, arg_i->get_expr()); } // handle `local_var()` / `getF()()` / `5()` / `SOME_CONST()` / `obj.method()()()` / `tensorVar.0()` if (!fun_ref) { // treat callee like a usual expression, which must have "callable" inferred type infer_any_expr(callee); const TypeDataFunCallable* f_callable = callee->inferred_type->try_as(); if (!f_callable) { // `5()` / `SOME_CONST()` / `null()` v->error("calling a non-function"); } // check arguments count and their types if (v->get_num_args() != static_cast(f_callable->params_types.size())) { v->error("expected " + std::to_string(f_callable->params_types.size()) + " arguments, got " + std::to_string(v->get_arg_list()->size())); } for (int i = 0; i < v->get_num_args(); ++i) { if (!f_callable->params_types[i]->can_rhs_be_assigned(v->get_arg(i)->inferred_type)) { v->get_arg(i)->error("can not pass " + to_string(v->get_arg(i)) + " to " + to_string(f_callable->params_types[i])); } } v->mutate()->assign_fun_ref(nullptr); // no fun_ref to a global function assign_inferred_type(v, f_callable->return_type); return; } // so, we have a call `f(args)` or `obj.f(args)`, f is a global function (fun_ref) (code / asm / builtin) // if it's a generic function `f`, we need to instantiate it, like `f` // same for generic methods `t.tupleAt`, need to achieve `t.tupleAt` if (fun_ref->is_generic_function() && v_instantiationTs) { // if Ts are specified by a user like `f(args)` / `t.tupleAt()`, take them std::vector substitutions = collect_fun_generic_substitutions_from_manually_specified(v->loc, fun_ref, v_instantiationTs); fun_ref = check_and_instantiate_generic_function(v->loc, fun_ref, std::move(substitutions)); } else if (fun_ref->is_generic_function()) { // if `f` called like `f(args)`, deduce T from arg types std::vector arg_types; arg_types.reserve(delta_self + v->get_num_args()); if (dot_obj) { arg_types.push_back(dot_obj->inferred_type); } for (int i = 0; i < v->get_num_args(); ++i) { arg_types.push_back(v->get_arg(i)->inferred_type); } td::Result> deduced = deduce_substitutionTs_on_generic_func_call(fun_ref, std::move(arg_types), hint); if (deduced.is_error()) { v->error(deduced.error().message().str() + " for generic function " + to_string(fun_ref)); } fun_ref = check_and_instantiate_generic_function(v->loc, fun_ref, deduced.move_as_ok()); } else if (UNLIKELY(v_instantiationTs != nullptr)) { // non-generic function/method called with type arguments, like `c.cellHash()` / `beginCell()` v_instantiationTs->error("calling a not generic function with generic T"); } v->mutate()->assign_fun_ref(fun_ref); // since for `t.tupleAt()`, infer_dot_access() not called for callee = "t.tupleAt", assign its target here if (v->is_dot_call()) { v->get_callee()->as()->mutate()->assign_target(fun_ref); v->get_callee()->as()->mutate()->assign_inferred_type(fun_ref->inferred_full_type); } // check arguments count and their types check_function_arguments(fun_ref, v->get_arg_list(), dot_obj); // get return type either from user-specified declaration or infer here on demand traversing its body get_or_infer_return_type(fun_ref); TypePtr inferred_type = dot_obj && fun_ref->does_return_self() ? dot_obj->inferred_type : fun_ref->inferred_return_type; assign_inferred_type(v, inferred_type); assign_inferred_type(callee, fun_ref->inferred_full_type); if (fun_ref->is_builtin_function() && fun_ref->name[0] == '_') { handle_possible_compiler_internal_call(current_function, v); } // note, that mutate params don't affect typing, they are handled when converting to IR } void infer_tensor(V v, TypePtr hint) { const TypeDataTensor* tensor_hint = hint ? hint->try_as() : nullptr; std::vector types_list; types_list.reserve(v->get_items().size()); for (int i = 0; i < v->size(); ++i) { AnyExprV item = v->get_item(i); infer_any_expr(item, tensor_hint && i < tensor_hint->size() ? tensor_hint->items[i] : nullptr); types_list.emplace_back(item->inferred_type); } assign_inferred_type(v, TypeDataTensor::create(std::move(types_list))); } void infer_typed_tuple(V v, TypePtr hint) { const TypeDataTypedTuple* tuple_hint = hint ? hint->try_as() : nullptr; std::vector types_list; types_list.reserve(v->get_items().size()); for (int i = 0; i < v->size(); ++i) { AnyExprV item = v->get_item(i); infer_any_expr(item, tuple_hint && i < tuple_hint->size() ? tuple_hint->items[i] : nullptr); if (item->inferred_type->calc_width_on_stack() != 1) { fire_error_cannot_put_non1_stack_width_arg_to_tuple(v->get_item(i)->loc, item->inferred_type); } types_list.emplace_back(item->inferred_type); } assign_inferred_type(v, TypeDataTypedTuple::create(std::move(types_list))); } static void infer_null_keyword(V v) { assign_inferred_type(v, TypeDataNullLiteral::create()); } static void infer_underscore(V v, TypePtr hint) { // if execution is here, underscore is either used as lhs of assignment, or incorrectly, like `f(_)` // more precise is to always set unknown here, but for incorrect usages, instead of an error // "can not pass unknown to X" would better be an error it can't be used as a value, at later steps assign_inferred_type(v, hint ? hint : TypeDataUnknown::create()); } static void infer_empty_expression(V v) { assign_inferred_type(v, TypeDataUnknown::create()); } void process_sequence(V v) { for (AnyV item : v->get_items()) { process_any_statement(item); } } static bool is_expr_valid_as_return_self(AnyExprV return_expr) { // `return self` if (return_expr->type == ast_reference && return_expr->as()->get_name() == "self") { return true; } // `return self.someMethod()` if (auto v_call = return_expr->try_as(); v_call && v_call->is_dot_call()) { return v_call->fun_maybe && v_call->fun_maybe->does_return_self() && is_expr_valid_as_return_self(v_call->get_dot_obj()); } // `return cond ? ... : ...` if (auto v_ternary = return_expr->try_as()) { return is_expr_valid_as_return_self(v_ternary->get_when_true()) && is_expr_valid_as_return_self(v_ternary->get_when_false()); } return false; } void process_return_statement(V v) { if (v->has_return_value()) { infer_any_expr(v->get_return_value(), current_function->declared_return_type); } else { assign_inferred_type(v->get_return_value(), TypeDataVoid::create()); } if (current_function->does_return_self()) { return_unifier.unify_with(current_function->parameters[0].declared_type); if (!is_expr_valid_as_return_self(v->get_return_value())) { v->error("invalid return from `self` function"); } return; } TypePtr expr_type = v->get_return_value()->inferred_type; if (current_function->declared_return_type) { if (!current_function->declared_return_type->can_rhs_be_assigned(expr_type)) { v->get_return_value()->error("can not convert type " + to_string(expr_type) + " to return type " + to_string(current_function->declared_return_type)); } } else { if (!return_unifier.unify_with(expr_type)) { v->get_return_value()->error("can not unify type " + to_string(expr_type) + " with previous return type " + to_string(return_unifier.get_result())); } } } void process_if_statement(V v) { AnyExprV cond = v->get_cond(); infer_any_expr(cond); if (!expect_integer(cond) && !expect_boolean(cond)) { cond->error("can not use " + to_string(cond) + " as a boolean condition"); } process_any_statement(v->get_if_body()); process_any_statement(v->get_else_body()); } void process_repeat_statement(V v) { AnyExprV cond = v->get_cond(); infer_any_expr(cond); if (!expect_integer(cond)) { cond->error("condition of `repeat` must be an integer, got " + to_string(cond)); } process_any_statement(v->get_body()); } void process_while_statement(V v) { AnyExprV cond = v->get_cond(); infer_any_expr(cond); if (!expect_integer(cond) && !expect_boolean(cond)) { cond->error("can not use " + to_string(cond) + " as a boolean condition"); } process_any_statement(v->get_body()); } void process_do_while_statement(V v) { process_any_statement(v->get_body()); AnyExprV cond = v->get_cond(); infer_any_expr(cond); if (!expect_integer(cond) && !expect_boolean(cond)) { cond->error("can not use " + to_string(cond) + " as a boolean condition"); } } void process_throw_statement(V v) { infer_any_expr(v->get_thrown_code()); if (!expect_integer(v->get_thrown_code())) { v->get_thrown_code()->error("excNo of `throw` must be an integer, got " + to_string(v->get_thrown_code())); } infer_any_expr(v->get_thrown_arg()); if (v->has_thrown_arg() && v->get_thrown_arg()->inferred_type->calc_width_on_stack() != 1) { v->get_thrown_arg()->error("can not throw " + to_string(v->get_thrown_arg()) + ", exception arg must occupy exactly 1 stack slot"); } } void process_assert_statement(V v) { AnyExprV cond = v->get_cond(); infer_any_expr(cond); if (!expect_integer(cond) && !expect_boolean(cond)) { cond->error("can not use " + to_string(cond) + " as a boolean condition"); } infer_any_expr(v->get_thrown_code()); if (!expect_integer(v->get_thrown_code())) { v->get_cond()->error("thrown excNo of `assert` must be an integer, got " + to_string(v->get_cond())); } } static void process_catch_variable(AnyExprV catch_var, TypePtr catch_var_type) { if (auto v_ref = catch_var->try_as(); v_ref && v_ref->sym) { // not underscore assign_inferred_type(v_ref->sym->as(), catch_var_type); } assign_inferred_type(catch_var, catch_var_type); } void process_try_catch_statement(V v) { process_any_statement(v->get_try_body()); // `catch` has exactly 2 variables: excNo and arg (when missing, they are implicit underscores) // `arg` is a curious thing, it can be any TVM primitive, so assign unknown to it // hence, using `fInt(arg)` (int from parameter is a hint) or `arg as slice` works well // it's not truly correct, because `arg as (int,int)` also compiles, but can never happen, but let it be user responsibility tolk_assert(v->get_catch_expr()->size() == 2); std::vector types_list = {TypeDataInt::create(), TypeDataUnknown::create()}; process_catch_variable(v->get_catch_expr()->get_item(0), types_list[0]); process_catch_variable(v->get_catch_expr()->get_item(1), types_list[1]); assign_inferred_type(v->get_catch_expr(), TypeDataTensor::create(std::move(types_list))); process_any_statement(v->get_catch_body()); } public: static void assign_fun_full_type(const FunctionData* fun_ref, TypePtr inferred_return_type) { // calculate function full type `fun(params) -> ret_type` std::vector params_types; params_types.reserve(fun_ref->get_num_params()); for (const LocalVarData& param : fun_ref->parameters) { params_types.push_back(param.declared_type); } assign_inferred_type(fun_ref, inferred_return_type, TypeDataFunCallable::create(std::move(params_types), inferred_return_type)); } void start_visiting_function(const FunctionData* fun_ref, V v_function) { if (fun_ref->is_code_function()) { current_function = fun_ref; process_any_statement(v_function->get_body()); current_function = nullptr; if (fun_ref->is_implicit_return()) { bool is_ok_with_void = fun_ref->declared_return_type ? fun_ref->declared_return_type->can_rhs_be_assigned(TypeDataVoid::create()) : return_unifier.unify_with_implicit_return_void(); if (!is_ok_with_void || fun_ref->does_return_self()) { throw ParseError(v_function->get_body()->as()->loc_end, "missing return"); } } } else { // asm functions should be strictly typed, this was checked earlier tolk_assert(fun_ref->declared_return_type); } TypePtr inferred_return_type = fun_ref->declared_return_type ? fun_ref->declared_return_type : return_unifier.get_result(); assign_fun_full_type(fun_ref, inferred_return_type); fun_ref->mutate()->assign_is_type_inferring_done(); } }; class LaunchInferTypesAndMethodsOnce final { public: static bool should_visit_function(const FunctionData* fun_ref) { // since inferring can be requested on demand, prevent second execution from a regular pipeline launcher return !fun_ref->is_type_inferring_done() && !fun_ref->is_generic_function(); } static void start_visiting_function(const FunctionData* fun_ref, V v_function) { InferCheckTypesAndCallsAndFieldsVisitor visitor; visitor.start_visiting_function(fun_ref, v_function); } }; // infer return type "on demand" // example: `fun f() { return g(); } fun g() { ... }` // when analyzing `f()`, we need to infer what fun_ref=g returns // (if `g` is generic, it was already instantiated, so fun_ref=g is here) static void infer_and_save_return_type_of_function(const FunctionData* fun_ref) { static std::vector called_stack; tolk_assert(!fun_ref->is_generic_function() && !fun_ref->is_type_inferring_done()); // if `g` has return type declared, like `fun g(): int { ... }`, don't traverse its body if (fun_ref->declared_return_type) { InferCheckTypesAndCallsAndFieldsVisitor::assign_fun_full_type(fun_ref, fun_ref->declared_return_type); return; } // prevent recursion of untyped functions, like `fun f() { return g(); } fun g() { return f(); }` bool contains = std::find(called_stack.begin(), called_stack.end(), fun_ref) != called_stack.end(); if (contains) { fun_ref->ast_root->error("could not infer return type of " + to_string(fun_ref) + ", because it appears in a recursive call chain; specify `: ` manually"); } // dig into g's body; it's safe, since the compiler is single-threaded // on finish, fun_ref->inferred_return_type is filled, and won't be called anymore called_stack.push_back(fun_ref); InferCheckTypesAndCallsAndFieldsVisitor visitor; visitor.start_visiting_function(fun_ref, fun_ref->ast_root->as()); called_stack.pop_back(); } void pipeline_infer_types_and_calls_and_fields() { visit_ast_of_all_functions(); } void pipeline_infer_types_and_calls_and_fields(const FunctionData* fun_ref) { InferCheckTypesAndCallsAndFieldsVisitor visitor; visitor.start_visiting_function(fun_ref, fun_ref->ast_root->as()); } } // namespace tolk