{- - - FunC fixed-point mathematical library - -} {- This file is part of TON FunC Standard Library. FunC Standard Library is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. FunC Standard Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. -} #include "stdlib.fc"; #pragma version >=0.4.2; {---------------- HIGH-LEVEL FUNCTION DECLARATIONS -----------------} {- Most functions declared here work either with integers or with fixed-point numbers of type `fixed248`. `fixedNNN` informally denotes an alias for type `int` used to represent fixed-point numbers with scale 2^NNN. Prefix `fixedNNN::` is prepended to the names of high-level functions that accept arguments and return values of type `fixedNNN`. -} {- function declarations have been commented out, otherwise they are not inlined by the current FunC compiler ;; nearest integer to sqrt(a*b) for non-negative integers or fixed-point numbers a and b int geom_mean(int a, int b) inline_ref; ;; integer square root int sqrt(int a) inline; ;; fixed-point square root ;; fixed248 sqrt(fixed248 x) int fixed248::sqrt(int x) inline; int fixed248::sqr(int x) inline; const int fixed248::One; ;; log(2) as fixed248 int fixed248::log2_const() inline; ;; Pi as fixed248 int fixed248::Pi_const() inline; ;; fixed248 exp(fixed248 x) int fixed248::exp(int x) inline_ref; ;; fixed248 exp2(fixed248 x) int fixed248::exp2(int x) inline_ref; ;; fixed248 log(fixed248 x) int fixed248::log(int x) inline_ref; ;; fixed248 log2(fixed248 x) int fixed248::log2(int x) inline; ;; fixed248 pow(fixed248 x, fixed248 y) int fixed248::pow(int x, int y) inline_ref; ;; (fixed248, fixed248) sincos(fixed248 x); (int, int) fixed248::sincos(int x) inline_ref; ;; fixed248 sin(fixed248 x); int fixed248::sin(int x) inline; ;; fixed248 cos(fixed248 x); int fixed248::cos(int x) inline; ;; fixed248 tan(fixed248 x); int fixed248::tan(int x) inline_ref; ;; fixed248 cot(fixed248 x); int fixed248::cot(int x) inline_ref; ;; fixed248 asin(fixed248 x); int fixed248::asin(int x) inline; ;; fixed248 acos(fixed248 x); int fixed248::acos(int x) inline; ;; fixed248 atan(fixed248 x); int fixed248::atan(int x) inline_ref; ;; fixed248 acot(fixed248 x); int fixed248::acot(int x) inline_ref; ;; random number uniformly distributed in [0..1) ;; fixed248 random(); int fixed248::random() impure inline; ;; random number with standard normal distribution (2100 gas on average) ;; fixed248 nrand(); int fixed248::nrand() impure inline; ;; generates a random number approximately distributed according to the standard normal distribution (1200 gas) ;; (fails chi-squared test, but it is shorter and faster than fixed248::nrand()) ;; fixed248 nrand_fast(); int fixed248::nrand_fast() impure inline; -} ;; end (declarations) {-------------------- INTERMEDIATE FUNCTIONS -----------------------} {- Intermediate functions are used in the implementations of high-level `fixedNNN::...` functions if necessary, they can be used to define additional high-level functions for other fixed-point types, such as fixed128, outside this library. They can be also used in a hypothetical floating-point FunC library. For these reasons, the declarations of these functions are collected here. -} {- function declarations have been commented out, otherwise they are not inlined by the current FunC compiler ;; fixed258 tanh(fixed258 x, int steps); int tanh_f258(int x, int n); ;; computes exp(x)-1 for |x| <= log(2)/2. ;; fixed257 expm1(fixed257 x); int expm1_f257(int x); ;; computes (sin(x+xe),-cos(x+xe)) for |x| <= Pi/4, xe very small ;; this function is very accurate, error less than 0.7 ulp (consumes ~ 5500 gas) ;; (fixed256, fixed256) sincosn(fixed256 x, fixed259 xe) (int, int) sincosn_f256(int x, int xe); ;; compute (sin(x),1-cos(x)) in fixed256 for |x| < 16*atan(1/16) = 0.9987 ;; (fixed256, fixed257) sincosm1_f256(fixed256 x); ;; slightly less accurate than sincosn_f256() (error up to 3/2^256), but faster (~ 4k gas) and shorter (int, int) sincosm1_f256(int x); ;; compute (p, q) such that p/q = tan(x) for |x|<2*atan(1/2)=1899/2048=0.927 ;; (int, int) tan_aux(fixed256 x); (int, int) tan_aux_f256(int x); ;; returns (y, s) such that log(x) = y/2^256 + s*log(2) for positive integer x ;; this function is very precise (error less than 0.6 ulp) and consumes < 7k gas ;; (fixed256, int) log_aux_f256(int x); (int, int) log_aux_f256(int x); ;; returns (y, s) such that log2(x) = y/2^256 + s for positive integer x ;; this function is very precise (error less than 0.6 ulp) and consumes < 7k gas ;; (fixed256, int) log2_aux_f256(int x); (int, int) log2_aux_f256(int x); ;; compute (q, z) such that atan(x)=q*atan(1/32)+z for -1 <= x < 1 ;; this function is reasonably accurate (error < 7 ulp with ulp = 2^-261), but it consumes >7k gas ;; this is sufficient for most purposes ;; (int, fixed261) atan_aux(fixed256 x) (int, int) atan_aux_f256(int x); ;; fixed255 atan(fixed255 x); int atan_f255(int x); ;; for -1 <= x < 1 only ;; fixed256 atan_small(fixed256 x); int atan_f256_small(int x); ;; fixed255 asin(fixed255 x); int asin_f255(int x); ;; fixed254 acos(fixed255 x); int acos_f255(int x); ;; generates normally distributed pseudo-random number ;; fixed252 nrand(); int nrand_f252(int x); ;; a faster and shorter variant of nrand_f252() that fails chi-squared test ;; (should suffice for most purposes) ;; fixed252 nrand_fast(); int nrand_fast_f252(int x); -} ;; end (declarations) {---------------- MISSING OPERATIONS AND BUILT-INS -----------------} int sgn(int x) asm "SGN"; ;; compute floor(log2(x))+1 int log2_floor_p1(int x) asm "UBITSIZE"; int mulrshiftr(int x, int y, int s) asm "MULRSHIFTR"; int mulrshiftr256(int x, int y) asm "256 MULRSHIFTR#"; (int, int) mulrshift256mod(int x, int y) asm "256 MULRSHIFT#MOD"; (int, int) mulrshiftr256mod(int x, int y) asm "256 MULRSHIFTR#MOD"; (int, int) mulrshiftr255mod(int x, int y) asm "255 MULRSHIFTR#MOD"; (int, int) mulrshiftr248mod(int x, int y) asm "248 MULRSHIFTR#MOD"; (int, int) mulrshiftr5mod(int x, int y) asm "5 MULRSHIFTR#MOD"; (int, int) mulrshiftr6mod(int x, int y) asm "6 MULRSHIFTR#MOD"; (int, int) mulrshiftr7mod(int x, int y) asm "7 MULRSHIFTR#MOD"; int lshift256divr(int x, int y) asm "256 LSHIFT#DIVR"; (int, int) lshift256divmodr(int x, int y) asm "256 LSHIFT#DIVMODR"; (int, int) lshift255divmodr(int x, int y) asm "255 LSHIFT#DIVMODR"; (int, int) lshift2divmodr(int x, int y) asm "2 LSHIFT#DIVMODR"; (int, int) lshift7divmodr(int x, int y) asm "7 LSHIFT#DIVMODR"; (int, int) lshiftdivmodr(int x, int y, int s) asm "LSHIFTDIVMODR"; (int, int) rshiftr256mod(int x) asm "256 RSHIFTR#MOD"; (int, int) rshiftr248mod(int x) asm "248 RSHIFTR#MOD"; (int, int) rshiftr4mod(int x) asm "4 RSHIFTR#MOD"; (int, int) rshift3mod(int x) asm "3 RSHIFT#MOD"; ;; computes y - x (FunC compiler does not try to use this by itself) int sub_rev(int x, int y) asm "SUBR"; int nan() asm "PUSHNAN"; int is_nan(int x) asm "ISNAN"; {------------------------ SQUARE ROOTS ----------------------------} ;; computes sqrt(a*b) exactly rounded to the nearest integer ;; for all 0 <= a, b <= 2^256-1 ;; may be used with b=1 or b=scale of fixed-point numbers int geom_mean(int a, int b) inline_ref { ifnot (min(a, b)) { return 0; } int s = log2_floor_p1(a); ;; throws out of range error if a < 0 or b < 0 int t = log2_floor_p1(b); ;; NB: (a-b)/2+b == (a+b)/2, but without overflow for large a and b int x = (s == t ? (a - b) / 2 + b : 1 << ((s + t) / 2)); do { ;; if always used with b=2^const, may be optimized to "const LSHIFTDIVC#" ;; it is important to use `muldivc` here, not `muldiv` or `muldivr` int q = (muldivc(a, b, x) - x) / 2; x += q; } until (q == 0); return x; } ;; integer square root, computes round(sqrt(a)) for all a>=0. ;; note: `inline` is better than `inline_ref` for such simple functions int sqrt(int a) inline { return geom_mean(a, 1); } ;; version for fixed248 = fixed-point numbers with scale 2^248 ;; fixed248 sqrt(fixed248 x) int fixed248::sqrt(int x) inline { return geom_mean(x, 1 << 248); } ;; fixed255 sqrt(fixed255 x) int fixed255::sqrt(int x) inline { return geom_mean(x, 1 << 255); } ;; fixed248 sqr(fixed248 x); int fixed248::sqr(int x) inline { return muldivr(x, x, 1 << 248); } ;; fixed255 sqr(fixed255 x); int fixed255::sqr(int x) inline { return muldivr(x, x, 1 << 255); } const int fixed248::One = (1 << 248); const int fixed255::One = (1 << 255); {-------------------- USEFUL CONSTANTS --------------------} ;; store huge constants in inline_ref functions for reuse ;; (y,z) where y=round(log(2)*2^256), z=round((log(2)*2^256-y)*2^128) ;; then log(2) = y/2^256 + z/2^384 (int, int) log2_xconst_f256() inline_ref { return (80260960185991308862233904206310070533990667611589946606122867505419956976172, -32272921378999278490133606779486332143); } ;; (y,z) where Pi = y/2^254 + z/2^382 (int, int) Pi_xconst_f254() inline_ref { return (90942894222941581070058735694432465663348344332098107489693037779484723616546, 108051869516004014909778934258921521947); } ;; atan(1/16) as fixed260 int Atan1_16_f260() inline_ref { return 115641670674223639132965820642403718536242645001775371762318060545014644837101; ;; true value is ...101.0089... } ;; atan(1/8) as fixed259 int Atan1_8_f259() inline_ref { return 115194597005316551477397594802136977648153890007566736408151129975021336532841; ;; correction -0.1687... } ;; atan(1/32) as fixed261 int Atan1_32_f261() inline_ref { return 115754418570128574501879331591757054405465733718902755858991306434399246026247; ;; correction 0.395... } ;; inline is better than inline_ref for such very small functions int log2_const_f256() inline { (int c, _) = log2_xconst_f256(); return c; } int fixed248::log2_const() inline { return log2_const_f256() ~>> 8; } int Pi_const_f254() inline { (int c, _) = Pi_xconst_f254(); return c; } int fixed248::Pi_const() inline { return Pi_const_f254() ~>> 6; } {--------------- HYPERBOLIC TANGENT AND EXPONENT -------------------} ;; hyperbolic tangent of small x via n+2 terms of Lambert's continued fraction ;; n=17: good for |x| < log(2)/4 = 0.173 ;; fixed258 tanh_f258(fixed258 x, int n) int tanh_f258(int x, int n) inline_ref { int x2 = muldivr(x, x, 1 << 255); ;; x^2 as fixed261 int c = int a = (2 * n + 5) << 250; ;; a=2n+5 as fixed250 int Two = (1 << 251); ;; 2. as fixed250 repeat (n) { a = (c -= Two) + muldivr(x2, 1 << 239, a); ;; a := 2k+1+x^2/a as fixed250, k=n+1,n,...,2 } a = (touch(3) << 254) + muldivr(x2, 1 << 243, a); ;; a := 3+x^2/a as fixed254 ;; y = x/(1+a') = x - x*a'/(1+a') = x - x*x^2/(a+x^2) where a' = x^2/a return x - (muldivr(x, x2, a + (x2 ~>> 7)) ~>> 7); } ;; fixed257 expm1_f257(fixed257 x) ;; computes exp(x)-1 for small x via 19 terms of Lambert's continued fraction for tanh(x/2) ;; good for |x| < log(2)/2 = 0.347 (n=17); consumes ~3500 gas int expm1_f257(int x) inline_ref { ;; (almost) compute tanh(x/2) first; x/2 as fixed258 = x as fixed257 int x2 = muldivr(x, x, 1 << 255); ;; x^2 as fixed261 int Two = (1 << 251); ;; 2. as fixed250 int c = int a = touch(39) << 250; ;; a=2n+5 as fixed250 repeat (17) { a = (c -= Two) + muldivr(x2, 1 << 239, a); ;; a := 2k+1+x^2/a as fixed250, k=n+1,n,...,2 } a = (touch(3) << 254) + muldivr(x2, 1 << 243, a); ;; a := 3+x^2/a as fixed254 ;; now tanh(x/2) = x/(1+a') where a'=x^2/a ; apply exp(x)-1=2*tanh(x/2)/(1-tanh(x/2)) int t = (x ~>> 4) - a; ;; t:=x-a as fixed254 return x - muldivr(x2, t / 2, a + mulrshiftr256(x, t) ~/ 4) ~/ 4; ;; x - x^2 * (x-a) / (a + x*(x-a)) } ;; expm1_f257() may be used to implement specific fixed-point exponentials ;; example: ;; fixed248 exp(fixed248 x) int fixed248::exp(int x) inline_ref { var (l2c, l2d) = log2_xconst_f256(); ;; divide x by log(2) and convert to fixed257 ;; (int q, x) = muldivmodr(x, 256, l2c); ;; unfortunately, no such built-in (int q, x) = lshiftdivmodr(x, l2c, 8); x = 2 * x - muldivr(q, l2d, 1 << 127); int y = expm1_f257(x); ;; result is (1 + y) * (2^q) --> ((1 << 257) + y) >> (9 - q) return (y ~>> (9 - q)) - (-1 << (248 + q)); ;; note that (y ~>> (9 - q)) + (1 << (248 + q)) leads to overflow when q=8 } ;; compute 2^x in fixed248 ;; fixed248 exp2(fixed248 x) int fixed248::exp2(int x) inline_ref { ;; (int q, x) = divmodr(x, 1 << 248); ;; no such built-in (int q, x) = rshiftr248mod(x); x = muldivr(x, log2_const_f256(), 1 << 247); int y = expm1_f257(x); return (y ~>> (9 - q)) - (-1 << (248 + q)); } {--------------------- TRIGONOMETRIC FUNCTIONS -----------------------} ;; fixed260 tan(fixed260 x); ;; computes tan(x) for small |x|> 10)) ~>> 9); } ;; fixed260 tan(fixed260 x); int tan_f260(int x) inline_ref { return tan_f260_inlined(x); } ;; fixed258 tan(fixed258 x); ;; computes tan(x) for small |x|> 6)) ~>> 5); } ;; fixed258 tan(fixed258 x); int tan_f258(int x) inline_ref { return tan_f258_inlined(x); } ;; (fixed259, fixed263) sincosm1(fixed259 x) ;; computes (sin(x), 1-cos(x)) for small |x|<2*atan(1/16) (int, int) sincosm1_f259_inlined(int x) inline { int t = tan_f260_inlined(x); ;; t=tan(x/2) as fixed260 int tt = mulrshiftr256(t, t); ;; t^2 as fixed264 int y = tt ~/ 512 + (1 << 255); ;; 1+t^2 as fixed255 ;; 2*t/(1+t^2) as fixed259 and 2*t^2/(1+t^2) as fixed263 ;; return (muldivr(t, 1 << 255, y), muldivr(tt, 1 << 255, y)); return (t - muldivr(t / 2, tt, y) ~/ 256, tt - muldivr(tt / 2, tt, y) ~/ 256); } (int, int) sincosm1_f259(int x) inline_ref { return sincosm1_f259_inlined(x); } ;; computes (sin(x+xe),-cos(x+xe)) for |x| <= Pi/4, xe very small ;; this function is very accurate, error less than 0.7 ulp (consumes ~ 5500 gas) ;; (fixed256, fixed256) sincosn(fixed256 x, fixed259 xe) (int, int) sincosn_f256(int x, int xe) inline_ref { ;; var (q, x1) = muldivmodr(x, 8, Atan1_8_f259()); ;; no muldivmodr() builtin var (q, x1) = lshift2divmodr(abs(x), Atan1_8_f259()); ;; reduce mod theta where theta=2*atan(1/8) var (si, co) = sincosm1_f259(x1 * 2 + xe); var (a, b, c) = (-1, 0, 1); repeat (q) { ;; (a+b*I) *= (8+I)^2 = 63+16*I (a, b, c) = (63 * a - 16 * b, 16 * a + 63 * b, 65 * c); } ;; now a/c = cos(q*theta), b/c = sin(q*theta) exactly(!) ;; compute (a+b*I)*(1-co+si*I)/c ;; (b, a) = (lshift256divr(b, c), lshift256divr(a, c)); (b, int br) = lshift256divmodr(b, c); br = muldivr(br, 128, c); (a, int ar) = lshift256divmodr(a, c); ar = muldivr(ar, 128, c); return (sgn(x) * (((mulrshiftr256(b, co) - br) ~/ 16 - mulrshiftr256(a, si)) ~/ 8 - b), a - ((mulrshiftr256(a, co) - ar) ~/ 16 + mulrshiftr256(b, si)) ~/ 8); } ;; compute (sin(x),1-cos(x)) in fixed256 for |x| < 16*atan(1/16) = 0.9987 ;; (fixed256, fixed257) sincosm1_f256(fixed256 x); ;; slightly less accurate than sincosn_f256() (error up to 3/2^256), but faster (~ 4k gas) and shorter (int, int) sincosm1_f256(int x) inline_ref { var (si, co) = sincosm1_f259_inlined(x); ;; compute (sin,1-cos)(x/8) in (fixed259,fixed263) int r = 7; repeat (r / 2) { ;; 1-cos(2*x) = 2*sin(x)^2, sin(2*x) = 2*sin(x)*cos(x) (co, si) = (mulrshiftr256(si, si), si - (mulrshiftr256(si, co) ~>> r)); r -= 2; } return (si, co); } ;; compute (p, q) such that p/q = tan(x) for |x|<2*atan(1/2)=1899/2048=0.927 ;; (int, int) tan_aux(fixed256 x); (int, int) tan_aux_f256(int x) inline_ref { int t = tan_f258_inlined(x); ;; t=tan(x/4) as fixed258 ;; t:=2*t/(1-t^2)=2*(t-t^3/(t^2-1)) int tt = mulrshiftr256(t, t); ;; t^2 as fixed260 t = muldivr(t, tt, tt ~/ 16 + (-1 << 256)) ~/ 16 - t; ;; now t=-tan(x/2) as fixed259 return (t, mulrshiftr256(t, t) ~/ 4 + (-1 << 256)); ;; return (2*t, t^2-1) as fixed256 } ;; sincosm1_f256() and sincosn_f256() may be used to implement trigonometric functions for different fixed-point types ;; example: ;; (fixed248, fixed248) sincos(fixed248 x); (int, int) fixed248::sincos(int x) inline_ref { var (Pic, Pid) = Pi_xconst_f254(); ;; (int q, x) = muldivmodr(x, 128, Pic); ;; no muldivmodr() builtin (int q, x) = lshift7divmodr(x, Pic); ;; reduce mod Pi/2 x = 2 * x - muldivr(q, Pid, 1 << 127); (int si, int co) = sincosm1_f256(x); ;; doesn't make sense to use more accurate sincosn_f256() co = (1 << 248) - (co ~>> 9); si ~>>= 8; repeat (q & 3) { (si, co) = (co, - si); } return (si, co); } ;; fixed248 sin(fixed248 x); ;; inline is better than inline_ref for such simple functions int fixed248::sin(int x) inline { (int si, _) = fixed248::sincos(x); return si; } ;; fixed248 cos(fixed248 x); int fixed248::cos(int x) inline { (_, int co) = fixed248::sincos(x); return co; } ;; similarly, tan_aux_f256() may be used to implement tan() and cot() for specific fixed-point formats ;; fixed248 tan(fixed248 x); ;; not very accurate when |tan(x)| is very large (difficult to do better without floating-point numbers) ;; however, the relative accuracy is approximately 2^-247 in all cases, which is good enough for arguments given up to 2^-249 int fixed248::tan(int x) inline_ref { var (Pic, Pid) = Pi_xconst_f254(); ;; (int q, x) = muldivmodr(x, 128, Pic); ;; no muldivmodr() builtin (int q, x) = lshift7divmodr(x, Pic); ;; reduce mod Pi/2 x = 2 * x - muldivr(q, Pid, 1 << 127); var (a, b) = tan_aux_f256(x); ;; now a/b = tan(x') if (q & 1) { (a, b) = (b, - a); } return muldivr(a, 1 << 248, b); ;; either -b/a or a/b as fixed248 } ;; fixed248 cot(fixed248 x); int fixed248::cot(int x) inline_ref { var (Pic, Pid) = Pi_xconst_f254(); (int q, x) = lshift7divmodr(x, Pic); ;; reduce mod Pi/2 x = 2 * x - muldivr(q, Pid, 1 << 127); var (b, a) = tan_aux_f256(x); ;; now b/a = tan(x') if (q & 1) { (a, b) = (b, - a); } return muldivr(a, 1 << 248, b); ;; either -b/a or a/b as fixed248 } {----------------- INVERSE HYPERBOLIC TANGENT AND LOGARITHMS -----------------} ;; inverse hyperbolic tangent of small x, evaluated by means of n terms of the continued fraction ;; valid for |x| < 2^-2.5 ~ 0.18 if n=37 (slightly less accurate with n=36) ;; |x| < 1/8 if n=32; |x| < 2^-3.5 if n=28; |x| < 1/16 if n=25 ;; |x| < 2^-4.5 if n=23; |x| < 1/32 if n=21; |x| < 1/64 if n=18 ;; fixed258 atanh(fixed258 x); int atanh_f258(int x, int n) inline_ref { int x2 = mulrshiftr256(x, x); ;; x^2 as fixed260 int One = (1 << 254); int a = One ~/ n + (1 << 255); ;; a := 2 + 1/n as fixed254 repeat (n - 1) { ;; a := 1 + (1 - x^2 / a)(1 + 1/n) as fixed254 int t = One - muldivr(x2, 1 << 248, a); ;; t := 1 - x^2 / a a = muldivr(t, n, (int n1 = n - 1)) + One; n = n1; } ;; x / (1 - x^2 / a) = x / (1 - d) = x + x * d / (1 - d) for d = x^2 / a ;; int d = muldivr(x2, 1 << 255, a - (x2 ~>> 6)); ;; d/(1-d) = x^2/(a-x^2) as fixed261 ;; return x + (mulrshiftr256(x, d) ~>> 5); return x + muldivr(x, x2 / 2, a - x2 ~/ 64) ~/ 32; } ;; number of terms n should be chosen as for atanh_f258() ;; fixed261 atanh(fixed261 x); int atanh_f261_inlined(int x, int n) inline { int x2 = mulrshiftr256(x, x); ;; x^2 as fixed266 int One = (1 << 254); int a = One ~/ n + (1 << 255); ;; a := 2 + 1/n as fixed254 repeat (n - 1) { ;; a := 1 + (1 - x^2 / a)(1 + 1/n) as fixed254 int t = One - muldivr(x2, 1 << 242, a); ;; t := 1 - x^2 / a a = muldivr(t, n, (int n1 = n - 1)) + One; n = n1; } ;; x / (1 - x^2 / a) = x / (1 - d) = x + x * d / (1 - d) for d = x^2 / a ;; int d = muldivr(x2, 1 << 255, a - (x2 ~>> 12)); ;; d/(1-d) = x^2/(a-x^2) as fixed267 ;; return x + (mulrshiftr256(x, d) ~>> 11); return x + muldivr(x, x2, a - x2 ~/ 4096) ~/ 4096; } ;; fixed261 atanh(fixed261 x); int atanh_f261(int x, int n) inline_ref { return atanh_f261_inlined(x, n); } ;; returns (y, s) such that log(x) = y/2^257 + s*log(2) for positive integer x ;; (fixed257, int) log_aux(int x) (int, int) log_aux_f257(int x) inline_ref { int s = log2_floor_p1(x); x <<= 256 - s; int t = touch(-1 << 256); if ((x >> 249) <= 90) { ;; t~touch(); t >>= 1; s -= 1; } x += t; int 2x = 2 * x; int y = lshift256divr(2x, (x >> 1) - t); ;; y = 2x - (mulrshiftr256(2x, y) ~>> 2); ;; this line could improve precision on very rare occasions return (atanh_f258(y, 36), s); } ;; computes 33^m for small m int pow33(int m) inline { int t = 1; repeat (m) { t *= 33; } return t; } ;; computes 33^m for small 0<=m<=22 ;; slightly faster than pow33() int pow33b(int m) inline { (int mh, int ml) = m /% 5; int t = 1; repeat (ml) { t *= 33; } repeat (mh) { t *= 33 * 33 * 33 * 33 * 33; } return t; } ;; returns (s, q, y) such that log(x) = s*log(2) + q*log(33/32) + y/2^260 for positive integer x ;; (int, int, fixed260) log_auxx_f260(int x); (int, int, int) log_auxx_f260(int x) inline_ref { int s = log2_floor_p1(x) - 1; x <<= 255 - s; ;; rescale to 1 <= x < 2 as fixed255 int t = touch(2873) << 244; ;; ~ (33/32)^11 ~ sqrt(2) as fixed255 int x1 = (x - t) >> 1; int q = muldivr(x1, 65, x1 + t) + 11; ;; crude approximation to round(log(x)/log(33/32)) ;; t = 1; repeat (q) { t *= 33; } ;; t:=33^q, 0<=q<=22 t = pow33b(q); t <<= (51 - q) * 5; ;; t:=(33/32)^q as fixed255, nearest power of 33/32 to x x -= t; int y = lshift256divr(x << 4, (x >> 1) + t); ;; y = (x-t)/(x+t) as fixed261 y = atanh_f261(y, 18); ;; atanh((x-t)/(x+t)) as fixed261, or log(x/t) as fixed260 return (s, q, y); } ;; returns (y, s) such that log(x) = y/2^256 + s*log(2) for positive integer x ;; this function is very precise (error less than 0.6 ulp) and consumes < 7k gas ;; (fixed256, int) log_aux_f256(int x); (int, int) log_aux_f256(int x) inline_ref { var (s, q, y) = log_auxx_f260(x); var (yh, yl) = rshiftr4mod(y); ;; y ~/% 16 , but FunC does not optimize this to RSHIFTR#MOD ;; int Log33_32 = 3563114646320977386603103333812068872452913448227778071188132859183498739150; ;; log(33/32) as fixed256 ;; int Log33_32_l = -3769; ;; log(33/32) = Log33_32 / 2^256 + Log33_32_l / 2^269 yh += (yl * 512 + q * -3769) ~>> 13; ;; compensation, may be removed if slightly worse accuracy is acceptable int Log33_32 = 3563114646320977386603103333812068872452913448227778071188132859183498739150; ;; log(33/32) as fixed256 return (yh + q * Log33_32, s); } ;; returns (y, s) such that log2(x) = y/2^256 + s for positive integer x ;; this function is very precise (error less than 0.6 ulp) and consumes < 7k gas ;; (fixed256, int) log2_aux_f256(int x); (int, int) log2_aux_f256(int x) inline_ref { var (s, q, y) = log_auxx_f260(x); y = lshift256divr(y, log2_const_f256()) ~>> 4; ;; y/log(2) as fixed256 int Log33_32 = 5140487830366106860412008603913034462883915832139695448455767612111363481357; ;; log_2(33/32) as fixed256 ;; Log33_32/2^256 happens to be a very precise approximation to log_2(33/32), no compensation required return (y + q * Log33_32, s); } ;; functions log_aux_f256() and log2_aux_f256() may be used to implement specific fixed-point instances of log() and log2() ;; fixed248 log(fixed248 x) int fixed248::log(int x) inline_ref { var (y, s) = log_aux_f256(x); return muldivr(s - 248, log2_const_f256(), 1 << 8) + (y ~>> 8); ;; return muldivr(s - 248, 80260960185991308862233904206310070533990667611589946606122867505419956976172, 1 << 8) + (y ~>> 8); } ;; fixed248 log2(fixed248 x) int fixed248::log2(int x) inline { var (y, s) = log2_aux_f256(x); return ((s - 248) << 248) + (y ~>> 8); } ;; computes x^y as exp(y*log(x)), x >= 0 ;; fixed248 pow(fixed248 x, fixed248 y); int fixed248::pow(int x, int y) inline_ref { ifnot (y) { return 1 << 248; ;; x^0 = 1 } if (x <= 0) { int bad = (x | y) < 0; return 0 >> bad; ;; 0^y = 0 if x=0 and y>=0; "out of range" exception otherwise } var (l, s) = log2_aux_f256(x); s -= 248; ;; log_2(x) = s+l, l is fixed256, 0<=l<1 ;; compute (s+l)*y = q+ll var (q1, r1) = mulrshiftr248mod(s, y); ;; muldivmodr(s, y, 1 << 248) var (q2, r2) = mulrshift256mod(l, y); r2 >>= 247; var (q3, r3) = rshiftr248mod(q2); ;; divmodr(q2, 1 << 248); var (q, ll) = rshiftr248mod(r1 + r3); ll = 512 * ll + r2; q += q1 + q3; ;; now log_2(x^y) = y*log_2(x) = q + ll, ss integer, ll fixed257, -1/2<=ll<1/2 int sq = q + 248; if (sq <= 0) { return - (sq == 0); ;; underflow } int y = expm1_f257(mulrshiftr256(ll, log2_const_f256())); return (y ~>> (9 - q)) - (-1 << sq); } {--------------------- INVERSE TRIGONOMETRIC FUNCTIONS -------------------} ;; number of terms n should be chosen as for atanh_f258() ;; fixed259 atan(fixed259 x); int atan_f259(int x, int n) inline_ref { int x2 = mulrshiftr256(x, x); ;; x^2 as fixed262 int One = (1 << 254); int a = One ~/ n + (1 << 255); ;; a := 2 + 1/n as fixed254 repeat (n - 1) { ;; a := 1 + (1 + x^2 / a)(1 + 1/n) as fixed254 int t = One + muldivr(x2, 1 << 246, a); ;; t := 1 + x^2 / a a = muldivr(t, n, (int n1 = n - 1)) + One; n = n1; } ;; x / (1 + x^2 / a) = x / (1 + d) = x - x * d / (1 + d) = x - x * x^2/(a+x^2) for d = x^2 / a return x - muldivr(x, x2, a + x2 ~/ 256) ~/ 256; } ;; number of terms n should be chosen as for atanh_f261() ;; fixed261 atan(fixed261 x); int atan_f261_inlined(int x, int n) inline { int x2 = mulrshiftr256(x, x); ;; x^2 as fixed266 int One = (1 << 254); int a = One ~/ n + (1 << 255); ;; a := 2 + 1/n as fixed254 repeat (n - 1) { ;; a := 1 + (1 + x^2 / a)(1 + 1/n) as fixed254 int t = One + muldivr(x2, 1 << 242, a); ;; t := 1 + x^2 / a a = muldivr(t, n, (int n1 = n - 1)) + One; n = n1; } ;; x / (1 + x^2 / a) = x / (1 + d) = x - x * d / (1 + d) = x - x * x^2/(a+x^2) for d = x^2 / a return x - muldivr(x, x2, a + x2 ~/ 4096) ~/ 4096; } ;; fixed261 atan(fixed261 x); int atan_f261(int x, int n) inline_ref { return atan_f261_inlined(x, n); } ;; computes (q,a,b) such that q is approximately atan(x)/atan(1/32) and a+b*I=(1+I/32)^q as fixed255 ;; then b/a=atan(q*atan(1/32)) exactly, and (a,b) is almost a unit vector pointing in the direction of (1,x) ;; must have |x|<1.1, x is fixed24 ;; (int, fixed255, fixed255) atan_aux_prereduce(fixed24 x); (int, int, int) atan_aux_prereduce(int x) inline_ref { int xu = abs(x); int tc = 7214596; ;; tan(13*theta) as fixed24 where theta=atan(1/32) int t1 = muldivr(xu - tc, 1 << 88, xu * tc + (1 << 48)); ;; tan(x') as fixed64 where x'=atan(x)-13*theta ;; t1/(3+t1^2) * 3073/32 = x'/3 * 3072/32 = x' / (96/3072) = x' / theta int q = muldivr(t1 * 3073, 1 << 59, t1 * t1 + (touch(3) << 128)) + 13; ;; approximately round(atan(x)/theta), 0<=q<=25 var (pa, pb) = (33226912, 5232641); ;; (32+I)^5 var (qh, ql) = q /% 5; var (a, b) = (1 << (5 * (51 - q)), 0); ;; (1/32^q, 0) as fixed255 repeat (ql) { ;; a+b*I *= 32+I (a, b) = (sub_rev(touch(b), 32 * a), a + 32 * b); ;; same as (32 * a - b, 32 * b + a), but more efficient } repeat (qh) { ;; a+b*I *= (32+I)^5 = pa + pb*I (a, b) = (a * pa - b * pb, a * pb + b * pa); } int xs = sgn(x); return (xs * q, a, xs * b); } ;; compute (q, z) such that atan(x)=q*atan(1/32)+z for -1 <= x < 1 ;; this function is reasonably accurate (error < 7 ulp with ulp = 2^-261), but it consumes >7k gas ;; this is sufficient for most purposes ;; (int, fixed261) atan_aux(fixed256 x) (int, int) atan_aux_f256(int x) inline_ref { var (q, a, b) = atan_aux_prereduce(x ~>> 232); ;; convert x to fixed24 ;; now b/a = tan(q*atan(1/32)) exactly, where q is near atan(x)/atan(1/32); so b/a is near x ;; compute y = u/v = (a*x-b)/(a+b*x) as fixed261 ; then |y|<0.0167 = 1.07/64 and atan(x)=atan(y)+q*atan(1/32) var (u, ul) = mulrshiftr256mod(a, x); u = (ul ~>> 250) + ((u - b) << 6); ;; |u| < 1/32, convert fixed255 -> fixed261 int v = a + mulrshiftr256(b, x); ;; v is scalar product of (a,b) and (1,x), it is approximately in [1..sqrt(2)] as fixed255 int y = muldivr(u, 1 << 255, v); ;; y = u/v as fixed261 int z = atan_f261_inlined(y, 18); ;; z = atan(x)-q*atan(1/32) return (q, z); } ;; compute (q, z) such that atan(x)=q*atan(1/32)+z for -1 <= x < 1 ;; this function is very accurate (error < 2 ulp), but it consumes >7k gas ;; in most cases, faster function atan_aux_f256() should be used ;; (int, fixed261) atan_auxx(fixed256 x) (int, int) atan_auxx_f256(int x) inline_ref { var (q, a, b) = atan_aux_prereduce(x ~>> 232); ;; convert x to fixed24 ;; now b/a = tan(q*atan(1/32)) exactly, where q is near atan(x)/atan(1/32); so b/a is near x ;; compute y = (a*x-b)/(a+b*x) as fixed261 ; then |y|<0.0167 = 1.07/64 and atan(x)=atan(y)+q*atan(1/32) ;; use sort of double precision arithmetic for this var (u, ul) = mulrshiftr256mod(a, x); ul /= 2; u -= b; ;; |u| < 1/32 as fixed255 var (v, vl) = mulrshiftr256mod(b, x); vl /= 2; v += a; ;; v is scalar product of (a,b) and (1,x), it is approximately in [1..sqrt(2)] as fixed255 ;; y = (u + ul*eps) / (v + vl*eps) = u/v + (ul - vl * u/v)/v * eps where eps=1/2^255 var (y, r) = lshift255divmodr(u, v); ;; y = u/v as fixed255 int yl = muldivr(ul + r, 1 << 255, v) - muldivr(vl, y, v); ;; y/2^255 + yl/2^510 represent u/v y = (yl ~>> 249) + (y << 6); ;; convert y to fixed261 int z = atan_f261_inlined(y, 18); ;; z = atan(x)-q*atan(1/32) return (q, z); } ;; consumes ~ 8k gas ;; fixed255 atan(fixed255 x); int atan_f255(int x) inline_ref { int s = (x ~>> 256); touch(x); if (s) { x = lshift256divr(-1 << 255, x); ;; x:=-1/x as fixed256 } else { x *= 2; ;; convert to fixed256 } var (q, z) = atan_aux_f256(x); ;; now atan(x) = z + q*atan(1/32) + s*(Pi/2), z is fixed261 var (Pi_h, Pi_l) = Pi_xconst_f254(); ;; Pi/2 as fixed255 + fixed383 var (qh, ql) = mulrshiftr6mod (q, Atan1_32_f261()); return qh + s * Pi_h + (z + ql + muldivr(s, Pi_l, 1 << 122)) ~/ 64; } ;; computes atan(x) for -1 <= x < 1 only ;; fixed256 atan_small(fixed256 x); int atan_f256_small(int x) inline_ref { var (q, z) = atan_aux_f256(x); ;; now atan(x) = z + q*atan(1/32), z is fixed261 var (qh, ql) = mulrshiftr5mod (q, Atan1_32_f261()); return qh + (z + ql) ~/ 32; } ;; fixed255 asin(fixed255 x); int asin_f255(int x) inline_ref { int a = fixed255::One - fixed255::sqr(x); ;; a:=1-x^2 ifnot (a) { return sgn(x) * Pi_const_f254(); ;; Pi/2 or -Pi/2 } int y = fixed255::sqrt(a); ;; sqrt(1-x^2) int t = - lshift256divr(x, (-1 << 255) - y); ;; t = x/(1+sqrt(1-x^2)) avoiding overflow return atan_f256_small(t); ;; asin(x)=2*atan(t) } ;; fixed254 acos(fixed255 x); int acos_f255(int x) inline_ref { int Pi = Pi_const_f254(); if (x == (-1 << 255)) { return Pi; ;; acos(-1) = Pi } Pi /= 2; int y = fixed255::sqrt(fixed255::One - fixed255::sqr(x)); ;; sqrt(1-x^2) int t = lshift256divr(x, (-1 << 255) - y); ;; t = -x/(1+sqrt(1-x^2)) avoiding overflow return Pi + atan_f256_small(t) ~/ 2; ;; acos(x)=Pi/2 + 2*atan(t) } ;; consumes ~ 10k gas ;; fixed248 asin(fixed248 x) int fixed248::asin(int x) inline { return asin_f255(x << 7) ~>> 7; } ;; consumes ~ 10k gas ;; fixed248 acos(fixed248 x) int fixed248::acos(int x) inline { return acos_f255(x << 7) ~>> 6; } ;; consumes ~ 7500 gas ;; fixed248 atan(fixed248 x); int fixed248::atan(int x) inline_ref { int s = (x ~>> 249); touch(x); if (s) { s = sgn(s); x = lshift256divr(-1 << 248, x); ;; x:=-1/x as fixed256 } else { x <<= 8; ;; convert to fixed256 } var (q, z) = atan_aux_f256(x); ;; now atan(x) = z + q*atan(1/32) + s*(Pi/2), z is fixed261 return (z ~/ 64 + s * Pi_const_f254() + muldivr(q, Atan1_32_f261(), 64)) ~/ 128; ;; compute in fixed255, then convert } ;; fixed248 acot(fixed248 x); int fixed248::acot(int x) inline_ref { int s = (x ~>> 249); touch(x); if (s) { x = lshift256divr(-1 << 248, x); ;; x:=-1/x as fixed256 s = 0; } else { x <<= 8; ;; convert to fixed256 s = sgn(x); } var (q, z) = atan_aux_f256(x); ;; now acot(x) = - z - q*atan(1/32) + s*(Pi/2), z is fixed261 return (s * Pi_const_f254() - z ~/ 64 - muldivr(q, Atan1_32_f261(), 64)) ~/ 128; ;; compute in fixed255, then convert } {--------------------- PSEUDO-RANDOM NUMBERS -------------------} ;; random number with standard normal distribution N(0,1) ;; generated by Kinderman--Monahan ratio method modified by J.Leva ;; spends ~ 2k..3k gas on average ;; fixed252 nrand(); int nrand_f252() impure inline_ref { var (x, s, t, A, B, r0) = (nan(), touch(29483) << 236, touch(-3167) << 239, 12845, 16693, 9043); ;; 4/sqrt(e*Pi) = 1.369 loop iterations on average do { var (u, v) = (random() / 16 + 1, muldivr(random() - (1 << 255), 7027, 1 << 16)); ;; fixed252; 7027=ceil(sqrt(8/e)*2^12) int va = abs(v); var (u1, v1) = (u - s, va - t); ;; (u - 29483/2^16, abs(v) + 3167/2^13) as fixed252 ;; Q := u1^2 + v1 * (A*v1 - B*u1) as fixed252 where A=12845/2^16, B=16693/2^16 int Q = muldivr(u1, u1, 1 << 252) + muldivr(v1, muldivr(v1, A, 1 << 16) - muldivr(u1, B, 1 << 16), 1 << 252); ;; must have 9043 / 2^15 < Q < 9125 / 2^15, otherwise accept if smaller, reject if larger int Qd = (Q >> 237) - r0; if ((Qd < 9125 - 9043) & (va / u < 16)) { x = muldivr(v, 1 << 252, u); ;; x:=v/u as fixed252; reject immediately if |v/u| >= 16 if (Qd >= 0) { ;; immediately accept if Qd < 0 ;; rarely taken branch - 0.012 times per call on average ;; check condition v^2 < -4*u^2*log(u), or equivalent condition u < exp(-x^2/4) for x=v/u int xx = mulrshiftr256(x, x) ~/ 4; ;; x^2/4 as fixed248 int ex = fixed248::exp(- xx) * 16; ;; exp(-x^2/4) as fixed252 if (u > ex) { x = nan(); ;; condition false, reject } } } } until (~ is_nan(x)); return x; } ;; generates a random number approximately distributed according to the standard normal distribution ;; much faster than nrand_f252(), should be suitable for most purposes when only several random numbers are needed ;; fixed252 nrand_fast(); int nrand_fast_f252() impure inline_ref { int t = touch(-3) << 253; ;; -6. as fixed252 repeat (12) { t += random() / 16; ;; add together 12 uniformly random numbers } return t; } ;; random number uniformly distributed in [0..1) ;; fixed248 random(); int fixed248::random() impure inline { return random() >> 8; } ;; random number with standard normal distribution ;; fixed248 nrand(); int fixed248::nrand() impure inline { return nrand_f252() ~>> 4; } ;; generates a random number approximately distributed according to the standard normal distribution ;; fixed248 nrand_fast(); int fixed248::nrand_fast() impure inline { return nrand_fast_f252() ~>> 4; }