/* This file is part of TON Blockchain Library. TON Blockchain Library is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. TON Blockchain Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with TON Blockchain Library. If not, see . */ #pragma once #include #include "fwd-declarations.h" #include "platform-utils.h" #include "src-file.h" #include "type-expr.h" #include "lexer.h" #include "symtable.h" /* * Here we introduce AST representation of Tolk source code. * Historically, in FunC, there was no AST: while lexing, symbols were registered, types were inferred, and so on. * There was no way to perform any more or less semantic analysis. * In Tolk, I've implemented parsing .tolk files into AST at first, and then converting this AST * into legacy representation (see pipe-ast-to-legacy.cpp). * In the future, more and more code analysis will be moved out of legacy to AST-level. * * From the user's point of view, all AST vertices are constant. All API is based on constancy. * Even though fields of vertex structs are public, they can't be modified, since vertices are accepted by const ref. * Generally, there are three ways of accepting a vertex: * * AnyV (= const ASTNodeBase*) * the only you can do with this vertex is to see v->type (ASTNodeType) and to cast via v->as() * * AnyExprV (= const ASTNodeExpressionBase*) * in contains expression-specific properties (lvalue/rvalue, inferred type) * * V (= const Vertex*) * a specific type of vertex, you can use its fields and methods * There is one way of creating a vertex: * * createV(...constructor_args) (= new Vertex(...)) * vertices are currently created on a heap, without any custom memory arena, just allocated and never deleted * The only way to modify a field is to use "mutate()" method (drops constancy, the only point of mutation) * and then to call "assign_*" method, like "assign_sym", "assign_src_file", etc. * * Having AnyV and knowing its node_type, a call * v->as() * will return a typed vertex. * There is also a shorthand v->try_as() which returns V or nullptr if types don't match: * if (auto v_int = v->try_as()) * Note, that there casts are NOT DYNAMIC. ASTNode is not a virtual base, it has no vtable. * So, as<...>() is just a compile-time casting, without any runtime overhead. * * Note, that ASTNodeBase doesn't store any vector of children. That's why there is no way to loop over * a random (unknown) vertex. Only a concrete Vertex stores its children (if any). * Hence, to iterate over a custom vertex (e.g., a function body), one should inherit some kind of ASTVisitor. * Besides read-only visiting, there is a "visit and replace" pattern. * See ast-visitor.h and ast-replacer.h. */ namespace tolk { enum ASTNodeType { ast_empty_statement, ast_empty_expression, ast_parenthesized_expression, ast_tensor, ast_tensor_square, ast_identifier, ast_int_const, ast_string_const, ast_bool_const, ast_null_keyword, ast_self_keyword, ast_argument, ast_argument_list, ast_function_call, ast_dot_method_call, ast_global_var_declaration, ast_constant_declaration, ast_underscore, ast_unary_operator, ast_binary_operator, ast_ternary_operator, ast_return_statement, ast_sequence, ast_repeat_statement, ast_while_statement, ast_do_while_statement, ast_throw_statement, ast_assert_statement, ast_try_catch_statement, ast_if_statement, ast_genericsT_item, ast_genericsT_list, ast_parameter, ast_parameter_list, ast_asm_body, ast_annotation, ast_function_declaration, ast_local_var, ast_local_vars_declaration, ast_tolk_required_version, ast_import_statement, ast_tolk_file, }; enum class AnnotationKind { inline_simple, inline_ref, method_id, pure, deprecated, unknown, }; template struct Vertex; template using V = const Vertex*; #define createV new Vertex struct UnexpectedASTNodeType final : std::exception { AnyV v_unexpected; std::string message; explicit UnexpectedASTNodeType(AnyV v_unexpected, const char* place_where); const char* what() const noexcept override { return message.c_str(); } }; // --------------------------------------------------------- struct ASTNodeBase { const ASTNodeType type; const SrcLocation loc; ASTNodeBase(ASTNodeType type, SrcLocation loc) : type(type), loc(loc) {} template V as() const { #ifdef TOLK_DEBUG if (type != node_type) { throw Fatal("v->as<...> to wrong node_type"); } #endif return static_cast>(this); } template V try_as() const { return type == node_type ? static_cast>(this) : nullptr; } #ifdef TOLK_DEBUG std::string to_debug_string() const { return to_debug_string(false); } std::string to_debug_string(bool colored) const; void debug_print() const; #endif GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD void error(const std::string& err_msg) const; }; struct ASTNodeExpressionBase : ASTNodeBase { TypeExpr* inferred_type = nullptr; // todo make it const bool is_rvalue: 1 = false; bool is_lvalue: 1 = false; ASTNodeExpressionBase* mutate() const { return const_cast(this); } void assign_inferred_type(TypeExpr* type); void assign_rvalue_true(); void assign_lvalue_true(); ASTNodeExpressionBase(ASTNodeType type, SrcLocation loc) : ASTNodeBase(type, loc) {} }; struct ASTNodeStatementBase : ASTNodeBase { ASTNodeStatementBase(ASTNodeType type, SrcLocation loc) : ASTNodeBase(type, loc) {} }; struct ASTExprLeaf : ASTNodeExpressionBase { friend class ASTVisitor; friend class ASTReplacer; protected: ASTExprLeaf(ASTNodeType type, SrcLocation loc) : ASTNodeExpressionBase(type, loc) {} }; struct ASTExprUnary : ASTNodeExpressionBase { friend class ASTVisitor; friend class ASTReplacer; protected: AnyExprV child; ASTExprUnary(ASTNodeType type, SrcLocation loc, AnyExprV child) : ASTNodeExpressionBase(type, loc), child(child) {} }; struct ASTExprBinary : ASTNodeExpressionBase { friend class ASTVisitor; friend class ASTReplacer; protected: AnyExprV lhs; AnyExprV rhs; ASTExprBinary(ASTNodeType type, SrcLocation loc, AnyExprV lhs, AnyExprV rhs) : ASTNodeExpressionBase(type, loc), lhs(lhs), rhs(rhs) {} }; struct ASTExprVararg : ASTNodeExpressionBase { friend class ASTVisitor; friend class ASTReplacer; protected: std::vector children; ASTExprVararg(ASTNodeType type, SrcLocation loc, std::vector children) : ASTNodeExpressionBase(type, loc), children(std::move(children)) {} public: int size() const { return static_cast(children.size()); } bool empty() const { return children.empty(); } }; struct ASTStatementUnary : ASTNodeStatementBase { friend class ASTVisitor; friend class ASTReplacer; protected: AnyV child; AnyExprV child_as_expr() const { return reinterpret_cast(child); } ASTStatementUnary(ASTNodeType type, SrcLocation loc, AnyV child) : ASTNodeStatementBase(type, loc), child(child) {} }; struct ASTStatementVararg : ASTNodeStatementBase { friend class ASTVisitor; friend class ASTReplacer; protected: std::vector children; AnyV child(int i) const { return children.at(i); } AnyExprV child_as_expr(int i) const { return reinterpret_cast(children.at(i)); } ASTStatementVararg(ASTNodeType type, SrcLocation loc, std::vector children) : ASTNodeStatementBase(type, loc), children(std::move(children)) {} public: int size() const { return static_cast(children.size()); } bool empty() const { return children.empty(); } }; struct ASTOtherLeaf : ASTNodeBase { friend class ASTVisitor; friend class ASTReplacer; protected: ASTOtherLeaf(ASTNodeType type, SrcLocation loc) : ASTNodeBase(type, loc) {} }; struct ASTOtherVararg : ASTNodeBase { friend class ASTVisitor; friend class ASTReplacer; protected: std::vector children; AnyV child(int i) const { return children.at(i); } ASTOtherVararg(ASTNodeType type, SrcLocation loc, std::vector children) : ASTNodeBase(type, loc), children(std::move(children)) {} public: int size() const { return static_cast(children.size()); } bool empty() const { return children.empty(); } }; // --------------------------------------------------------- template<> struct Vertex final : ASTStatementVararg { explicit Vertex(SrcLocation loc) : ASTStatementVararg(ast_empty_statement, loc, {}) {} }; template<> struct Vertex final : ASTExprLeaf { explicit Vertex(SrcLocation loc) : ASTExprLeaf(ast_empty_expression, loc) {} }; template<> struct Vertex final : ASTExprUnary { AnyExprV get_expr() const { return child; } Vertex(SrcLocation loc, AnyExprV expr) : ASTExprUnary(ast_parenthesized_expression, loc, expr) {} }; template<> struct Vertex final : ASTExprVararg { const std::vector& get_items() const { return children; } AnyExprV get_item(int i) const { return children.at(i); } Vertex(SrcLocation loc, std::vector items) : ASTExprVararg(ast_tensor, loc, std::move(items)) {} }; template<> struct Vertex final : ASTExprVararg { const std::vector& get_items() const { return children; } AnyExprV get_item(int i) const { return children.at(i); } Vertex(SrcLocation loc, std::vector items) : ASTExprVararg(ast_tensor_square, loc, std::move(items)) {} }; template<> struct Vertex final : ASTExprLeaf { const Symbol* sym = nullptr; // always filled (after resolved); points to local / global / function / constant std::string_view name; Vertex* mutate() const { return const_cast(this); } void assign_sym(const Symbol* sym); Vertex(SrcLocation loc, std::string_view name) : ASTExprLeaf(ast_identifier, loc) , name(name) {} }; template<> struct Vertex final : ASTExprLeaf { td::RefInt256 intval; // parsed value, 255 for "0xFF" std::string_view orig_str; // original "0xFF"; empty for nodes generated by compiler (e.g. in constant folding) Vertex(SrcLocation loc, td::RefInt256 intval, std::string_view orig_str) : ASTExprLeaf(ast_int_const, loc) , intval(std::move(intval)) , orig_str(orig_str) {} }; template<> struct Vertex final : ASTExprLeaf { std::string_view str_val; char modifier; bool is_bitslice() const { char m = modifier; return m == 0 || m == 's' || m == 'a'; } bool is_intval() const { char m = modifier; return m == 'u' || m == 'h' || m == 'H' || m == 'c'; } Vertex(SrcLocation loc, std::string_view str_val, char modifier) : ASTExprLeaf(ast_string_const, loc) , str_val(str_val), modifier(modifier) {} }; template<> struct Vertex final : ASTExprLeaf { bool bool_val; Vertex(SrcLocation loc, bool bool_val) : ASTExprLeaf(ast_bool_const, loc) , bool_val(bool_val) {} }; template<> struct Vertex final : ASTExprLeaf { explicit Vertex(SrcLocation loc) : ASTExprLeaf(ast_null_keyword, loc) {} }; template<> struct Vertex final : ASTExprLeaf { const LocalVarData* param_ref = nullptr; // filled after resolve identifiers, points to `self` parameter Vertex* mutate() const { return const_cast(this); } void assign_param_ref(const LocalVarData* self_param); explicit Vertex(SrcLocation loc) : ASTExprLeaf(ast_self_keyword, loc) {} }; template<> struct Vertex final : ASTExprUnary { bool passed_as_mutate; // when called `f(mutate arg)`, not `f(arg)` AnyExprV get_expr() const { return child; } Vertex(SrcLocation loc, AnyExprV expr, bool passed_as_mutate) : ASTExprUnary(ast_argument, loc, expr) , passed_as_mutate(passed_as_mutate) {} }; template<> struct Vertex final : ASTExprVararg { const std::vector& get_arguments() const { return children; } auto get_arg(int i) const { return children.at(i)->as(); } Vertex(SrcLocation loc, std::vector arguments) : ASTExprVararg(ast_argument_list, loc, std::move(arguments)) {} }; template<> struct Vertex final : ASTExprBinary { const FunctionData* fun_maybe = nullptr; // filled after resolve; remains nullptr for `localVar()` / `getF()()` AnyExprV get_called_f() const { return lhs; } auto get_arg_list() const { return rhs->as(); } int get_num_args() const { return rhs->as()->size(); } auto get_arg(int i) const { return rhs->as()->get_arg(i); } Vertex* mutate() const { return const_cast(this); } void assign_fun_ref(const FunctionData* fun_ref); Vertex(SrcLocation loc, AnyExprV lhs_f, V arguments) : ASTExprBinary(ast_function_call, loc, lhs_f, arguments) {} }; template<> struct Vertex final : ASTExprBinary { const FunctionData* fun_ref = nullptr; // points to global function (after resolve) std::string_view method_name; AnyExprV get_obj() const { return lhs; } auto get_arg_list() const { return rhs->as(); } int get_num_args() const { return rhs->as()->size(); } auto get_arg(int i) const { return rhs->as()->get_arg(i); } Vertex* mutate() const { return const_cast(this); } void assign_fun_ref(const FunctionData* fun_ref); Vertex(SrcLocation loc, std::string_view method_name, AnyExprV lhs, V arguments) : ASTExprBinary(ast_dot_method_call, loc, lhs, arguments) , method_name(method_name) {} }; template<> struct Vertex final : ASTStatementUnary { const GlobalVarData* var_ref = nullptr; // filled after register TypeExpr* declared_type; auto get_identifier() const { return child->as(); } Vertex* mutate() const { return const_cast(this); } void assign_var_ref(const GlobalVarData* var_ref); Vertex(SrcLocation loc, V name_identifier, TypeExpr* declared_type) : ASTStatementUnary(ast_global_var_declaration, loc, name_identifier) , declared_type(declared_type) {} }; template<> struct Vertex final : ASTStatementVararg { const GlobalConstData* const_ref = nullptr; // filled after register TypeExpr* declared_type; // may be nullptr auto get_identifier() const { return child(0)->as(); } AnyExprV get_init_value() const { return child_as_expr(1); } Vertex* mutate() const { return const_cast(this); } void assign_const_ref(const GlobalConstData* const_ref); Vertex(SrcLocation loc, V name_identifier, TypeExpr* declared_type, AnyExprV init_value) : ASTStatementVararg(ast_constant_declaration, loc, {name_identifier, init_value}) , declared_type(declared_type) {} }; template<> struct Vertex final : ASTExprLeaf { explicit Vertex(SrcLocation loc) : ASTExprLeaf(ast_underscore, loc) {} }; template<> struct Vertex final : ASTExprUnary { std::string_view operator_name; TokenType tok; AnyExprV get_rhs() const { return child; } Vertex(SrcLocation loc, std::string_view operator_name, TokenType tok, AnyExprV rhs) : ASTExprUnary(ast_unary_operator, loc, rhs) , operator_name(operator_name), tok(tok) {} }; template<> struct Vertex final : ASTExprBinary { std::string_view operator_name; TokenType tok; AnyExprV get_lhs() const { return lhs; } AnyExprV get_rhs() const { return rhs; } bool is_set_assign() const { TokenType t = tok; return t == tok_set_plus || t == tok_set_minus || t == tok_set_mul || t == tok_set_div || t == tok_set_mod || t == tok_set_lshift || t == tok_set_rshift || t == tok_set_bitwise_and || t == tok_set_bitwise_or || t == tok_set_bitwise_xor; } bool is_assign() const { return tok == tok_assign; } Vertex(SrcLocation loc, std::string_view operator_name, TokenType tok, AnyExprV lhs, AnyExprV rhs) : ASTExprBinary(ast_binary_operator, loc, lhs, rhs) , operator_name(operator_name), tok(tok) {} }; template<> struct Vertex final : ASTExprVararg { AnyExprV get_cond() const { return children.at(0); } AnyExprV get_when_true() const { return children.at(1); } AnyExprV get_when_false() const { return children.at(2); } Vertex(SrcLocation loc, AnyExprV cond, AnyExprV when_true, AnyExprV when_false) : ASTExprVararg(ast_ternary_operator, loc, {cond, when_true, when_false}) {} }; template<> struct Vertex : ASTStatementUnary { AnyExprV get_return_value() const { return child_as_expr(); } Vertex(SrcLocation loc, AnyExprV child) : ASTStatementUnary(ast_return_statement, loc, child) {} }; template<> struct Vertex final : ASTStatementVararg { SrcLocation loc_end; const std::vector& get_items() const { return children; } AnyV get_item(int i) const { return children.at(i); } Vertex(SrcLocation loc, SrcLocation loc_end, std::vector items) : ASTStatementVararg(ast_sequence, loc, std::move(items)) , loc_end(loc_end) {} }; template<> struct Vertex final : ASTStatementVararg { AnyExprV get_cond() const { return child_as_expr(0); } auto get_body() const { return child(1)->as(); } Vertex(SrcLocation loc, AnyExprV cond, V body) : ASTStatementVararg(ast_repeat_statement, loc, {cond, body}) {} }; template<> struct Vertex final : ASTStatementVararg { AnyExprV get_cond() const { return child_as_expr(0); } auto get_body() const { return child(1)->as(); } Vertex(SrcLocation loc, AnyExprV cond, V body) : ASTStatementVararg(ast_while_statement, loc, {cond, body}) {} }; template<> struct Vertex final : ASTStatementVararg { auto get_body() const { return child(0)->as(); } AnyExprV get_cond() const { return child_as_expr(1); } Vertex(SrcLocation loc, V body, AnyExprV cond) : ASTStatementVararg(ast_do_while_statement, loc, {body, cond}) {} }; template<> struct Vertex final : ASTStatementVararg { AnyExprV get_thrown_code() const { return child_as_expr(0); } AnyExprV get_thrown_arg() const { return child_as_expr(1); } // may be ast_empty bool has_thrown_arg() const { return child_as_expr(1)->type != ast_empty_expression; } Vertex(SrcLocation loc, AnyExprV thrown_code, AnyExprV thrown_arg) : ASTStatementVararg(ast_throw_statement, loc, {thrown_code, thrown_arg}) {} }; template<> struct Vertex final : ASTStatementVararg { AnyExprV get_cond() const { return child_as_expr(0); } AnyExprV get_thrown_code() const { return child_as_expr(1); } Vertex(SrcLocation loc, AnyExprV cond, AnyExprV thrown_code) : ASTStatementVararg(ast_assert_statement, loc, {cond, thrown_code}) {} }; template<> struct Vertex final : ASTStatementVararg { auto get_try_body() const { return children.at(0)->as(); } auto get_catch_expr() const { return children.at(1)->as(); } // (excNo, arg), always len 2 auto get_catch_body() const { return children.at(2)->as(); } Vertex(SrcLocation loc, V try_body, V catch_expr, V catch_body) : ASTStatementVararg(ast_try_catch_statement, loc, {try_body, catch_expr, catch_body}) {} }; template<> struct Vertex final : ASTStatementVararg { bool is_ifnot; // if(!cond), to generate more optimal fift code AnyExprV get_cond() const { return child_as_expr(0); } auto get_if_body() const { return child(1)->as(); } auto get_else_body() const { return child(2)->as(); } // always exists (when else omitted, it's empty) Vertex(SrcLocation loc, bool is_ifnot, AnyExprV cond, V if_body, V else_body) : ASTStatementVararg(ast_if_statement, loc, {cond, if_body, else_body}) , is_ifnot(is_ifnot) {} }; template<> struct Vertex final : ASTOtherLeaf { TypeExpr* created_type; // used to keep same pointer, since TypeExpr::new_var(i) always allocates std::string_view nameT; Vertex(SrcLocation loc, TypeExpr* created_type, std::string_view nameT) : ASTOtherLeaf(ast_genericsT_item, loc) , created_type(created_type), nameT(nameT) {} }; template<> struct Vertex final : ASTOtherVararg { std::vector get_items() const { return children; } auto get_item(int i) const { return children.at(i)->as(); } Vertex(SrcLocation loc, std::vector genericsT_items) : ASTOtherVararg(ast_genericsT_list, loc, std::move(genericsT_items)) {} int lookup_idx(std::string_view nameT) const; }; template<> struct Vertex final : ASTOtherLeaf { const LocalVarData* param_ref = nullptr; // filled after resolved std::string_view param_name; TypeExpr* declared_type; bool declared_as_mutate; // declared as `mutate param_name` bool is_underscore() const { return param_name.empty(); } Vertex* mutate() const { return const_cast(this); } void assign_param_ref(const LocalVarData* param_ref); Vertex(SrcLocation loc, std::string_view param_name, TypeExpr* declared_type, bool declared_as_mutate) : ASTOtherLeaf(ast_parameter, loc) , param_name(param_name), declared_type(declared_type), declared_as_mutate(declared_as_mutate) {} }; template<> struct Vertex final : ASTOtherVararg { const std::vector& get_params() const { return children; } auto get_param(int i) const { return children.at(i)->as(); } Vertex(SrcLocation loc, std::vector params) : ASTOtherVararg(ast_parameter_list, loc, std::move(params)) {} int lookup_idx(std::string_view param_name) const; int get_mutate_params_count() const; bool has_mutate_params() const { return get_mutate_params_count() > 0; } }; template<> struct Vertex final : ASTStatementVararg { std::vector arg_order; std::vector ret_order; const std::vector& get_asm_commands() const { return children; } // ast_string_const[] Vertex(SrcLocation loc, std::vector arg_order, std::vector ret_order, std::vector asm_commands) : ASTStatementVararg(ast_asm_body, loc, std::move(asm_commands)) , arg_order(std::move(arg_order)), ret_order(std::move(ret_order)) {} }; template<> struct Vertex final : ASTOtherVararg { AnnotationKind kind; auto get_arg() const { return child(0)->as(); } static AnnotationKind parse_kind(std::string_view name); Vertex(SrcLocation loc, AnnotationKind kind, V arg_probably_empty) : ASTOtherVararg(ast_annotation, loc, {arg_probably_empty}) , kind(kind) {} }; template<> struct Vertex final : ASTExprUnary { const Symbol* var_maybe = nullptr; // typically local var; can be global var if `var g_v redef`; remains nullptr for underscore TypeExpr* declared_type; bool is_immutable; // declared via 'val', not 'var' bool marked_as_redef; // var (existing_var redef, new_var: int) = ... AnyExprV get_identifier() const { return child; } // ast_identifier / ast_underscore Vertex* mutate() const { return const_cast(this); } void assign_var_ref(const Symbol* var_ref); Vertex(SrcLocation loc, AnyExprV name_identifier, TypeExpr* declared_type, bool is_immutable, bool marked_as_redef) : ASTExprUnary(ast_local_var, loc, name_identifier), declared_type(declared_type), is_immutable(is_immutable), marked_as_redef(marked_as_redef) {} }; template<> struct Vertex final : ASTStatementVararg { AnyExprV get_lhs() const { return child_as_expr(0); } // ast_local_var / ast_tensor / ast_tensor_square AnyExprV get_assigned_val() const { return child_as_expr(1); } Vertex(SrcLocation loc, AnyExprV lhs, AnyExprV assigned_val) : ASTStatementVararg(ast_local_vars_declaration, loc, {lhs, assigned_val}) {} }; template<> struct Vertex final : ASTOtherVararg { auto get_identifier() const { return child(0)->as(); } int get_num_params() const { return child(1)->as()->size(); } auto get_param_list() const { return child(1)->as(); } auto get_param(int i) const { return child(1)->as()->get_param(i); } AnyV get_body() const { return child(2); } // ast_sequence / ast_asm_body const FunctionData* fun_ref = nullptr; // filled after register TypeExpr* ret_type = nullptr; V genericsT_list = nullptr; bool is_entrypoint = false; bool marked_as_pure = false; bool marked_as_builtin = false; bool marked_as_get_method = false; bool marked_as_inline = false; bool marked_as_inline_ref = false; bool accepts_self = false; bool returns_self = false; V method_id = nullptr; bool is_asm_function() const { return children.at(2)->type == ast_asm_body; } bool is_regular_function() const { return children.at(2)->type == ast_sequence; } bool is_builtin_function() const { return marked_as_builtin; } Vertex* mutate() const { return const_cast(this); } void assign_fun_ref(const FunctionData* fun_ref); Vertex(SrcLocation loc, V name_identifier, V parameters, AnyV body) : ASTOtherVararg(ast_function_declaration, loc, {name_identifier, parameters, body}) {} }; template<> struct Vertex final : ASTOtherLeaf { std::string_view semver; Vertex(SrcLocation loc, std::string_view semver) : ASTOtherLeaf(ast_tolk_required_version, loc) , semver(semver) {} }; template<> struct Vertex final : ASTOtherVararg { const SrcFile* file = nullptr; // assigned after imports have been resolved auto get_file_leaf() const { return child(0)->as(); } std::string get_file_name() const { return static_cast(child(0)->as()->str_val); } Vertex* mutate() const { return const_cast(this); } void assign_src_file(const SrcFile* file); Vertex(SrcLocation loc, V file_name) : ASTOtherVararg(ast_import_statement, loc, {file_name}) {} }; template<> struct Vertex final : ASTOtherVararg { const SrcFile* const file; const std::vector& get_toplevel_declarations() const { return children; } Vertex(const SrcFile* file, std::vector toplevel_declarations) : ASTOtherVararg(ast_tolk_file, SrcLocation(file), std::move(toplevel_declarations)) , file(file) {} }; } // namespace tolk