/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see .
*/
#include "tolk.h"
#include "compiler-state.h"
using namespace std::literals::string_literals;
namespace tolk {
/*
*
* EXPRESSIONS
*
*/
Expr* Expr::copy() const {
auto res = new Expr{*this};
for (auto& arg : res->args) {
arg = arg->copy();
}
return res;
}
Expr::Expr(ExprCls c, sym_idx_t name_idx, std::initializer_list _arglist) : cls(c), args(std::move(_arglist)) {
sym = lookup_symbol(name_idx);
if (!sym) {
}
}
void Expr::deduce_type() {
if (e_type) {
return;
}
switch (cls) {
case _Apply: {
if (!sym) {
return;
}
SymValFunc* sym_val = dynamic_cast(sym->value);
if (!sym_val || !sym_val->get_type()) {
return;
}
std::vector arg_types;
arg_types.reserve(args.size());
for (const Expr* arg : args) {
arg_types.push_back(arg->e_type);
}
TypeExpr* fun_type = TypeExpr::new_map(TypeExpr::new_tensor(arg_types), TypeExpr::new_hole());
try {
unify(fun_type, sym_val->sym_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "cannot apply function " << sym->name() << " : " << sym_val->get_type() << " to arguments of type "
<< fun_type->args[0] << ": " << ue;
throw ParseError(here, os.str());
}
e_type = fun_type->args[1];
TypeExpr::remove_indirect(e_type);
return;
}
case _VarApply: {
tolk_assert(args.size() == 2);
TypeExpr* fun_type = TypeExpr::new_map(args[1]->e_type, TypeExpr::new_hole());
try {
unify(fun_type, args[0]->e_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "cannot apply expression of type " << args[0]->e_type << " to an expression of type " << args[1]->e_type
<< ": " << ue;
throw ParseError(here, os.str());
}
e_type = fun_type->args[1];
TypeExpr::remove_indirect(e_type);
return;
}
case _GrabMutatedVars: {
tolk_assert(args.size() == 2 && args[0]->cls == _Apply && sym);
SymValFunc* called_f = dynamic_cast(sym->value);
tolk_assert(called_f->has_mutate_params());
TypeExpr* sym_type = called_f->get_type();
if (sym_type->constr == TypeExpr::te_ForAll) {
TypeExpr::remove_forall(sym_type);
}
tolk_assert(sym_type->args[1]->constr == TypeExpr::te_Tensor);
e_type = sym_type->args[1]->args[sym_type->args[1]->args.size() - 1];
TypeExpr::remove_indirect(e_type);
return;
}
case _ReturnSelf: {
tolk_assert(args.size() == 2 && sym);
Expr* this_arg = args[1];
e_type = this_arg->e_type;
TypeExpr::remove_indirect(e_type);
return;
}
case _Letop: {
tolk_assert(args.size() == 2);
try {
// std::cerr << "in assignment: " << args[0]->e_type << " from " << args[1]->e_type << std::endl;
unify(args[0]->e_type, args[1]->e_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "cannot assign an expression of type " << args[1]->e_type << " to a variable or pattern of type "
<< args[0]->e_type << ": " << ue;
throw ParseError(here, os.str());
}
e_type = args[0]->e_type;
TypeExpr::remove_indirect(e_type);
return;
}
case _CondExpr: {
tolk_assert(args.size() == 3);
auto flag_type = TypeExpr::new_atomic(TypeExpr::_Int);
try {
unify(args[0]->e_type, flag_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "condition in a conditional expression has non-integer type " << args[0]->e_type << ": " << ue;
throw ParseError(here, os.str());
}
try {
unify(args[1]->e_type, args[2]->e_type);
} catch (UnifyError& ue) {
std::ostringstream os;
os << "the two variants in a conditional expression have different types " << args[1]->e_type << " and "
<< args[2]->e_type << " : " << ue;
throw ParseError(here, os.str());
}
e_type = args[1]->e_type;
TypeExpr::remove_indirect(e_type);
return;
}
default:
throw Fatal("unexpected cls=" + std::to_string(cls) + " in Expr::deduce_type()");
}
}
void Expr::define_new_vars(CodeBlob& code) {
switch (cls) {
case _Tensor:
case _MkTuple: {
for (Expr* item : args) {
item->define_new_vars(code);
}
break;
}
case _Var:
if (val < 0) {
val = code.create_var(e_type, sym->sym_idx, here);
sym->value->idx = val;
}
break;
case _Hole:
if (val < 0) {
val = code.create_tmp_var(e_type, here);
}
break;
default:
break;
}
}
void Expr::predefine_vars() {
switch (cls) {
case _Tensor:
case _MkTuple: {
for (Expr* item : args) {
item->predefine_vars();
}
break;
}
case _Var:
if (!sym) {
tolk_assert(val < 0 && here.is_defined());
sym = define_symbol(~val, false, here);
// std::cerr << "predefining variable " << symbols.get_name(~val) << std::endl;
if (!sym) {
throw ParseError{here, std::string{"redefined variable `"} + G.symbols.get_name(~val) + "`"};
}
sym->value = new SymValVariable(-1, e_type);
if (is_immutable()) {
dynamic_cast(sym->value)->flags |= SymValVariable::flagImmutable;
}
}
break;
default:
break;
}
}
var_idx_t Expr::new_tmp(CodeBlob& code) const {
return code.create_tmp_var(e_type, here);
}
void add_set_globs(CodeBlob& code, std::vector>& globs, SrcLocation here) {
for (const auto& p : globs) {
auto& op = code.emplace_back(here, Op::_SetGlob, std::vector{}, std::vector{ p.second }, p.first);
op.set_impure(code);
}
}
std::vector pre_compile_let(CodeBlob& code, Expr* lhs, Expr* rhs, SrcLocation here) {
if (lhs->is_mktuple()) {
if (rhs->is_mktuple()) {
return pre_compile_let(code, lhs->args.at(0), rhs->args.at(0), here);
}
auto right = rhs->pre_compile(code);
TypeExpr::remove_indirect(rhs->e_type);
auto unpacked_type = rhs->e_type->args.at(0);
std::vector tmp{code.create_tmp_var(unpacked_type, rhs->here)};
code.emplace_back(lhs->here, Op::_UnTuple, tmp, std::move(right));
auto tvar = new Expr{Expr::_Var, lhs->here};
tvar->set_val(tmp[0]);
tvar->set_location(rhs->here);
tvar->e_type = unpacked_type;
pre_compile_let(code, lhs->args.at(0), tvar, here);
return tmp;
}
auto right = rhs->pre_compile(code);
std::vector> globs;
auto left = lhs->pre_compile(code, &globs);
for (var_idx_t v : left) {
code.on_var_modification(v, here);
}
code.emplace_back(here, Op::_Let, std::move(left), right);
add_set_globs(code, globs, here);
return right;
}
std::vector pre_compile_tensor(const std::vector& args, CodeBlob &code,
std::vector> *lval_globs) {
const size_t n = args.size();
if (n == 0) { // just `()`
return {};
}
if (n == 1) { // just `(x)`: even if x is modified (e.g. `f(x=x+2)`), there are no next arguments
return args[0]->pre_compile(code, lval_globs);
}
std::vector> res_lists(n);
struct ModifiedVar {
size_t i, j;
std::unique_ptr* cur_ops; // `LET tmp = v_ij` will be inserted before this
};
std::vector modified_vars;
for (size_t i = 0; i < n; ++i) {
res_lists[i] = args[i]->pre_compile(code, lval_globs);
for (size_t j = 0; j < res_lists[i].size(); ++j) {
TmpVar& var = code.vars.at(res_lists[i][j]);
if (!lval_globs && !var.is_unnamed()) {
var.on_modification.push_back([&modified_vars, i, j, cur_ops = code.cur_ops, done = false](SrcLocation here) mutable {
if (!done) {
done = true;
modified_vars.push_back({i, j, cur_ops});
}
});
} else {
var.on_modification.push_back([](SrcLocation) {
});
}
}
}
for (const auto& list : res_lists) {
for (var_idx_t v : list) {
tolk_assert(!code.vars.at(v).on_modification.empty());
code.vars.at(v).on_modification.pop_back();
}
}
for (size_t idx = modified_vars.size(); idx--; ) {
const ModifiedVar &m = modified_vars[idx];
var_idx_t orig_v = res_lists[m.i][m.j];
var_idx_t tmp_v = code.create_tmp_var(code.vars[orig_v].v_type, code.vars[orig_v].where);
std::unique_ptr op = std::make_unique(code.vars[orig_v].where, Op::_Let);
op->left = {tmp_v};
op->right = {orig_v};
op->next = std::move((*m.cur_ops));
*m.cur_ops = std::move(op);
res_lists[m.i][m.j] = tmp_v;
}
std::vector res;
for (const auto& list : res_lists) {
res.insert(res.end(), list.cbegin(), list.cend());
}
return res;
}
std::vector Expr::pre_compile(CodeBlob& code, std::vector>* lval_globs) const {
if (lval_globs && !(cls == _Tensor || cls == _Var || cls == _Hole || cls == _GlobVar)) {
std::cerr << "lvalue expression constructor is " << cls << std::endl;
throw Fatal{"cannot compile lvalue expression with unknown constructor"};
}
switch (cls) {
case _Tensor: {
return pre_compile_tensor(args, code, lval_globs);
}
case _Apply: {
tolk_assert(sym);
std::vector res = pre_compile_tensor(args, code, lval_globs);;
auto rvect = new_tmp_vect(code);
auto& op = code.emplace_back(here, Op::_Call, rvect, res, sym);
if (flags & _IsImpure) {
op.set_impure(code);
}
return rvect;
}
case _GrabMutatedVars: {
SymValFunc* func_val = dynamic_cast(sym->value);
tolk_assert(func_val && func_val->has_mutate_params());
tolk_assert(args.size() == 2 && args[0]->cls == _Apply && args[1]->cls == _Tensor);
auto right = args[0]->pre_compile(code); // apply (returning function result and mutated)
std::vector> local_globs;
if (!lval_globs) {
lval_globs = &local_globs;
}
auto left = args[1]->pre_compile(code, lval_globs); // mutated (lvalue)
auto rvect = new_tmp_vect(code);
left.push_back(rvect[0]);
for (var_idx_t v : left) {
code.on_var_modification(v, here);
}
code.emplace_back(here, Op::_Let, std::move(left), std::move(right));
add_set_globs(code, local_globs, here);
return rvect;
}
case _ReturnSelf: {
tolk_assert(args.size() == 2 && sym);
Expr* this_arg = args[1];
auto right = args[0]->pre_compile(code);
return this_arg->pre_compile(code);
}
case _Var:
case _Hole:
if (val < 0) {
throw ParseError{here, "unexpected variable definition"};
}
return {val};
case _VarApply:
if (args[0]->cls == _GlobFunc) {
auto res = args[1]->pre_compile(code);
auto rvect = new_tmp_vect(code);
auto& op = code.emplace_back(here, Op::_Call, rvect, std::move(res), args[0]->sym);
if (args[0]->flags & _IsImpure) {
op.set_impure(code);
}
return rvect;
} else {
auto res = args[1]->pre_compile(code);
auto tfunc = args[0]->pre_compile(code);
if (tfunc.size() != 1) {
throw Fatal{"stack tuple used as a function"};
}
res.push_back(tfunc[0]);
auto rvect = new_tmp_vect(code);
code.emplace_back(here, Op::_CallInd, rvect, std::move(res));
return rvect;
}
case _Const: {
auto rvect = new_tmp_vect(code);
code.emplace_back(here, Op::_IntConst, rvect, intval);
return rvect;
}
case _GlobFunc:
case _GlobVar: {
if (auto fun_ref = dynamic_cast(sym->value)) {
fun_ref->flags |= SymValFunc::flagUsedAsNonCall;
if (!fun_ref->arg_order.empty() || !fun_ref->ret_order.empty()) {
throw ParseError(here, "saving `" + sym->name() + "` into a variable will most likely lead to invalid usage, since it changes the order of variables on the stack");
}
if (fun_ref->has_mutate_params()) {
throw ParseError(here, "saving `" + sym->name() + "` into a variable is impossible, since it has `mutate` parameters and thus can only be called directly");
}
}
auto rvect = new_tmp_vect(code);
if (lval_globs) {
lval_globs->push_back({ sym, rvect[0] });
return rvect;
} else {
code.emplace_back(here, Op::_GlobVar, rvect, std::vector{}, sym);
return rvect;
}
}
case _Letop: {
return pre_compile_let(code, args.at(0), args.at(1), here);
}
case _MkTuple: {
auto left = new_tmp_vect(code);
auto right = args[0]->pre_compile(code);
code.emplace_back(here, Op::_Tuple, left, std::move(right));
return left;
}
case _CondExpr: {
auto cond = args[0]->pre_compile(code);
tolk_assert(cond.size() == 1);
auto rvect = new_tmp_vect(code);
Op& if_op = code.emplace_back(here, Op::_If, cond);
code.push_set_cur(if_op.block0);
code.emplace_back(here, Op::_Let, rvect, args[1]->pre_compile(code));
code.close_pop_cur(args[1]->here);
code.push_set_cur(if_op.block1);
code.emplace_back(here, Op::_Let, rvect, args[2]->pre_compile(code));
code.close_pop_cur(args[2]->here);
return rvect;
}
case _SliceConst: {
auto rvect = new_tmp_vect(code);
code.emplace_back(here, Op::_SliceConst, rvect, strval);
return rvect;
}
default:
std::cerr << "expression constructor is " << cls << std::endl;
throw Fatal{"cannot compile expression with unknown constructor"};
}
}
} // namespace tolk