/* This file is part of TON Blockchain Library. TON Blockchain Library is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. TON Blockchain Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with TON Blockchain Library. If not, see . */ #include "tolk.h" #include "src-file.h" #include "ast.h" #include "ast-visitor.h" #include "type-system.h" #include "common/refint.h" #include "constant-evaluator.h" #include /* * This pipe is the last one operating AST: it transforms AST to IR. * IR is described as "Op" struct. So, here AST is transformed to Ops, and then all the rest "legacy" * kernel (initially forked from FunC) comes into play. * Up to this point, all types have been inferred, all validity checks have been passed, etc. * All properties in AST nodes are assigned and can be safely used (fun_ref, etc.). * So, if execution reaches this pass, the input is (almost) correct, and code generation should succeed. * (previously, there was a check for one variable modified twice like `(t.0, t.0) = rhs`, but after changing * execution order of assignment to "first lhs, then lhs", it was removed for several reasons) * * A noticeable property for IR generation is "target_type" used to extend/shrink stack. * Example: `var a: (int,int)? = null`. This `null` has inferred_type "null literal", but target_type "nullable tensor", * and when it's assigned, it's "expanded" from 1 stack slot to 3 (int + int + null flag). * Example: `fun analyze(t: (int,int)?)` and a call `analyze((1,2))`. `(1,2)` is `(int,int)` (2 stack slots), * and when passed to target (3 slots, one for null flag), this null flag is implicitly added (zero value). * Example: `nullableInt!`; for `nullableInt` inferred_type is `int?`, and target_type is `int` * (this doesn't lead to stack reorganization, but in case `nullableTensor!` does) * (inferred_type of `nullableInt!` is `int`, and its target_type depends on its usage). * The same mechanism will work for union types in the future. */ namespace tolk { class LValContext; std::vector pre_compile_expr(AnyExprV v, CodeBlob& code, TypePtr target_type = nullptr, LValContext* lval_ctx = nullptr); std::vector pre_compile_symbol(SrcLocation loc, const Symbol* sym, CodeBlob& code, LValContext* lval_ctx); void process_any_statement(AnyV v, CodeBlob& code); // The goal of VarsModificationWatcher is to detect such cases: `return (x, x += y, x)`. // Without any changes, ops will be { _Call $2 = +($0_x, $1_y); _Return $0_x, $2, $0_x } - incorrect // Correct will be to introduce tmp var: { _Let $3 = $0_x; _Call $2 = ...; _Return $3, $2, $0_x } // This "introducing" is done when compiling tensors, whereas this class allows to watch vars for modification. class VarsModificationWatcher { struct WatchedVar { var_idx_t ir_idx; std::function on_modification_callback; WatchedVar(var_idx_t ir_idx, std::function on_modification_callback) : ir_idx(ir_idx), on_modification_callback(std::move(on_modification_callback)) {} }; std::vector all_callbacks; public: bool empty() const { return all_callbacks.empty(); } void push_callback(var_idx_t ir_idx, std::function callback) { all_callbacks.emplace_back(ir_idx, std::move(callback)); } void pop_callback(var_idx_t ir_idx) { for (auto it = all_callbacks.rbegin(); it != all_callbacks.rend(); ++it) { if (it->ir_idx == ir_idx) { all_callbacks.erase((it + 1).base()); return; } } tolk_assert(false); } void trigger_callbacks(const std::vector& left_lval_indices, SrcLocation loc) const { for (const WatchedVar& w : all_callbacks) { for (var_idx_t changed_var : left_lval_indices) { if (w.ir_idx == changed_var) { w.on_modification_callback(loc, w.ir_idx); } } } } }; static VarsModificationWatcher vars_modification_watcher; // Main goal of LValContext is to handle non-primitive lvalues. At IR level, a usual local variable // exists, but on its change, something non-trivial should happen. // Example: `globalVar = 9` actually does `Const $5 = 9` + `Let $6 = $5` + `SetGlob "globVar" = $6` // Example: `tupleVar.0 = 9` actually does `Const $5 = 9` + `Let $6 = $5` + `Const $7 = 0` + `Call tupleSetAt($4, $6, $7)` // Of course, mixing globals with tuples should also be supported. // To achieve this, treat tupleObj inside "tupleObj.i" like "rvalue inside lvalue". // For instance, `globalTuple.0 = 9` reads global (like rvalue), assigns 9 to tmp var, modifies tuple, writes global. // Note, that tensors (not tuples) `tensorVar.0 = 9` do not emit anything special (unless global). class LValContext { // every global variable used as lvalue is registered here // example: `globalInt = 9`, implicit var is created `$tmp = 9`, and `SetGlob "globalInt" $tmp` is done after struct ModifiedGlobal { GlobalVarPtr glob_ref; std::vector lval_ir_idx; // typically 1, generally get_width_on_stack() of global var (tensors) // for 1-slot globals int/cell/slice, assigning to them is just SETGLOB // same for tensors, if they are fully rewritten in an expression: `gTensor = (5,6)` void apply_fully_rewrite(CodeBlob& code, SrcLocation loc) const { Op& op = code.emplace_back(loc, Op::_SetGlob, std::vector{}, lval_ir_idx, glob_ref); op.set_impure_flag(); } // for N-slot globals tensor/struct/union, assigning to their parts, like `gTensor.1 = 6` // we need to read gTensor as a whole (0-th and 1-th component), rewrite 1-th component, and SETGLOB a whole back void apply_partially_rewrite(CodeBlob& code, SrcLocation loc, std::vector&& was_modified_by_let) const { LValContext local_lval; local_lval.enter_rval_inside_lval(); std::vector local_ir_idx = pre_compile_symbol(loc, glob_ref, code, &local_lval); for (size_t i = 0; i < local_ir_idx.size(); ++i) { if (was_modified_by_let[i]) { code.emplace_back(loc, Op::_Let, std::vector{local_ir_idx[i]}, std::vector{lval_ir_idx[i]}); } } Op& op = code.emplace_back(loc, Op::_SetGlob, std::vector{}, local_ir_idx, glob_ref); op.set_impure_flag(); } }; // every tensor index, when a tensor is a global, is registered here (same for structs and fields) // example: `global v: (int, int); v.1 = 5`, implicit var is created `$tmp = 5`, and when it's modified, // we need to partially update w; essentially, apply_partially_rewrite() above will be called struct ModifiedFieldOfGlobal { AnyExprV tensor_obj; int index_at; std::vector lval_ir_idx; void apply(CodeBlob& code, SrcLocation loc) const { LValContext local_lval; local_lval.enter_rval_inside_lval(); std::vector obj_ir_idx = pre_compile_expr(tensor_obj, code, nullptr, &local_lval); const TypeDataTensor* t_tensor = tensor_obj->inferred_type->try_as(); tolk_assert(t_tensor); int stack_width = t_tensor->items[index_at]->get_width_on_stack(); int stack_offset = 0; for (int i = 0; i < index_at; ++i) { stack_offset += t_tensor->items[i]->get_width_on_stack(); } std::vector field_ir_idx = {obj_ir_idx.begin() + stack_offset, obj_ir_idx.begin() + stack_offset + stack_width}; tolk_assert(field_ir_idx.size() == lval_ir_idx.size()); vars_modification_watcher.trigger_callbacks(field_ir_idx, loc); code.emplace_back(loc, Op::_Let, field_ir_idx, lval_ir_idx); local_lval.after_let(std::move(field_ir_idx), code, loc); } }; // every tuple index used as lvalue is registered here // example: `t.0 = 9`, implicit var is created `$tmp = 9`, as well as `$tmp_idx = 0` and `tupleSetAt()` is done after // for `t.0.0` if t is `[[int, ...]]`, `tupleAt()` for it is done since it's rvalue, and `tupleSetAt()` is done 2 times struct ModifiedTupleIndex { AnyExprV tuple_obj; int index_at; std::vector lval_ir_idx; void apply(CodeBlob& code, SrcLocation loc) const { LValContext local_lval; local_lval.enter_rval_inside_lval(); std::vector tuple_ir_idx = pre_compile_expr(tuple_obj, code, nullptr, &local_lval); std::vector index_ir_idx = code.create_tmp_var(TypeDataInt::create(), loc, "(tuple-idx)"); code.emplace_back(loc, Op::_IntConst, index_ir_idx, td::make_refint(index_at)); vars_modification_watcher.trigger_callbacks(tuple_ir_idx, loc); FunctionPtr builtin_sym = lookup_global_symbol("tupleSetAt")->try_as(); code.emplace_back(loc, Op::_Call, std::vector{tuple_ir_idx}, std::vector{tuple_ir_idx[0], lval_ir_idx[0], index_ir_idx[0]}, builtin_sym); local_lval.after_let(std::move(tuple_ir_idx), code, loc); } }; int level_rval_inside_lval = 0; std::vector> modifications; static bool vector_contains(const std::vector& ir_vars, var_idx_t ir_idx) { for (var_idx_t var_in_vector : ir_vars) { if (var_in_vector == ir_idx) { return true; } } return false; } public: void enter_rval_inside_lval() { level_rval_inside_lval++; } void exit_rval_inside_lval() { level_rval_inside_lval--; } bool is_rval_inside_lval() const { return level_rval_inside_lval > 0; } void capture_global_modification(GlobalVarPtr glob_ref, std::vector lval_ir_idx) { modifications.emplace_back(ModifiedGlobal{glob_ref, std::move(lval_ir_idx)}); } void capture_field_of_global_modification(AnyExprV tensor_obj, int index_at, std::vector lval_ir_idx) { modifications.emplace_back(ModifiedFieldOfGlobal{tensor_obj, index_at, std::move(lval_ir_idx)}); } void capture_tuple_index_modification(AnyExprV tuple_obj, int index_at, std::vector lval_ir_idx) { modifications.emplace_back(ModifiedTupleIndex{tuple_obj, index_at, std::move(lval_ir_idx)}); } void after_let(std::vector&& let_left_vars, CodeBlob& code, SrcLocation loc) const { for (const auto& modification : modifications) { if (const auto* m_glob = std::get_if(&modification)) { int n_modified_by_let = 0; std::vector was_modified_by_let; was_modified_by_let.resize(m_glob->lval_ir_idx.size()); for (size_t i = 0; i < m_glob->lval_ir_idx.size(); ++i) { if (vector_contains(let_left_vars, m_glob->lval_ir_idx[i])) { was_modified_by_let[i] = true; n_modified_by_let++; } } if (n_modified_by_let == static_cast(m_glob->lval_ir_idx.size())) { m_glob->apply_fully_rewrite(code, loc); } else if (n_modified_by_let > 0) { m_glob->apply_partially_rewrite(code, loc, std::move(was_modified_by_let)); } } else if (const auto* m_tup = std::get_if(&modification)) { bool was_tuple_index_modified = false; for (var_idx_t field_ir_idx : m_tup->lval_ir_idx) { was_tuple_index_modified |= vector_contains(let_left_vars, field_ir_idx); } if (was_tuple_index_modified) { m_tup->apply(code, loc); } } else if (const auto* m_tens = std::get_if(&modification)) { bool was_tensor_index_modified = false; for (var_idx_t field_ir_idx : m_tens->lval_ir_idx) { was_tensor_index_modified |= vector_contains(let_left_vars, field_ir_idx); } if (was_tensor_index_modified) { m_tens->apply(code, loc); } } } } }; // given `{some_expr}!`, return some_expr static AnyExprV unwrap_not_null_operator(AnyExprV v) { while (auto v_notnull = v->try_as()) { v = v_notnull->get_expr(); } return v; } // given `{some_expr}.{i}`, check it for pattern `some_var.0` / `some_var.0.1` / etc. // return some_var if satisfies (it may be a local or a global var, a tensor or a tuple) // return nullptr otherwise: `f().0` / `(v = rhs).0` / `some_var.method().0` / etc. static V calc_sink_leftmost_obj(V v) { AnyExprV leftmost_obj = unwrap_not_null_operator(v->get_obj()); while (auto v_dot = leftmost_obj->try_as()) { if (!v_dot->is_target_indexed_access()) { break; } leftmost_obj = unwrap_not_null_operator(v_dot->get_obj()); } return leftmost_obj->type == ast_reference ? leftmost_obj->as() : nullptr; } static std::vector> pre_compile_tensor_inner(CodeBlob& code, const std::vector& args, const TypeDataTensor* tensor_target_type, LValContext* lval_ctx) { const int n = static_cast(args.size()); if (n == 0) { // just `()` return {}; } tolk_assert(!tensor_target_type || tensor_target_type->size() == n); if (n == 1) { // just `(x)`: even if x is modified (e.g. `f(x=x+2)`), there are no next arguments TypePtr child_target_type = tensor_target_type ? tensor_target_type->items[0] : nullptr; return {pre_compile_expr(args[0], code, child_target_type, lval_ctx)}; } // the purpose is to handle such cases: `return (x, x += y, x)` // without this, ops will be { _Call $2 = +($0_x, $1_y); _Return $0_x, $2, $0_x } - invalid // with this, ops will be { _Let $3 = $0_x; _Call $2 = ...; _Return $3, $2, $0_x } - valid, tmp var for x // how it works: for every arg, after transforming to ops, start tracking ir_idx inside it // on modification attempt, create Op::_Let to a tmp var and replace old ir_idx with tmp_idx in result struct WatchingVarList { std::vector watched_vars; std::vector> res_lists; explicit WatchingVarList(int n_args) { res_lists.reserve(n_args); } bool is_watched(var_idx_t ir_idx) const { return std::find(watched_vars.begin(), watched_vars.end(), ir_idx) != watched_vars.end(); } void add_and_watch_modifications(std::vector&& vars_of_ith_arg, CodeBlob& code) { for (var_idx_t ir_idx : vars_of_ith_arg) { if (!code.vars[ir_idx].name.empty() && !is_watched(ir_idx)) { watched_vars.emplace_back(ir_idx); vars_modification_watcher.push_callback(ir_idx, [this, &code](SrcLocation loc, var_idx_t ir_idx) { on_var_modified(ir_idx, loc, code); }); } } res_lists.emplace_back(std::move(vars_of_ith_arg)); } void on_var_modified(var_idx_t ir_idx, SrcLocation loc, CodeBlob& code) { tolk_assert(is_watched(ir_idx)); std::vector tmp_idx_arr = code.create_tmp_var(code.vars[ir_idx].v_type, loc, "(pre-modified)"); tolk_assert(tmp_idx_arr.size() == 1); var_idx_t tmp_idx = tmp_idx_arr[0]; code.emplace_back(loc, Op::_Let, std::vector{tmp_idx}, std::vector{ir_idx}); for (std::vector& prev_vars : res_lists) { std::replace(prev_vars.begin(), prev_vars.end(), ir_idx, tmp_idx); } } std::vector> clear_and_stop_watching() { for (var_idx_t ir_idx : watched_vars) { vars_modification_watcher.pop_callback(ir_idx); } watched_vars.clear(); return std::move(res_lists); } }; WatchingVarList watched_vars(n); for (int arg_idx = 0; arg_idx < n; ++arg_idx) { TypePtr child_target_type = tensor_target_type ? tensor_target_type->items[arg_idx] : nullptr; std::vector vars_of_ith_arg = pre_compile_expr(args[arg_idx], code, child_target_type, lval_ctx); watched_vars.add_and_watch_modifications(std::move(vars_of_ith_arg), code); } return watched_vars.clear_and_stop_watching(); } static std::vector pre_compile_tensor(CodeBlob& code, const std::vector& args, LValContext* lval_ctx = nullptr) { std::vector types_list; types_list.reserve(args.size()); for (AnyExprV item : args) { types_list.push_back(item->inferred_type); } const TypeDataTensor* tensor_target_type = TypeDataTensor::create(std::move(types_list))->try_as(); std::vector> res_lists = pre_compile_tensor_inner(code, args, tensor_target_type, lval_ctx); std::vector res; for (const std::vector& list : res_lists) { res.insert(res.end(), list.cbegin(), list.cend()); } return res; } static std::vector pre_compile_let(CodeBlob& code, AnyExprV lhs, AnyExprV rhs, SrcLocation loc) { // [lhs] = [rhs]; since type checking is ok, it's the same as "lhs = rhs" if (lhs->type == ast_typed_tuple && rhs->type == ast_typed_tuple) { // note: there are no type transitions (adding nullability flag, etc.), since only 1-slot elements allowed in tuples LValContext local_lval; std::vector left = pre_compile_tensor(code, lhs->as()->get_items(), &local_lval); vars_modification_watcher.trigger_callbacks(left, loc); std::vector rvect = pre_compile_tensor(code, rhs->as()->get_items()); code.emplace_back(loc, Op::_Let, left, rvect); local_lval.after_let(std::move(left), code, loc); std::vector right = code.create_tmp_var(TypeDataTuple::create(), loc, "(tuple)"); code.emplace_back(lhs->loc, Op::_Tuple, right, std::move(rvect)); return right; } // [lhs] = rhs; it's un-tuple to N left vars if (lhs->type == ast_typed_tuple) { LValContext local_lval; std::vector left = pre_compile_tensor(code, lhs->as()->get_items(), &local_lval); vars_modification_watcher.trigger_callbacks(left, loc); std::vector right = pre_compile_expr(rhs, code, nullptr); const TypeDataTypedTuple* inferred_tuple = rhs->inferred_type->try_as(); std::vector types_list = inferred_tuple->items; std::vector rvect = code.create_tmp_var(TypeDataTensor::create(std::move(types_list)), rhs->loc, "(unpack-tuple)"); code.emplace_back(lhs->loc, Op::_UnTuple, rvect, std::move(right)); code.emplace_back(loc, Op::_Let, left, rvect); local_lval.after_let(std::move(left), code, loc); return right; } // small optimization: `var x = rhs` or `local_var = rhs` (90% cases), LValContext not needed actually if (lhs->type == ast_local_var_lhs || (lhs->type == ast_reference && lhs->as()->sym->try_as())) { std::vector left = pre_compile_expr(lhs, code, nullptr); // effectively, local_var->ir_idx vars_modification_watcher.trigger_callbacks(left, loc); std::vector right = pre_compile_expr(rhs, code, lhs->inferred_type); code.emplace_back(loc, Op::_Let, std::move(left), right); return right; } // lhs = rhs LValContext local_lval; std::vector left = pre_compile_expr(lhs, code, nullptr, &local_lval); vars_modification_watcher.trigger_callbacks(left, loc); std::vector right = pre_compile_expr(rhs, code, lhs->inferred_type); code.emplace_back(loc, Op::_Let, left, right); local_lval.after_let(std::move(left), code, loc); return right; } static std::vector gen_op_call(CodeBlob& code, TypePtr ret_type, SrcLocation loc, std::vector&& args_vars, FunctionPtr fun_ref, const char* debug_desc) { std::vector rvect = code.create_tmp_var(ret_type, loc, debug_desc); Op& op = code.emplace_back(loc, Op::_Call, rvect, std::move(args_vars), fun_ref); if (!fun_ref->is_marked_as_pure()) { op.set_impure_flag(); } return rvect; } // "Transition to target (runtime) type" is the following process. // Imagine `fun analyze(t: (int,int)?)` and a call `analyze((1,2))`. // `(1,2)` (inferred_type) is 2 stack slots, but `t` (target_type) is 3 (one for null-flag). // So, this null flag should be implicitly added (non-zero, since a variable is not null). // Another example: `var t: (int, int)? = null`. // `null` (inferred_type) is 1 stack slots, but target_type is 3, we should add 2 nulls. // Another example: `var t1 = (1, null); var t2: (int, (int,int)?) = t1;`. // Then t1's rvect is 2 vars (1 and null), but t1's `null` should be converted to 3 stack slots (resulting in 4 total). // The same mechanism will work for union types in the future. // Here rvect is a list of IR vars for inferred_type, probably patched due to target_type. GNU_ATTRIBUTE_NOINLINE static std::vector transition_expr_to_runtime_type_impl(std::vector&& rvect, CodeBlob& code, TypePtr original_type, TypePtr target_type, SrcLocation loc) { // pass `T` to `T` // could occur for passing tensor `(..., T, ...)` to `(..., T, ...)` while traversing tensor's components if (target_type == original_type) { return rvect; } int target_w = target_type->get_width_on_stack(); const TypeDataNullable* t_nullable = target_type->try_as(); const TypeDataNullable* o_nullable = original_type->try_as(); // handle `never` // it may occur due to smart cast and in unreachable branches // we can't do anything reasonable here, but (hopefully) execution will never reach this point, and stack won't be polluted if (original_type == TypeDataNever::create()) { std::vector dummy_rvect; dummy_rvect.reserve(target_w); for (int i = 0; i < target_w; ++i) { dummy_rvect.push_back(code.create_tmp_var(TypeDataUnknown::create(), loc, "(never)")[0]); } return dummy_rvect; } if (target_type == TypeDataNever::create()) { return {}; } // pass `null` to `T?` // for primitives like `int?`, no changes in rvect, null occupies the same TVM slot // for tensors like `(int,int)?`, `null` is represented as N nulls + 1 null flag, insert N nulls if (t_nullable && original_type == TypeDataNullLiteral::create()) { tolk_assert(rvect.size() == 1); if (target_w == 1 && !t_nullable->is_primitive_nullable()) { // `null` to `()?` rvect = code.create_tmp_var(TypeDataInt::create(), loc, "(NNFlag)"); code.emplace_back(loc, Op::_IntConst, rvect, td::make_refint(0)); } if (target_w > 1) { FunctionPtr builtin_sym = lookup_global_symbol("__null")->try_as(); rvect.reserve(target_w + 1); for (int i = 1; i < target_w - 1; ++i) { std::vector ith_null = code.create_tmp_var(TypeDataNullLiteral::create(), loc, "(null-literal)"); code.emplace_back(loc, Op::_Call, ith_null, std::vector{}, builtin_sym); rvect.push_back(ith_null[0]); } std::vector null_flag_ir = code.create_tmp_var(TypeDataInt::create(), loc, "(NNFlag)"); var_idx_t null_flag_ir_idx = null_flag_ir[0]; code.emplace_back(loc, Op::_IntConst, std::move(null_flag_ir), td::make_refint(0)); rvect.push_back(null_flag_ir_idx); } return rvect; } // pass `T` to `T?` // for primitives like `int?`, no changes in rvect: `int` and `int?` occupy the same TVM slot (null is represented as NULL TVM value) // for passing `(int, int)` to `(int, int)?` / `(int, null)` to `(int, (int,int)?)?`, add a null flag equals to 0 if (t_nullable && !o_nullable) { if (!t_nullable->is_primitive_nullable()) { rvect = transition_expr_to_runtime_type_impl(std::move(rvect), code, original_type, t_nullable->inner, loc); tolk_assert(target_w == static_cast(rvect.size() + 1)); std::vector null_flag_ir = code.create_tmp_var(TypeDataInt::create(), loc, "(NNFlag)"); var_idx_t null_flag_ir_idx = null_flag_ir[0]; code.emplace_back(loc, Op::_IntConst, std::move(null_flag_ir), td::make_refint(-1)); rvect.push_back(null_flag_ir_idx); } return rvect; } // pass `T1?` to `T2?` // for example, `int8?` to `int16?` // transition inner types, leaving nullable flag unchanged for tensors if (t_nullable && o_nullable) { if (target_w > 1) { var_idx_t null_flag_ir_idx = rvect.back(); rvect.pop_back(); rvect = transition_expr_to_runtime_type_impl(std::move(rvect), code, o_nullable->inner, t_nullable->inner, loc); rvect.push_back(null_flag_ir_idx); } return rvect; } // pass `T?` to `null` // it may occur due to smart cast, when a `T?` variable is guaranteed to be always null // (for instance, always-null `(int,int)?` will be represented as 1 TVM NULL value, not 3) if (target_type == TypeDataNullLiteral::create() && original_type->can_rhs_be_assigned(target_type)) { tolk_assert(o_nullable || original_type == TypeDataUnknown::create()); if (o_nullable && !o_nullable->is_primitive_nullable()) { FunctionPtr builtin_sym = lookup_global_symbol("__null")->try_as(); rvect = code.create_tmp_var(TypeDataNullLiteral::create(), loc, "(null-literal)"); code.emplace_back(loc, Op::_Call, rvect, std::vector{}, builtin_sym); } return rvect; } // pass `T?` to `T` (or, more generally, `T1?` to `T2`) // it may occur due to operator `!` or smart cast // for primitives like `int?`, no changes in rvect // for passing `(int, int)?` to `(int, int)`, drop the null flag from the tail // for complex scenarios like passing `(int, (int,int)?)?` to `(int, null)`, recurse the call // (it may occur on `someF(t = (3,null))` when `(3,null)` at first targeted to lhs, but actually its result is rhs) if (!t_nullable && o_nullable) { if (!o_nullable->is_primitive_nullable()) { rvect.pop_back(); rvect = transition_expr_to_runtime_type_impl(std::move(rvect), code, original_type->try_as()->inner, target_type, loc); } return rvect; } // pass `bool` to `int` // in code, it's done via `as` operator, like `boolVar as int` // no changes in rvect, boolVar is guaranteed to be -1 or 0 at TVM level if (target_type == TypeDataInt::create() && original_type == TypeDataBool::create()) { return rvect; } // pass something to `unknown` // probably, it comes from `_ = rhs`, type of `_` is unknown, it's target_type of rhs // no changes in rvect if (target_type == TypeDataUnknown::create()) { return rvect; } // pass `unknown` to something // probably, it comes from `arg` in exception, it's inferred as `unknown` and could be cast to any value if (original_type == TypeDataUnknown::create()) { tolk_assert(rvect.size() == 1); return rvect; } // pass tensor to tensor, e.g. `(1, null)` to `(int, slice?)` / `(1, null)` to `(int, (int,int)?)` // every element of rhs tensor should be transitioned if (target_type->try_as() && original_type->try_as()) { const TypeDataTensor* target_tensor = target_type->try_as(); const TypeDataTensor* inferred_tensor = original_type->try_as(); tolk_assert(target_tensor->size() == inferred_tensor->size()); tolk_assert(inferred_tensor->get_width_on_stack() == static_cast(rvect.size())); std::vector result_rvect; result_rvect.reserve(target_w); int stack_offset = 0; for (int i = 0; i < inferred_tensor->size(); ++i) { int ith_w = inferred_tensor->items[i]->get_width_on_stack(); std::vector rvect_i{rvect.begin() + stack_offset, rvect.begin() + stack_offset + ith_w}; std::vector result_i = transition_expr_to_runtime_type_impl(std::move(rvect_i), code, inferred_tensor->items[i], target_tensor->items[i], loc); result_rvect.insert(result_rvect.end(), result_i.begin(), result_i.end()); stack_offset += ith_w; } return result_rvect; } // pass tuple to tuple, e.g. `[1, null]` to `[int, int?]` / `[1, null]` to `[int, [int?,int?]?]` // to changes to rvect, since tuples contain only 1-slot elements if (target_type->try_as() && original_type->try_as()) { tolk_assert(target_type->get_width_on_stack() == original_type->get_width_on_stack()); return rvect; } throw Fatal("unhandled transition_expr_to_runtime_type_impl() combination"); } // invoke the function above only if potentially needed to // (if an expression is targeted to another type) #ifndef TOLK_DEBUG GNU_ATTRIBUTE_ALWAYS_INLINE #endif static std::vector transition_to_target_type(std::vector&& rvect, CodeBlob& code, TypePtr target_type, AnyExprV v) { if (target_type != nullptr && target_type != v->inferred_type) { rvect = transition_expr_to_runtime_type_impl(std::move(rvect), code, v->inferred_type, target_type, v->loc); } return rvect; } // the second overload of the same function, invoke impl only when original and target differ #ifndef TOLK_DEBUG GNU_ATTRIBUTE_ALWAYS_INLINE #endif static std::vector transition_to_target_type(std::vector&& rvect, CodeBlob& code, TypePtr original_type, TypePtr target_type, SrcLocation loc) { if (target_type != original_type) { rvect = transition_expr_to_runtime_type_impl(std::move(rvect), code, original_type, target_type, loc); } return rvect; } std::vector pre_compile_symbol(SrcLocation loc, const Symbol* sym, CodeBlob& code, LValContext* lval_ctx) { if (GlobalVarPtr glob_ref = sym->try_as()) { // handle `globalVar = rhs` / `mutate globalVar` if (lval_ctx && !lval_ctx->is_rval_inside_lval()) { std::vector lval_ir_idx = code.create_tmp_var(glob_ref->declared_type, loc, "(lval-glob)"); lval_ctx->capture_global_modification(glob_ref, lval_ir_idx); return lval_ir_idx; } // `globalVar` is used for reading, just create local IR var to represent its value, Op GlobVar will fill it // note, that global tensors are stored as a tuple an unpacked to N vars on read, N determined by declared_type std::vector local_ir_idx = code.create_var(glob_ref->declared_type, loc, "g_" + glob_ref->name); code.emplace_back(loc, Op::_GlobVar, local_ir_idx, std::vector{}, glob_ref); if (lval_ctx) { // `globalVar.0 = rhs`, globalVar is rval inside lval lval_ctx->capture_global_modification(glob_ref, local_ir_idx); } return local_ir_idx; } if (GlobalConstPtr const_ref = sym->try_as()) { if (const_ref->is_int_const()) { std::vector rvect = code.create_tmp_var(TypeDataInt::create(), loc, "(glob-const)"); code.emplace_back(loc, Op::_IntConst, rvect, const_ref->as_int_const()); return rvect; } else { std::vector rvect = code.create_tmp_var(TypeDataSlice::create(), loc, "(glob-const)"); code.emplace_back(loc, Op::_SliceConst, rvect, const_ref->as_slice_const()); return rvect; } } if (FunctionPtr fun_ref = sym->try_as()) { std::vector rvect = code.create_tmp_var(fun_ref->inferred_full_type, loc, "(glob-var-fun)"); code.emplace_back(loc, Op::_GlobVar, rvect, std::vector{}, fun_ref); return rvect; } if (LocalVarPtr var_ref = sym->try_as()) { #ifdef TOLK_DEBUG tolk_assert(static_cast(var_ref->ir_idx.size()) == var_ref->declared_type->get_width_on_stack()); #endif return var_ref->ir_idx; } throw Fatal("pre_compile_symbol"); } static std::vector process_reference(V v, CodeBlob& code, TypePtr target_type, LValContext* lval_ctx) { std::vector rvect = pre_compile_symbol(v->loc, v->sym, code, lval_ctx); // a local variable might be smart cast at this point, for example we're in `if (v != null)` // it means that we must drop the null flag (if it's a tensor), or maybe perform other stack transformations // (from original var_ref->ir_idx to fit smart cast) if (LocalVarPtr var_ref = v->sym->try_as()) { // note, inside `if (v != null)` when `v` is used for writing, v->inferred_type is an original (declared_type) // (smart casts apply only for rvalue, not for lvalue, we don't check it here, it's a property of inferring) rvect = transition_to_target_type(std::move(rvect), code, var_ref->declared_type, v->inferred_type, v->loc); } return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_assignment(V v, CodeBlob& code, TypePtr target_type) { AnyExprV lhs = v->get_lhs(); AnyExprV rhs = v->get_rhs(); if (auto lhs_decl = lhs->try_as()) { std::vector rvect = pre_compile_let(code, lhs_decl->get_expr(), rhs, v->loc); return transition_to_target_type(std::move(rvect), code, target_type, v); } else { std::vector rvect = pre_compile_let(code, lhs, rhs, v->loc); // now rvect contains rhs IR vars constructed to fit lhs (for correct assignment, lhs type was target_type for rhs) // but the type of `lhs = rhs` is RHS (see type inferring), so rvect now should fit rhs->inferred_type (= v->inferred_type) // example: `t1 = t2 = null`, we're at `t2 = null`, earlier declared t1: `int?`, t2: `(int,int)?` // currently "null" matches t2 (3 null slots), but type of this assignment is "plain null" (1 slot) assigned later to t1 rvect = transition_to_target_type(std::move(rvect), code, lhs->inferred_type, v->inferred_type, v->loc); return transition_to_target_type(std::move(rvect), code, target_type, v); } } static std::vector process_set_assign(V v, CodeBlob& code, TypePtr target_type) { // for "a += b", emulate "a = a + b" // seems not beautiful, but it works; probably, this transformation should be done at AST level in advance std::string_view calc_operator = v->operator_name; // "+" for operator += auto v_apply = createV(v->loc, calc_operator, static_cast(v->tok - 1), v->get_lhs(), v->get_rhs()); v_apply->assign_inferred_type(v->inferred_type); v_apply->assign_fun_ref(v->fun_ref); std::vector rvect = pre_compile_let(code, v->get_lhs(), v_apply, v->loc); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_binary_operator(V v, CodeBlob& code, TypePtr target_type) { TokenType t = v->tok; if (v->fun_ref) { // almost all operators, fun_ref was assigned at type inferring std::vector args_vars = pre_compile_tensor(code, {v->get_lhs(), v->get_rhs()}); std::vector rvect = gen_op_call(code, v->inferred_type, v->loc, std::move(args_vars), v->fun_ref, "(binary-op)"); return transition_to_target_type(std::move(rvect), code, target_type, v); } if (t == tok_logical_and || t == tok_logical_or) { // do the following transformations: // a && b -> a ? (b != 0) : 0 // a || b -> a ? 1 : (b != 0) AnyExprV v_0 = createV(v->loc, td::make_refint(0), "0"); v_0->mutate()->assign_inferred_type(TypeDataInt::create()); AnyExprV v_1 = createV(v->loc, td::make_refint(-1), "-1"); v_1->mutate()->assign_inferred_type(TypeDataInt::create()); auto v_b_ne_0 = createV(v->loc, "!=", tok_neq, v->get_rhs(), v_0); v_b_ne_0->mutate()->assign_inferred_type(TypeDataInt::create()); v_b_ne_0->mutate()->assign_fun_ref(lookup_global_symbol("_!=_")->try_as()); std::vector cond = pre_compile_expr(v->get_lhs(), code, nullptr); tolk_assert(cond.size() == 1); std::vector rvect = code.create_tmp_var(v->inferred_type, v->loc, "(ternary)"); Op& if_op = code.emplace_back(v->loc, Op::_If, cond); code.push_set_cur(if_op.block0); code.emplace_back(v->loc, Op::_Let, rvect, pre_compile_expr(t == tok_logical_and ? v_b_ne_0 : v_1, code, nullptr)); code.close_pop_cur(v->loc); code.push_set_cur(if_op.block1); code.emplace_back(v->loc, Op::_Let, rvect, pre_compile_expr(t == tok_logical_and ? v_0 : v_b_ne_0, code, nullptr)); code.close_pop_cur(v->loc); return transition_to_target_type(std::move(rvect), code, target_type, v); } throw UnexpectedASTNodeType(v, "process_binary_operator"); } static std::vector process_unary_operator(V v, CodeBlob& code, TypePtr target_type) { std::vector rhs_vars = pre_compile_expr(v->get_rhs(), code, nullptr); std::vector rvect = gen_op_call(code, v->inferred_type, v->loc, std::move(rhs_vars), v->fun_ref, "(unary-op)"); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_ternary_operator(V v, CodeBlob& code, TypePtr target_type) { std::vector cond = pre_compile_expr(v->get_cond(), code, nullptr); tolk_assert(cond.size() == 1); std::vector rvect = code.create_tmp_var(v->inferred_type, v->loc, "(cond)"); if (v->get_cond()->is_always_true) { code.emplace_back(v->get_when_true()->loc, Op::_Let, rvect, pre_compile_expr(v->get_when_true(), code, v->inferred_type)); } else if (v->get_cond()->is_always_false) { code.emplace_back(v->get_when_false()->loc, Op::_Let, rvect, pre_compile_expr(v->get_when_false(), code, v->inferred_type)); } else { Op& if_op = code.emplace_back(v->loc, Op::_If, cond); code.push_set_cur(if_op.block0); code.emplace_back(v->get_when_true()->loc, Op::_Let, rvect, pre_compile_expr(v->get_when_true(), code, v->inferred_type)); code.close_pop_cur(v->get_when_true()->loc); code.push_set_cur(if_op.block1); code.emplace_back(v->get_when_false()->loc, Op::_Let, rvect, pre_compile_expr(v->get_when_false(), code, v->inferred_type)); code.close_pop_cur(v->get_when_false()->loc); } return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_cast_as_operator(V v, CodeBlob& code, TypePtr target_type, LValContext* lval_ctx) { TypePtr child_target_type = v->cast_to_type; std::vector rvect = pre_compile_expr(v->get_expr(), code, child_target_type, lval_ctx); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_not_null_operator(V v, CodeBlob& code, TypePtr target_type, LValContext* lval_ctx) { TypePtr child_target_type = v->get_expr()->inferred_type; if (const auto* as_nullable = child_target_type->try_as()) { child_target_type = as_nullable->inner; } std::vector rvect = pre_compile_expr(v->get_expr(), code, child_target_type, lval_ctx); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_is_null_check(V v, CodeBlob& code, TypePtr target_type) { std::vector expr_ir_idx = pre_compile_expr(v->get_expr(), code, nullptr); std::vector isnull_ir_idx = code.create_tmp_var(TypeDataBool::create(), v->loc, "(is-null)"); TypePtr expr_type = v->get_expr()->inferred_type; if (const TypeDataNullable* t_nullable = expr_type->try_as()) { if (!t_nullable->is_primitive_nullable()) { std::vector zero_ir_idx = code.create_tmp_var(TypeDataInt::create(), v->loc, "(zero)"); code.emplace_back(v->loc, Op::_IntConst, zero_ir_idx, td::make_refint(0)); FunctionPtr eq_sym = lookup_global_symbol("_==_")->try_as(); code.emplace_back(v->loc, Op::_Call, isnull_ir_idx, std::vector{expr_ir_idx.back(), zero_ir_idx[0]}, eq_sym); } else { FunctionPtr builtin_sym = lookup_global_symbol("__isNull")->try_as(); code.emplace_back(v->loc, Op::_Call, isnull_ir_idx, expr_ir_idx, builtin_sym); } } else { bool always_null = expr_type == TypeDataNullLiteral::create(); code.emplace_back(v->loc, Op::_IntConst, isnull_ir_idx, td::make_refint(always_null ? -1 : 0)); } if (v->is_negated) { FunctionPtr not_sym = lookup_global_symbol("!b_")->try_as(); code.emplace_back(v->loc, Op::_Call, isnull_ir_idx, std::vector{isnull_ir_idx}, not_sym); } return transition_to_target_type(std::move(isnull_ir_idx), code, target_type, v); } static std::vector process_dot_access(V v, CodeBlob& code, TypePtr target_type, LValContext* lval_ctx) { // it's NOT a method call `t.tupleSize()` (since such cases are handled by process_function_call) // it's `t.0`, `getUser().id`, and `t.tupleSize` (as a reference, not as a call) if (!v->is_target_fun_ref()) { TypePtr obj_type = v->get_obj()->inferred_type; int index_at = std::get(v->target); // `tensorVar.0` if (const auto* t_tensor = obj_type->try_as()) { // handle `tensorVar.0 = rhs` if tensors is a global, special case, then the global will be read on demand if (lval_ctx && !lval_ctx->is_rval_inside_lval()) { if (auto sink = calc_sink_leftmost_obj(v); sink && sink->sym->try_as()) { std::vector lval_ir_idx = code.create_tmp_var(v->inferred_type, v->loc, "(lval-global-tensor)"); lval_ctx->capture_field_of_global_modification(v->get_obj(), index_at, lval_ir_idx); return lval_ir_idx; } } // since a tensor of N elems are N vars on a stack actually, calculate offset std::vector lhs_vars = pre_compile_expr(v->get_obj(), code, nullptr, lval_ctx); int stack_width = t_tensor->items[index_at]->get_width_on_stack(); int stack_offset = 0; for (int i = 0; i < index_at; ++i) { stack_offset += t_tensor->items[i]->get_width_on_stack(); } std::vector rvect{lhs_vars.begin() + stack_offset, lhs_vars.begin() + stack_offset + stack_width}; // a tensor index might be smart cast at this point, for example we're in `if (t.1 != null)` // it means that we must drop the null flag (if `t.1` is a tensor), or maybe perform other stack transformations // (from original rvect = (vars of t.1) to fit smart cast) rvect = transition_to_target_type(std::move(rvect), code, t_tensor->items[index_at], v->inferred_type, v->loc); return transition_to_target_type(std::move(rvect), code, target_type, v); } // `tupleVar.0` if (obj_type->try_as() || obj_type->try_as()) { // handle `tupleVar.0 = rhs`, "0 SETINDEX" will be called when this was is modified if (lval_ctx && !lval_ctx->is_rval_inside_lval() && calc_sink_leftmost_obj(v)) { std::vector lval_ir_idx = code.create_tmp_var(v->inferred_type, v->loc, "(lval-tuple-field)"); lval_ctx->capture_tuple_index_modification(v->get_obj(), index_at, lval_ir_idx); return lval_ir_idx; } // `tupleVar.0` as rvalue: the same as "tupleAt(tupleVar, 0)" written in terms of IR vars std::vector tuple_ir_idx = pre_compile_expr(v->get_obj(), code); std::vector index_ir_idx = code.create_tmp_var(TypeDataInt::create(), v->get_identifier()->loc, "(tuple-idx)"); code.emplace_back(v->loc, Op::_IntConst, index_ir_idx, td::make_refint(index_at)); std::vector field_ir_idx = code.create_tmp_var(v->inferred_type, v->loc, "(tuple-field)"); tolk_assert(tuple_ir_idx.size() == 1 && field_ir_idx.size() == 1); // tuples contain only 1-slot values FunctionPtr builtin_sym = lookup_global_symbol("tupleAt")->try_as(); code.emplace_back(v->loc, Op::_Call, field_ir_idx, std::vector{tuple_ir_idx[0], index_ir_idx[0]}, builtin_sym); if (lval_ctx && calc_sink_leftmost_obj(v)) { // `tupleVar.0.1 = rhs`, then `tupleVar.0` is rval inside lval lval_ctx->capture_tuple_index_modification(v->get_obj(), index_at, field_ir_idx); } // like tensor index, `tupleVar.1` also might be smart cast, for example we're in `if (tupleVar.1 != null)` // but since tuple's elements are only 1-slot width (no tensors and unions), no stack transformations required return transition_to_target_type(std::move(field_ir_idx), code, target_type, v); } tolk_assert(false); } // okay, v->target refs a function, like `obj.method`, filled at type inferring // (currently, nothing except a global function can be referenced, no object-scope methods exist) FunctionPtr fun_ref = std::get(v->target); tolk_assert(fun_ref); std::vector rvect = pre_compile_symbol(v->loc, fun_ref, code, lval_ctx); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_function_call(V v, CodeBlob& code, TypePtr target_type) { // v is `globalF(args)` / `globalF(args)` / `obj.method(args)` / `local_var(args)` / `getF()(args)` FunctionPtr fun_ref = v->fun_maybe; if (!fun_ref) { // it's `local_var(args)`, treat args like a tensor: // 1) when variables are modified like `local_var(x, x += 2, x)`, regular mechanism of watching automatically works // 2) when `null` is passed to `(int, int)?`, or any other type transitions, it automatically works std::vector args; args.reserve(v->get_num_args()); for (int i = 0; i < v->get_num_args(); ++i) { args.push_back(v->get_arg(i)->get_expr()); } std::vector params_types = v->get_callee()->inferred_type->try_as()->params_types; const TypeDataTensor* tensor_tt = TypeDataTensor::create(std::move(params_types))->try_as(); std::vector> vars_per_arg = pre_compile_tensor_inner(code, args, tensor_tt, nullptr); std::vector args_vars; for (const std::vector& list : vars_per_arg) { args_vars.insert(args_vars.end(), list.cbegin(), list.cend()); } std::vector tfunc = pre_compile_expr(v->get_callee(), code, nullptr); tolk_assert(tfunc.size() == 1); args_vars.push_back(tfunc[0]); std::vector rvect = code.create_tmp_var(v->inferred_type, v->loc, "(call-ind)"); Op& op = code.emplace_back(v->loc, Op::_CallInd, rvect, std::move(args_vars)); op.set_impure_flag(); return transition_to_target_type(std::move(rvect), code, target_type, v); } int delta_self = v->is_dot_call(); AnyExprV obj_leftmost = nullptr; std::vector args; args.reserve(delta_self + v->get_num_args()); if (delta_self) { args.push_back(v->get_dot_obj()); obj_leftmost = v->get_dot_obj(); while (obj_leftmost->type == ast_function_call && obj_leftmost->as()->is_dot_call() && obj_leftmost->as()->fun_maybe && obj_leftmost->as()->fun_maybe->does_return_self()) { obj_leftmost = obj_leftmost->as()->get_dot_obj(); } } for (int i = 0; i < v->get_num_args(); ++i) { args.push_back(v->get_arg(i)->get_expr()); } // the purpose of tensor_tt ("tensor target type") is to transition `null` to `(int, int)?` and so on // the purpose of calling `pre_compile_tensor_inner` is to have 0-th IR vars to handle return self std::vector params_types = fun_ref->inferred_full_type->try_as()->params_types; const TypeDataTensor* tensor_tt = TypeDataTensor::create(std::move(params_types))->try_as(); std::vector> vars_per_arg = pre_compile_tensor_inner(code, args, tensor_tt, nullptr); TypePtr op_call_type = v->inferred_type; TypePtr real_ret_type = v->inferred_type; if (delta_self && fun_ref->does_return_self()) { real_ret_type = TypeDataVoid::create(); if (!fun_ref->parameters[0].is_mutate_parameter()) { op_call_type = TypeDataVoid::create(); } } if (fun_ref->has_mutate_params()) { std::vector types_list; for (int i = 0; i < delta_self + v->get_num_args(); ++i) { if (fun_ref->parameters[i].is_mutate_parameter()) { types_list.push_back(fun_ref->parameters[i].declared_type); } } types_list.push_back(real_ret_type); op_call_type = TypeDataTensor::create(std::move(types_list)); } std::vector args_vars; for (const std::vector& list : vars_per_arg) { args_vars.insert(args_vars.end(), list.cbegin(), list.cend()); } std::vector rvect_apply = gen_op_call(code, op_call_type, v->loc, std::move(args_vars), fun_ref, "(fun-call)"); if (fun_ref->has_mutate_params()) { LValContext local_lval; std::vector left; for (int i = 0; i < delta_self + v->get_num_args(); ++i) { if (fun_ref->parameters[i].is_mutate_parameter()) { AnyExprV arg_i = obj_leftmost && i == 0 ? obj_leftmost : args[i]; tolk_assert(arg_i->is_lvalue || i == 0); if (arg_i->is_lvalue) { std::vector ith_var_idx = pre_compile_expr(arg_i, code, nullptr, &local_lval); left.insert(left.end(), ith_var_idx.begin(), ith_var_idx.end()); } else { left.insert(left.end(), vars_per_arg[0].begin(), vars_per_arg[0].end()); } } } std::vector rvect = code.create_tmp_var(real_ret_type, v->loc, "(fun-call)"); left.insert(left.end(), rvect.begin(), rvect.end()); vars_modification_watcher.trigger_callbacks(left, v->loc); code.emplace_back(v->loc, Op::_Let, left, rvect_apply); local_lval.after_let(std::move(left), code, v->loc); rvect_apply = rvect; } if (obj_leftmost && fun_ref->does_return_self()) { if (obj_leftmost->is_lvalue) { // to handle if obj is global var, potentially re-assigned inside a chain rvect_apply = pre_compile_expr(obj_leftmost, code, nullptr); } else { // temporary object, not lvalue, pre_compile_expr rvect_apply = vars_per_arg[0]; } } return transition_to_target_type(std::move(rvect_apply), code, target_type, v); } static std::vector process_tensor(V v, CodeBlob& code, TypePtr target_type, LValContext* lval_ctx) { // tensor is compiled "as is", for example `(1, null)` occupies 2 slots // and if assigned/passed to something other, like `(int, (int,int)?)`, a whole tensor is transitioned, it works std::vector rvect = pre_compile_tensor(code, v->get_items(), lval_ctx); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_typed_tuple(V v, CodeBlob& code, TypePtr target_type, LValContext* lval_ctx) { if (lval_ctx) { // todo some time, make "var (a, [b,c]) = (1, [2,3])" work v->error("[...] can not be used as lvalue here"); } std::vector left = code.create_tmp_var(v->inferred_type, v->loc, "(pack-tuple)"); std::vector right = pre_compile_tensor(code, v->get_items(), lval_ctx); code.emplace_back(v->loc, Op::_Tuple, left, std::move(right)); return transition_to_target_type(std::move(left), code, target_type, v); } static std::vector process_int_const(V v, CodeBlob& code, TypePtr target_type) { std::vector rvect = code.create_tmp_var(v->inferred_type, v->loc, "(int-const)"); code.emplace_back(v->loc, Op::_IntConst, rvect, v->intval); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_string_const(V v, CodeBlob& code, TypePtr target_type) { ConstantValue value = eval_const_init_value(v); std::vector rvect = code.create_tmp_var(v->inferred_type, v->loc, "(str-const)"); if (value.is_int()) { code.emplace_back(v->loc, Op::_IntConst, rvect, value.as_int()); } else { code.emplace_back(v->loc, Op::_SliceConst, rvect, value.as_slice()); } return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_bool_const(V v, CodeBlob& code, TypePtr target_type) { FunctionPtr builtin_sym = lookup_global_symbol(v->bool_val ? "__true" : "__false")->try_as(); std::vector rvect = gen_op_call(code, v->inferred_type, v->loc, {}, builtin_sym, "(bool-const)"); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_null_keyword(V v, CodeBlob& code, TypePtr target_type) { FunctionPtr builtin_sym = lookup_global_symbol("__null")->try_as(); std::vector rvect = gen_op_call(code, v->inferred_type, v->loc, {}, builtin_sym, "(null-literal)"); return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_local_var(V v, CodeBlob& code, TypePtr target_type) { if (v->marked_as_redef) { std::vector rvect = pre_compile_symbol(v->loc, v->var_ref, code, nullptr); return transition_to_target_type(std::move(rvect), code, target_type, v); } tolk_assert(v->var_ref->ir_idx.empty()); v->var_ref->mutate()->assign_ir_idx(code.create_var(v->inferred_type, v->loc, v->var_ref->name)); std::vector rvect = v->var_ref->ir_idx; return transition_to_target_type(std::move(rvect), code, target_type, v); } static std::vector process_local_vars_declaration(V, CodeBlob&) { // it can not appear as a standalone expression // `var ... = rhs` is handled by ast_assign tolk_assert(false); } static std::vector process_underscore(V v, CodeBlob& code) { // when _ is used as left side of assignment, like `(cs, _) = cs.loadAndReturn()` return code.create_tmp_var(v->inferred_type, v->loc, "(underscore)"); } std::vector pre_compile_expr(AnyExprV v, CodeBlob& code, TypePtr target_type, LValContext* lval_ctx) { switch (v->type) { case ast_reference: return process_reference(v->as(), code, target_type, lval_ctx); case ast_assign: return process_assignment(v->as(), code, target_type); case ast_set_assign: return process_set_assign(v->as(), code, target_type); case ast_binary_operator: return process_binary_operator(v->as(), code, target_type); case ast_unary_operator: return process_unary_operator(v->as(), code, target_type); case ast_ternary_operator: return process_ternary_operator(v->as(), code, target_type); case ast_cast_as_operator: return process_cast_as_operator(v->as(), code, target_type, lval_ctx); case ast_not_null_operator: return process_not_null_operator(v->as(), code, target_type, lval_ctx); case ast_is_null_check: return process_is_null_check(v->as(), code, target_type); case ast_dot_access: return process_dot_access(v->as(), code, target_type, lval_ctx); case ast_function_call: return process_function_call(v->as(), code, target_type); case ast_parenthesized_expression: return pre_compile_expr(v->as()->get_expr(), code, target_type, lval_ctx); case ast_tensor: return process_tensor(v->as(), code, target_type, lval_ctx); case ast_typed_tuple: return process_typed_tuple(v->as(), code, target_type, lval_ctx); case ast_int_const: return process_int_const(v->as(), code, target_type); case ast_string_const: return process_string_const(v->as(), code, target_type); case ast_bool_const: return process_bool_const(v->as(), code, target_type); case ast_null_keyword: return process_null_keyword(v->as(), code, target_type); case ast_local_var_lhs: return process_local_var(v->as(), code, target_type); case ast_local_vars_declaration: return process_local_vars_declaration(v->as(), code); case ast_underscore: return process_underscore(v->as(), code); default: throw UnexpectedASTNodeType(v, "pre_compile_expr"); } } static void process_sequence(V v, CodeBlob& code) { for (AnyV item : v->get_items()) { process_any_statement(item, code); } } static void process_assert_statement(V v, CodeBlob& code) { std::vector args(3); if (auto v_not = v->get_cond()->try_as(); v_not && v_not->tok == tok_logical_not) { args[0] = v->get_thrown_code(); args[1] = v->get_cond()->as()->get_rhs(); args[2] = createV(v->loc, true); args[2]->mutate()->assign_inferred_type(TypeDataInt::create()); } else { args[0] = v->get_thrown_code(); args[1] = v->get_cond(); args[2] = createV(v->loc, false); args[2]->mutate()->assign_inferred_type(TypeDataInt::create()); } FunctionPtr builtin_sym = lookup_global_symbol("__throw_if_unless")->try_as(); std::vector args_vars = pre_compile_tensor(code, args); gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym, "(throw-call)"); } static void process_catch_variable(AnyExprV v_catch_var, CodeBlob& code) { if (auto v_ref = v_catch_var->try_as(); v_ref && v_ref->sym) { // not underscore LocalVarPtr var_ref = v_ref->sym->try_as(); tolk_assert(var_ref->ir_idx.empty()); var_ref->mutate()->assign_ir_idx(code.create_var(v_catch_var->inferred_type, v_catch_var->loc, var_ref->name)); } } static void process_try_catch_statement(V v, CodeBlob& code) { code.require_callxargs = true; Op& try_catch_op = code.emplace_back(v->loc, Op::_TryCatch); code.push_set_cur(try_catch_op.block0); process_any_statement(v->get_try_body(), code); code.close_pop_cur(v->get_try_body()->loc_end); code.push_set_cur(try_catch_op.block1); // transform catch (excNo, arg) into TVM-catch (arg, excNo), where arg is untyped and thus almost useless now const std::vector& catch_vars = v->get_catch_expr()->get_items(); tolk_assert(catch_vars.size() == 2); process_catch_variable(catch_vars[0], code); process_catch_variable(catch_vars[1], code); try_catch_op.left = pre_compile_tensor(code, {catch_vars[1], catch_vars[0]}); process_any_statement(v->get_catch_body(), code); code.close_pop_cur(v->get_catch_body()->loc_end); } static void process_repeat_statement(V v, CodeBlob& code) { std::vector tmp_vars = pre_compile_expr(v->get_cond(), code, nullptr); Op& repeat_op = code.emplace_back(v->loc, Op::_Repeat, tmp_vars); code.push_set_cur(repeat_op.block0); process_any_statement(v->get_body(), code); code.close_pop_cur(v->get_body()->loc_end); } static void process_if_statement(V v, CodeBlob& code) { std::vector cond = pre_compile_expr(v->get_cond(), code, nullptr); tolk_assert(cond.size() == 1); if (v->get_cond()->is_always_true) { process_any_statement(v->get_if_body(), code); // v->is_ifnot does not matter here return; } if (v->get_cond()->is_always_false) { process_any_statement(v->get_else_body(), code); return; } Op& if_op = code.emplace_back(v->loc, Op::_If, std::move(cond)); code.push_set_cur(if_op.block0); process_any_statement(v->get_if_body(), code); code.close_pop_cur(v->get_if_body()->loc_end); code.push_set_cur(if_op.block1); process_any_statement(v->get_else_body(), code); code.close_pop_cur(v->get_else_body()->loc_end); if (v->is_ifnot) { std::swap(if_op.block0, if_op.block1); } } static void process_do_while_statement(V v, CodeBlob& code) { Op& until_op = code.emplace_back(v->loc, Op::_Until); code.push_set_cur(until_op.block0); process_any_statement(v->get_body(), code); // in TVM, there is only "do until", but in Tolk, we want "do while" // here we negate condition to pass it forward to legacy to Op::_Until // also, handle common situations as a hardcoded "optimization": replace (a<0) with (a>=0) and so on // todo these hardcoded conditions should be removed from this place in the future AnyExprV cond = v->get_cond(); AnyExprV until_cond; if (auto v_not = cond->try_as(); v_not && v_not->tok == tok_logical_not) { until_cond = v_not->get_rhs(); } else if (auto v_eq = cond->try_as(); v_eq && v_eq->tok == tok_eq) { until_cond = createV(cond->loc, "!=", tok_neq, v_eq->get_lhs(), v_eq->get_rhs()); } else if (auto v_neq = cond->try_as(); v_neq && v_neq->tok == tok_neq) { until_cond = createV(cond->loc, "==", tok_eq, v_neq->get_lhs(), v_neq->get_rhs()); } else if (auto v_leq = cond->try_as(); v_leq && v_leq->tok == tok_leq) { until_cond = createV(cond->loc, ">", tok_gt, v_leq->get_lhs(), v_leq->get_rhs()); } else if (auto v_lt = cond->try_as(); v_lt && v_lt->tok == tok_lt) { until_cond = createV(cond->loc, ">=", tok_geq, v_lt->get_lhs(), v_lt->get_rhs()); } else if (auto v_geq = cond->try_as(); v_geq && v_geq->tok == tok_geq) { until_cond = createV(cond->loc, "<", tok_lt, v_geq->get_lhs(), v_geq->get_rhs()); } else if (auto v_gt = cond->try_as(); v_gt && v_gt->tok == tok_gt) { until_cond = createV(cond->loc, "<=", tok_geq, v_gt->get_lhs(), v_gt->get_rhs()); } else if (cond->inferred_type == TypeDataBool::create()) { until_cond = createV(cond->loc, "!b", tok_logical_not, cond); } else { until_cond = createV(cond->loc, "!", tok_logical_not, cond); } until_cond->mutate()->assign_inferred_type(TypeDataInt::create()); if (auto v_bin = until_cond->try_as(); v_bin && !v_bin->fun_ref) { v_bin->mutate()->assign_fun_ref(lookup_global_symbol("_" + static_cast(v_bin->operator_name) + "_")->try_as()); } else if (auto v_un = until_cond->try_as(); v_un && !v_un->fun_ref) { v_un->mutate()->assign_fun_ref(lookup_global_symbol(static_cast(v_un->operator_name) + "_")->try_as()); } until_op.left = pre_compile_expr(until_cond, code, nullptr); tolk_assert(until_op.left.size() == 1); code.close_pop_cur(v->get_body()->loc_end); } static void process_while_statement(V v, CodeBlob& code) { Op& while_op = code.emplace_back(v->loc, Op::_While); code.push_set_cur(while_op.block0); while_op.left = pre_compile_expr(v->get_cond(), code, nullptr); tolk_assert(while_op.left.size() == 1); code.close_pop_cur(v->get_body()->loc); code.push_set_cur(while_op.block1); process_any_statement(v->get_body(), code); code.close_pop_cur(v->get_body()->loc_end); } static void process_throw_statement(V v, CodeBlob& code) { if (v->has_thrown_arg()) { FunctionPtr builtin_sym = lookup_global_symbol("__throw_arg")->try_as(); std::vector args_vars = pre_compile_tensor(code, {v->get_thrown_arg(), v->get_thrown_code()}); gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym, "(throw-call)"); } else { FunctionPtr builtin_sym = lookup_global_symbol("__throw")->try_as(); std::vector args_vars = pre_compile_tensor(code, {v->get_thrown_code()}); gen_op_call(code, TypeDataVoid::create(), v->loc, std::move(args_vars), builtin_sym, "(throw-call)"); } } static void process_return_statement(V v, CodeBlob& code) { std::vector return_vars; if (v->has_return_value()) { TypePtr child_target_type = code.fun_ref->inferred_return_type; if (code.fun_ref->does_return_self()) { child_target_type = code.fun_ref->parameters[0].declared_type; } return_vars = pre_compile_expr(v->get_return_value(), code, child_target_type); } if (code.fun_ref->does_return_self()) { return_vars = {}; } if (code.fun_ref->has_mutate_params()) { std::vector mutated_vars; for (const LocalVarData& p_sym: code.fun_ref->parameters) { if (p_sym.is_mutate_parameter()) { mutated_vars.insert(mutated_vars.end(), p_sym.ir_idx.begin(), p_sym.ir_idx.end()); } } return_vars.insert(return_vars.begin(), mutated_vars.begin(), mutated_vars.end()); } code.emplace_back(v->loc, Op::_Return, std::move(return_vars)); } // append "return" (void) to the end of the function // if it's not reachable, it will be dropped // (IR cfg reachability may differ from FlowContext in case of "never" types, so there may be situations, // when IR will consider this "return" reachable and leave it, but actually execution will never reach it) static void append_implicit_return_statement(SrcLocation loc_end, CodeBlob& code) { std::vector mutated_vars; if (code.fun_ref->has_mutate_params()) { for (const LocalVarData& p_sym: code.fun_ref->parameters) { if (p_sym.is_mutate_parameter()) { mutated_vars.insert(mutated_vars.end(), p_sym.ir_idx.begin(), p_sym.ir_idx.end()); } } } code.emplace_back(loc_end, Op::_Return, std::move(mutated_vars)); } void process_any_statement(AnyV v, CodeBlob& code) { switch (v->type) { case ast_sequence: return process_sequence(v->as(), code); case ast_return_statement: return process_return_statement(v->as(), code); case ast_repeat_statement: return process_repeat_statement(v->as(), code); case ast_if_statement: return process_if_statement(v->as(), code); case ast_do_while_statement: return process_do_while_statement(v->as(), code); case ast_while_statement: return process_while_statement(v->as(), code); case ast_throw_statement: return process_throw_statement(v->as(), code); case ast_assert_statement: return process_assert_statement(v->as(), code); case ast_try_catch_statement: return process_try_catch_statement(v->as(), code); case ast_empty_statement: return; default: pre_compile_expr(reinterpret_cast(v), code, nullptr); } } static void convert_function_body_to_CodeBlob(FunctionPtr fun_ref, FunctionBodyCode* code_body) { auto v_body = fun_ref->ast_root->as()->get_body()->as(); CodeBlob* blob = new CodeBlob{fun_ref->name, fun_ref->loc, fun_ref}; std::vector rvect_import; int total_arg_width = 0; for (int i = 0; i < fun_ref->get_num_params(); ++i) { total_arg_width += fun_ref->parameters[i].declared_type->get_width_on_stack(); } rvect_import.reserve(total_arg_width); for (int i = 0; i < fun_ref->get_num_params(); ++i) { const LocalVarData& param_i = fun_ref->parameters[i]; std::vector ir_idx = blob->create_var(param_i.declared_type, param_i.loc, param_i.name); rvect_import.insert(rvect_import.end(), ir_idx.begin(), ir_idx.end()); param_i.mutate()->assign_ir_idx(std::move(ir_idx)); } blob->emplace_back(fun_ref->loc, Op::_Import, rvect_import); blob->in_var_cnt = blob->var_cnt; tolk_assert(blob->var_cnt == total_arg_width); for (AnyV item : v_body->get_items()) { process_any_statement(item, *blob); } append_implicit_return_statement(v_body->loc_end, *blob); blob->close_blk(v_body->loc_end); code_body->set_code(blob); tolk_assert(vars_modification_watcher.empty()); } static void convert_asm_body_to_AsmOp(FunctionPtr fun_ref, FunctionBodyAsm* asm_body) { int cnt = fun_ref->get_num_params(); int width = fun_ref->inferred_return_type->get_width_on_stack(); std::vector asm_ops; for (AnyV v_child : fun_ref->ast_root->as()->get_body()->as()->get_asm_commands()) { std::string_view ops = v_child->as()->str_val; // \n\n... std::string op; for (char c : ops) { if (c == '\n' || c == '\r') { if (!op.empty()) { asm_ops.push_back(AsmOp::Parse(op, cnt, width)); if (asm_ops.back().is_custom()) { cnt = width; } op.clear(); } } else { op.push_back(c); } } if (!op.empty()) { asm_ops.push_back(AsmOp::Parse(op, cnt, width)); if (asm_ops.back().is_custom()) { cnt = width; } } } asm_body->set_code(std::move(asm_ops)); } class UpdateArgRetOrderConsideringStackWidth final { public: static bool should_visit_function(FunctionPtr fun_ref) { return !fun_ref->is_generic_function() && (!fun_ref->ret_order.empty() || !fun_ref->arg_order.empty()); } static void start_visiting_function(FunctionPtr fun_ref, V v_function) { int total_arg_mutate_width = 0; bool has_arg_width_not_1 = false; for (const LocalVarData& param : fun_ref->parameters) { int arg_width = param.declared_type->get_width_on_stack(); has_arg_width_not_1 |= arg_width != 1; total_arg_mutate_width += param.is_mutate_parameter() * arg_width; } // example: `fun f(a: int, b: (int, (int, int)), c: int)` with `asm (b a c)` // current arg_order is [1 0 2] // needs to be converted to [1 2 3 0 4] because b width is 3 if (has_arg_width_not_1) { int total_arg_width = 0; std::vector cum_arg_width; cum_arg_width.reserve(1 + fun_ref->get_num_params()); cum_arg_width.push_back(0); for (const LocalVarData& param : fun_ref->parameters) { cum_arg_width.push_back(total_arg_width += param.declared_type->get_width_on_stack()); } std::vector arg_order; for (int i = 0; i < fun_ref->get_num_params(); ++i) { int j = fun_ref->arg_order[i]; int c1 = cum_arg_width[j], c2 = cum_arg_width[j + 1]; while (c1 < c2) { arg_order.push_back(c1++); } } fun_ref->mutate()->assign_arg_order(std::move(arg_order)); } // example: `fun f(mutate self: slice): slice` with `asm(-> 1 0)` // ret_order is a shuffled range 0...N // validate N: a function should return value and mutated arguments onto a stack if (!fun_ref->ret_order.empty()) { size_t expected_width = fun_ref->inferred_return_type->get_width_on_stack() + total_arg_mutate_width; if (expected_width != fun_ref->ret_order.size()) { v_function->get_body()->error("ret_order (after ->) expected to contain " + std::to_string(expected_width) + " numbers"); } } } }; class ConvertASTToLegacyOpVisitor final { public: static bool should_visit_function(FunctionPtr fun_ref) { return !fun_ref->is_generic_function(); } static void start_visiting_function(FunctionPtr fun_ref, V) { tolk_assert(fun_ref->is_type_inferring_done()); if (fun_ref->is_code_function()) { convert_function_body_to_CodeBlob(fun_ref, std::get(fun_ref->body)); } else if (fun_ref->is_asm_function()) { convert_asm_body_to_AsmOp(fun_ref, std::get(fun_ref->body)); } } }; void pipeline_convert_ast_to_legacy_Expr_Op() { visit_ast_of_all_functions(); visit_ast_of_all_functions(); } } // namespace tolk