// this is actually `mathlib.fc` transformed to Tolk import "@stdlib/tvm-lowlevel" /*--------------- MISSING OPERATIONS AND BUILT-INS ----------------*/ /// compute floor(log2(x))+1 @pure fun log2_floor_p1(x: int): int asm "UBITSIZE"; @pure fun mulrshiftr(x: int, y: int, s: int): int asm "MULRSHIFTR"; @pure fun mulrshiftr256(x: int, y: int): int asm "256 MULRSHIFTR#"; @pure fun mulrshift256mod(x: int, y: int): (int, int) asm "256 MULRSHIFT#MOD"; @pure fun mulrshiftr256mod(x: int, y: int): (int, int) asm "256 MULRSHIFTR#MOD"; @pure fun mulrshiftr255mod(x: int, y: int): (int, int) asm "255 MULRSHIFTR#MOD"; @pure fun mulrshiftr248mod(x: int, y: int): (int, int) asm "248 MULRSHIFTR#MOD"; @pure fun mulrshiftr5mod(x: int, y: int): (int, int) asm "5 MULRSHIFTR#MOD"; @pure fun mulrshiftr6mod(x: int, y: int): (int, int) asm "6 MULRSHIFTR#MOD"; @pure fun mulrshiftr7mod(x: int, y: int): (int, int) asm "7 MULRSHIFTR#MOD"; @pure fun lshift256divr(x: int, y: int): int asm "256 LSHIFT#DIVR"; @pure fun lshift256divmodr(x: int, y: int): (int, int) asm "256 LSHIFT#DIVMODR"; @pure fun lshift255divmodr(x: int, y: int): (int, int) asm "255 LSHIFT#DIVMODR"; @pure fun lshift2divmodr(x: int, y: int): (int, int) asm "2 LSHIFT#DIVMODR"; @pure fun lshift7divmodr(x: int, y: int): (int, int) asm "7 LSHIFT#DIVMODR"; @pure fun lshiftdivmodr(x: int, y: int, s: int): (int, int) asm "LSHIFTDIVMODR"; @pure fun rshiftr256mod(x: int): (int, int) asm "256 RSHIFTR#MOD"; @pure fun rshiftr248mod(x: int): (int, int) asm "248 RSHIFTR#MOD"; @pure fun rshiftr4mod(x: int): (int, int) asm "4 RSHIFTR#MOD"; @pure fun rshift3mod(x: int): (int, int) asm "3 RSHIFT#MOD"; /// computes y - x (Tolk compiler does not try to use this by itself) @pure fun sub_rev(x: int, y: int): int asm "SUBR"; @pure fun nan(): int asm "PUSHNAN"; @pure fun is_nan(x: int): int asm "ISNAN"; /*----------------------- SQUARE ROOTS ---------------------------*/ /// computes sqrt(a*b) exactly rounded to the nearest integer /// for all 0 <= a, b <= 2^256-1 /// may be used with b=1 or b=scale of fixed-point numbers @pure @inline_ref fun geom_mean(a: int, b: int): int { if (!min(a, b)) { return 0; } var s: int = log2_floor_p1(a); // throws out of range error if a < 0 or b < 0 var t: int = log2_floor_p1(b); // NB: (a-b)/2+b == (a+b)/2, but without overflow for large a and b var x: int = (s == t ? (a - b) / 2 + b : 1 << ((s + t) / 2)); do { // if always used with b=2^const, may be optimized to "const LSHIFTDIVC#" // it is important to use `mulDivCeil` here, not `mulDivFloor` or `mulDivRound` var q: int = (mulDivCeil(a, b, x) - x) / 2; x += q; } while (q); return x; } /// integer square root, computes round(sqrt(a)) for all a>=0. /// note: `inline` is better than `inline_ref` for such simple functions @pure @inline fun sqrt(a: int): int { return geom_mean(a, 1); } /// version for fixed248 = fixed-point numbers with scale 2^248 /// fixed248 sqrt(fixed248 x) @pure @inline fun fixed248_sqrt(x: int): int { return geom_mean(x, 1 << 248); } /// fixed255 sqrt(fixed255 x) @pure @inline fun fixed255_sqrt(x: int): int { return geom_mean(x, 1 << 255); } /// fixed248 sqr(fixed248 x); @pure @inline fun fixed248_sqr(x: int): int { return mulDivRound(x, x, 1 << 248); } /// fixed255 sqr(fixed255 x); @pure @inline fun fixed255_sqr(x: int): int { return mulDivRound(x, x, 1 << 255); } const fixed248_One: int = (1 << 248); const fixed255_One: int = (1 << 255); /*------------------- USEFUL CONSTANTS -------------------*/ /// store huge constants in inline_ref functions for reuse /// (y,z) where y=round(log(2)*2^256), z=round((log(2)*2^256-y)*2^128) /// then log(2) = y/2^256 + z/2^384 @pure @inline_ref fun log2_xconst_f256(): (int, int) { return (80260960185991308862233904206310070533990667611589946606122867505419956976172, -32272921378999278490133606779486332143); } /// (y,z) where Pi = y/2^254 + z/2^382 @pure @inline_ref fun Pi_xconst_f254(): (int, int) { return (90942894222941581070058735694432465663348344332098107489693037779484723616546, 108051869516004014909778934258921521947); } /// atan(1/16) as fixed260 @pure @inline_ref fun Atan1_16_f260(): int { return 115641670674223639132965820642403718536242645001775371762318060545014644837101; // true value is ...101.0089... } /// atan(1/8) as fixed259 @pure @inline_ref fun Atan1_8_f259(): int { return 115194597005316551477397594802136977648153890007566736408151129975021336532841; // correction -0.1687... } /// atan(1/32) as fixed261 @pure @inline_ref fun Atan1_32_f261(): int { return 115754418570128574501879331591757054405465733718902755858991306434399246026247; // correction 0.395... } /// inline is better than inline_ref for such very small functions @pure @inline fun log2_const_f256(): int { var (c: int, _) = log2_xconst_f256(); return c; } @pure @inline fun fixed248_log2_const(): int { return log2_const_f256() ~>> 8; } @pure @inline fun Pi_const_f254(): int { var (c: auto, _) = Pi_xconst_f254(); return c; } @pure @inline fun fixed248_Pi_const(): int { return Pi_const_f254() ~>> 6; } /*-------------- HYPERBOLIC TANGENT AND EXPONENT ------------------*/ /// hyperbolic tangent of small x via n+2 terms of Lambert's continued fraction /// n=17: good for |x| < log(2)/4 = 0.173 /// fixed258 tanh_f258(fixed258 x, int n) @pure @inline_ref fun tanh_f258(x: int, n: int): int { var x2: int = mulDivRound(x, x, 1 << 255); // x^2 as fixed261 var a: int = (2 * n + 5) << 250; // a=2n+5 as fixed250 var c = a; var Two: int = (1 << 251); // 2. as fixed250 repeat (n) { a = (c -= Two) + mulDivRound(x2, 1 << 239, a); // a := 2k+1+x^2/a as fixed250, k=n+1,n,...,2 } a = (3 << 254) + mulDivRound(x2, 1 << 243, a); // a := 3+x^2/a as fixed254 // y = x/(1+a') = x - x*a'/(1+a') = x - x*x^2/(a+x^2) where a' = x^2/a return x - (mulDivRound(x, x2, a + (x2 ~>> 7)) ~>> 7); } /// fixed257 expm1_f257(fixed257 x) /// computes exp(x)-1 for small x via 19 terms of Lambert's continued fraction for tanh(x/2) /// good for |x| < log(2)/2 = 0.347 (n=17); consumes ~3500 gas @pure @inline_ref fun expm1_f257(x: int): int { // (almost) compute tanh(x/2) first; x/2 as fixed258 = x as fixed257 var x2: int = mulDivRound(x, x, 1 << 255); // x^2 as fixed261 var Two: int = (1 << 251); // 2. as fixed250 var a: int = 39 << 250; // a=2n+5 as fixed250 var c = a; repeat (17) { a = (c -= Two) + mulDivRound(x2, 1 << 239, a); // a := 2k+1+x^2/a as fixed250, k=n+1,n,...,2 } a = (3 << 254) + mulDivRound(x2, 1 << 243, a); // a := 3+x^2/a as fixed254 // now tanh(x/2) = x/(1+a') where a'=x^2/a ; apply exp(x)-1=2*tanh(x/2)/(1-tanh(x/2)) var t: int = (x ~>> 4) - a; // t:=x-a as fixed254 return x - mulDivRound(x2, t / 2, a + mulrshiftr256(x, t) ~/ 4) ~/ 4; // x - x^2 * (x-a) / (a + x*(x-a)) } /// expm1_f257() may be used to implement specific fixed-point exponentials /// example: /// fixed248 exp(fixed248 x) @pure @inline_ref fun fixed248_exp(x: int): int { var (l2c, l2d) = log2_xconst_f256(); // divide x by log(2) and convert to fixed257 // (int q, x) = muldivmodr(x, 256, l2c); // unfortunately, no such built-in var (q: int, x redef) = lshiftdivmodr(x, l2c, 8); x = 2 * x - mulDivRound(q, l2d, 1 << 127); var y: int = expm1_f257(x); // result is (1 + y) * (2^q) --> ((1 << 257) + y) >> (9 - q) return (y ~>> (9 - q)) - (-1 << (248 + q)); // note that (y ~>> (9 - q)) + (1 << (248 + q)) leads to overflow when q=8 } /// compute 2^x in fixed248 /// fixed248 exp2(fixed248 x) @pure @inline_ref fun fixed248_exp2(x: int): int { // (int q, x) = divmodr(x, 1 << 248); // no such built-in var (q: int, x redef) = rshiftr248mod(x); x = mulDivRound(x, log2_const_f256(), 1 << 247); var y: int = expm1_f257(x); return (y ~>> (9 - q)) - (-1 << (248 + q)); } /*-------------------- TRIGONOMETRIC FUNCTIONS ----------------------*/ /// fixed260 tan(fixed260 x); /// computes tan(x) for small |x|> 10)) ~>> 9); } /// fixed260 tan(fixed260 x); @pure @inline_ref fun tan_f260(x: int): int { return tan_f260_inlined(x); } /// fixed258 tan(fixed258 x); /// computes tan(x) for small |x|> 6)) ~>> 5); } /// fixed258 tan(fixed258 x); @pure @inline_ref fun tan_f258(x: int): int { return tan_f258_inlined(x); } /// (fixed259, fixed263) sincosm1(fixed259 x) /// computes (sin(x), 1-cos(x)) for small |x|<2*atan(1/16) @pure @inline fun sincosm1_f259_inlined(x: int): (int, int) { var t: int = tan_f260_inlined(x); // t=tan(x/2) as fixed260 var tt: int = mulrshiftr256(t, t); // t^2 as fixed264 var y: int = tt ~/ 512 + (1 << 255); // 1+t^2 as fixed255 // 2*t/(1+t^2) as fixed259 and 2*t^2/(1+t^2) as fixed263 // return (mulDivRound(t, 1 << 255, y), mulDivRound(tt, 1 << 255, y)); return (t - mulDivRound(t / 2, tt, y) ~/ 256, tt - mulDivRound(tt / 2, tt, y) ~/ 256); } @pure @inline_ref fun sincosm1_f259(x: int): (int, int) { return sincosm1_f259_inlined(x); } /// computes (sin(x+xe),-cos(x+xe)) for |x| <= Pi/4, xe very small /// this function is very accurate, error less than 0.7 ulp (consumes ~ 5500 gas) /// (fixed256, fixed256) sincosn(fixed256 x, fixed259 xe) @pure @inline_ref fun sincosn_f256(x: int, xe: int): (int, int) { // var (q, x1) = muldivmodr(x, 8, Atan1_8_f259()); // no muldivmodr() builtin var (q, x1) = lshift2divmodr(abs(x), Atan1_8_f259()); // reduce mod theta where theta=2*atan(1/8) var (si, co) = sincosm1_f259(x1 * 2 + xe); var (a, b, c) = (-1, 0, 1); repeat (q) { // (a+b*I) *= (8+I)^2 = 63+16*I (a, b, c) = (63 * a - 16 * b, 16 * a + 63 * b, 65 * c); } // now a/c = cos(q*theta), b/c = sin(q*theta) exactly(!) // compute (a+b*I)*(1-co+si*I)/c // (b, a) = (lshift256divr(b, c), lshift256divr(a, c)); var (b redef, br: int) = lshift256divmodr(b, c); br = mulDivRound(br, 128, c); var (a redef, ar: int) = lshift256divmodr(a, c); ar = mulDivRound(ar, 128, c); return (sign(x) * (((mulrshiftr256(b, co) - br) ~/ 16 - mulrshiftr256(a, si)) ~/ 8 - b), a - ((mulrshiftr256(a, co) - ar) ~/ 16 + mulrshiftr256(b, si)) ~/ 8); } /// compute (sin(x),1-cos(x)) in fixed256 for |x| < 16*atan(1/16) = 0.9987 /// (fixed256, fixed257) sincosm1_f256(fixed256 x); /// slightly less accurate than sincosn_f256() (error up to 3/2^256), but faster (~ 4k gas) and shorter @pure @inline_ref fun sincosm1_f256(x: int): (int, int) { var (si, co) = sincosm1_f259_inlined(x); // compute (sin,1-cos)(x/8) in (fixed259,fixed263) var r: int = 7; repeat (r / 2) { // 1-cos(2*x) = 2*sin(x)^2, sin(2*x) = 2*sin(x)*cos(x) (co, si) = (mulrshiftr256(si, si), si - (mulrshiftr256(si, co) ~>> r)); r -= 2; } return (si, co); } /// compute (p, q) such that p/q = tan(x) for |x|<2*atan(1/2)=1899/2048=0.927 /// (int, int) tan_aux(fixed256 x); @pure @inline_ref fun tan_aux_f256(x: int): (int, int) { var t: int = tan_f258_inlined(x); // t=tan(x/4) as fixed258 // t:=2*t/(1-t^2)=2*(t-t^3/(t^2-1)) var tt: int = mulrshiftr256(t, t); // t^2 as fixed260 t = mulDivRound(t, tt, tt ~/ 16 + (-1 << 256)) ~/ 16 - t; // now t=-tan(x/2) as fixed259 return (t, mulrshiftr256(t, t) ~/ 4 + (-1 << 256)); // return (2*t, t^2-1) as fixed256 } /// sincosm1_f256() and sincosn_f256() may be used to implement trigonometric functions for different fixed-point types /// example: /// (fixed248, fixed248) sincos(fixed248 x); @pure @inline_ref fun fixed248_sincos(x: int): (int, int) { var (Pic, Pid) = Pi_xconst_f254(); // (int q, x) = muldivmodr(x, 128, Pic); // no muldivmodr() builtin var (q: int, x redef) = lshift7divmodr(x, Pic); // reduce mod Pi/2 x = 2 * x - mulDivRound(q, Pid, 1 << 127); var (si: int, co: int) = sincosm1_f256(x); // doesn't make sense to use more accurate sincosn_f256() co = (1 << 248) - (co ~>> 9); si = si ~>> 8; repeat (q & 3) { (si, co) = (co, -si); } return (si, co); } /// fixed248 sin(fixed248 x); /// inline is better than inline_ref for such simple functions @pure @inline fun fixed248_sin(x: int): int { var (si: int, _) = fixed248_sincos(x); return si; } /// fixed248 cos(fixed248 x); @pure @inline fun fixed248_cos(x: int): int { var (_, co: int) = fixed248_sincos(x); return co; } /// similarly, tan_aux_f256() may be used to implement tan() and cot() for specific fixed-point formats /// fixed248 tan(fixed248 x); /// not very accurate when |tan(x)| is very large (difficult to do better without floating-point numbers) /// however, the relative accuracy is approximately 2^-247 in all cases, which is good enough for arguments given up to 2^-249 @pure @inline_ref fun fixed248_tan(x: int): int { var (Pic, Pid) = Pi_xconst_f254(); // (int q, x) = muldivmodr(x, 128, Pic); // no muldivmodr() builtin var (q: int, x redef) = lshift7divmodr(x, Pic); // reduce mod Pi/2 x = 2 * x - mulDivRound(q, Pid, 1 << 127); var (a, b) = tan_aux_f256(x); // now a/b = tan(x') if (q & 1) { (a, b) = (b, -a); } return mulDivRound(a, 1 << 248, b); // either -b/a or a/b as fixed248 } /// fixed248 cot(fixed248 x); @pure @inline_ref fun fixed248_cot(x: int): int { var (Pic, Pid) = Pi_xconst_f254(); var (q: int, x redef) = lshift7divmodr(x, Pic); // reduce mod Pi/2 x = 2 * x - mulDivRound(q, Pid, 1 << 127); var (b, a) = tan_aux_f256(x); // now b/a = tan(x') if (q & 1) { (a, b) = (b, -a); } return mulDivRound(a, 1 << 248, b); // either -b/a or a/b as fixed248 } /*---------------- INVERSE HYPERBOLIC TANGENT AND LOGARITHMS ----------------*/ /// inverse hyperbolic tangent of small x, evaluated by means of n terms of the continued fraction /// valid for |x| < 2^-2.5 ~ 0.18 if n=37 (slightly less accurate with n=36) /// |x| < 1/8 if n=32; |x| < 2^-3.5 if n=28; |x| < 1/16 if n=25 /// |x| < 2^-4.5 if n=23; |x| < 1/32 if n=21; |x| < 1/64 if n=18 /// fixed258 atanh(fixed258 x); @pure @inline_ref fun atanh_f258(x: int, n: int): int { var x2: int = mulrshiftr256(x, x); // x^2 as fixed260 var One: int = (1 << 254); var a: int = One ~/ n + (1 << 255); // a := 2 + 1/n as fixed254 repeat (n - 1) { // a := 1 + (1 - x^2 / a)(1 + 1/n) as fixed254 var t: int = One - mulDivRound(x2, 1 << 248, a); // t := 1 - x^2 / a var n1: int = n - 1; a = mulDivRound(t, n, n1) + One; n = n1; } // x / (1 - x^2 / a) = x / (1 - d) = x + x * d / (1 - d) for d = x^2 / a // int d = mulDivRound(x2, 1 << 255, a - (x2 ~>> 6)); // d/(1-d) = x^2/(a-x^2) as fixed261 // return x + (mulrshiftr256(x, d) ~>> 5); return x + mulDivRound(x, x2 / 2, a - x2 ~/ 64) ~/ 32; } /// number of terms n should be chosen as for atanh_f258() /// fixed261 atanh(fixed261 x); @pure @inline fun atanh_f261_inlined(x: int, n: int): int { var x2: int = mulrshiftr256(x, x); // x^2 as fixed266 var One: int = (1 << 254); var a: int = One ~/ n + (1 << 255); // a := 2 + 1/n as fixed254 repeat (n - 1) { // a := 1 + (1 - x^2 / a)(1 + 1/n) as fixed254 var t: int = One - mulDivRound(x2, 1 << 242, a); // t := 1 - x^2 / a var n1: int = n - 1; a = mulDivRound(t, n, n1) + One; n = n1; } // x / (1 - x^2 / a) = x / (1 - d) = x + x * d / (1 - d) for d = x^2 / a // int d = mulDivRound(x2, 1 << 255, a - (x2 ~>> 12)); // d/(1-d) = x^2/(a-x^2) as fixed267 // return x + (mulrshiftr256(x, d) ~>> 11); return x + mulDivRound(x, x2, a - x2 ~/ 4096) ~/ 4096; } /// fixed261 atanh(fixed261 x); @pure @inline_ref fun atanh_f261(x: int, n: int): int { return atanh_f261_inlined(x, n); } /// returns (y, s) such that log(x) = y/2^257 + s*log(2) for positive integer x /// (fixed257, int) log_aux(int x) @pure @inline_ref fun log_aux_f257(x: int): (int, int) { var s: int = log2_floor_p1(x); x <<= 256 - s; var t: int = -1 << 256; if ((x >> 249) <= 90) { t >>= 1; s -= 1; } x += t; var `2x`: int = 2 * x; var y: int = lshift256divr(`2x`, (x >> 1) - t); // y = `2x` - (mulrshiftr256(2x, y) ~>> 2); // this line could improve precision on very rare occasions return (atanh_f258(y, 36), s); } /// computes 33^m for small m @pure @inline fun pow33(m: int): int { var t: int = 1; repeat (m) { t *= 33; } return t; } /// computes 33^m for small 0<=m<=22 /// slightly faster than pow33() @pure @inline fun pow33b(m: int): int { var (mh: int, ml: int) = divMod(m, 5); var t: int = 1; repeat (ml) { t *= 33; } repeat (mh) { t *= 33 * 33 * 33 * 33 * 33; } return t; } /// returns (s, q, y) such that log(x) = s*log(2) + q*log(33/32) + y/2^260 for positive integer x /// (int, int, fixed260) log_auxx_f260(int x); @pure @inline_ref fun log_auxx_f260(x: int): (int, int, int) { var s: int = log2_floor_p1(x) - 1; x <<= 255 - s; // rescale to 1 <= x < 2 as fixed255 var t: int = 2873 << 244; // ~ (33/32)^11 ~ sqrt(2) as fixed255 var x1: int = (x - t) >> 1; var q: int = mulDivRound(x1, 65, x1 + t) + 11; // crude approximation to round(log(x)/log(33/32)) // t = 1; repeat (q) { t *= 33; } // t:=33^q, 0<=q<=22 t = pow33b(q); t <<= (51 - q) * 5; // t:=(33/32)^q as fixed255, nearest power of 33/32 to x x -= t; var y: int = lshift256divr(x << 4, (x >> 1) + t); // y = (x-t)/(x+t) as fixed261 y = atanh_f261(y, 18); // atanh((x-t)/(x+t)) as fixed261, or log(x/t) as fixed260 return (s, q, y); } /// returns (y, s) such that log(x) = y/2^256 + s*log(2) for positive integer x /// this function is very precise (error less than 0.6 ulp) and consumes < 7k gas /// may be used to implement specific fixed-point instances of log() and log2() /// (fixed256, int) log_aux_f256(int x); @pure @inline_ref fun log_aux_f256(x: int): (int, int) { var (s, q, y) = log_auxx_f260(x); var (yh, yl) = rshiftr4mod(y); // y ~/% 16 , but Tolk does not optimize this to RSHIFTR#MOD // int Log33_32 = 3563114646320977386603103333812068872452913448227778071188132859183498739150; // log(33/32) as fixed256 // int Log33_32_l = -3769; // log(33/32) = Log33_32 / 2^256 + Log33_32_l / 2^269 yh += (yl * 512 + q * -3769) ~>> 13; // compensation, may be removed if slightly worse accuracy is acceptable var Log33_32: int = 3563114646320977386603103333812068872452913448227778071188132859183498739150; // log(33/32) as fixed256 return (yh + q * Log33_32, s); } /// returns (y, s) such that log2(x) = y/2^256 + s for positive integer x /// this function is very precise (error less than 0.6 ulp) and consumes < 7k gas /// may be used to implement specific fixed-point instances of log() and log2() /// (fixed256, int) log2_aux_f256(int x); @pure @inline_ref fun log2_aux_f256(x: int): (int, int) { var (s, q, y) = log_auxx_f260(x); y = lshift256divr(y, log2_const_f256()) ~>> 4; // y/log(2) as fixed256 var Log33_32: int = 5140487830366106860412008603913034462883915832139695448455767612111363481357; // log_2(33/32) as fixed256 // Log33_32/2^256 happens to be a very precise approximation to log_2(33/32), no compensation required return (y + q * Log33_32, s); } /// fixed248 log(fixed248 x) @pure @inline_ref fun fixed248_log(x: int): int { var (y, s) = log_aux_f256(x); return mulDivRound(s - 248, log2_const_f256(), 1 << 8) + (y ~>> 8); // return mulDivRound(s - 248, 80260960185991308862233904206310070533990667611589946606122867505419956976172, 1 << 8) + (y ~>> 8); } /// fixed248 log2(fixed248 x) @pure @inline fun fixed248_log2(x: int): int { var (y, s) = log2_aux_f256(x); return ((s - 248) << 248) + (y ~>> 8); } /// computes x^y as exp(y*log(x)), x >= 0 /// fixed248 pow(fixed248 x, fixed248 y); @pure @inline_ref fun fixed248_pow(x: int, y: int): int { if (!y) { return 1 << 248; // x^0 = 1 } if (x <= 0) { var bad: int = (x | y) < 0; return 0 >> bad; // 0^y = 0 if x=0 and y>=0; "out of range" exception otherwise } var (l, s) = log2_aux_f256(x); s -= 248; // log_2(x) = s+l, l is fixed256, 0<=l<1 // compute (s+l)*y = q+ll var (q1, r1) = mulrshiftr248mod(s, y); // muldivmodr(s, y, 1 << 248) var (q2, r2) = mulrshift256mod(l, y); r2 >>= 247; var (q3, r3) = rshiftr248mod(q2); // divmodr(q2, 1 << 248); var (q, ll) = rshiftr248mod(r1 + r3); ll = 512 * ll + r2; q += q1 + q3; // now log_2(x^y) = y*log_2(x) = q + ll, ss integer, ll fixed257, -1/2<=ll<1/2 var sq: int = q + 248; if (sq <= 0) { return -(sq == 0); // underflow } y = expm1_f257(mulrshiftr256(ll, log2_const_f256())); return (y ~>> (9 - q)) - (-1 << sq); } /*-------------------- INVERSE TRIGONOMETRIC FUNCTIONS ------------------*/ /// number of terms n should be chosen as for atanh_f258() /// fixed259 atan(fixed259 x); @pure @inline_ref fun atan_f259(x: int, n: int): int { var x2: int = mulrshiftr256(x, x); // x^2 as fixed262 var One: int = (1 << 254); var a: int = One ~/ n + (1 << 255); // a := 2 + 1/n as fixed254 repeat (n - 1) { // a := 1 + (1 + x^2 / a)(1 + 1/n) as fixed254 var t: int = One + mulDivRound(x2, 1 << 246, a); // t := 1 + x^2 / a var n1: int = n - 1; a = mulDivRound(t, n, n1) + One; n = n1; } // x / (1 + x^2 / a) = x / (1 + d) = x - x * d / (1 + d) = x - x * x^2/(a+x^2) for d = x^2 / a return x - mulDivRound(x, x2, a + x2 ~/ 256) ~/ 256; } /// number of terms n should be chosen as for atanh_f261() /// fixed261 atan(fixed261 x); @pure @inline fun atan_f261_inlined(x: int, n: int): int { var x2: int = mulrshiftr256(x, x); // x^2 as fixed266 var One: int = (1 << 254); var a: int = One ~/ n + (1 << 255); // a := 2 + 1/n as fixed254 repeat (n - 1) { // a := 1 + (1 + x^2 / a)(1 + 1/n) as fixed254 var t: int = One + mulDivRound(x2, 1 << 242, a); // t := 1 + x^2 / a var n1: int = n - 1; a = mulDivRound(t, n, n1) + One; n = n1; } // x / (1 + x^2 / a) = x / (1 + d) = x - x * d / (1 + d) = x - x * x^2/(a+x^2) for d = x^2 / a return x - mulDivRound(x, x2, a + x2 ~/ 4096) ~/ 4096; } /// fixed261 atan(fixed261 x); @pure @inline_ref fun atan_f261(x: int, n: int): int { return atan_f261_inlined(x, n); } /// computes (q,a,b) such that q is approximately atan(x)/atan(1/32) and a+b*I=(1+I/32)^q as fixed255 /// then b/a=atan(q*atan(1/32)) exactly, and (a,b) is almost a unit vector pointing in the direction of (1,x) /// must have |x|<1.1, x is fixed24 /// (int, fixed255, fixed255) atan_aux_prereduce(fixed24 x); @pure @inline_ref fun atan_aux_prereduce(x: int): (int, int, int) { var xu: int = abs(x); var tc: int = 7214596; // tan(13*theta) as fixed24 where theta=atan(1/32) var t1: int = mulDivRound(xu - tc, 1 << 88, xu * tc + (1 << 48)); // tan(x') as fixed64 where x'=atan(x)-13*theta // t1/(3+t1^2) * 3073/32 = x'/3 * 3072/32 = x' / (96/3072) = x' / theta var q: int = mulDivRound(t1 * 3073, 1 << 59, t1 * t1 + (3 << 128)) + 13; // approximately round(atan(x)/theta), 0<=q<=25 var (pa, pb) = (33226912, 5232641); // (32+I)^5 var (qh, ql) = divMod(q, 5); var (a, b) = (1 << (5 * (51 - q)), 0); // (1/32^q, 0) as fixed255 repeat (ql) { // a+b*I *= 32+I b.stackMoveToTop(); (a, b) = (sub_rev(b, 32 * a), a + 32 * b); // same as (32 * a - b, 32 * b + a), but more efficient } repeat (qh) { // a+b*I *= (32+I)^5 = pa + pb*I (a, b) = (a * pa - b * pb, a * pb + b * pa); } var xs: int = sign(x); return (xs * q, a, xs * b); } /// compute (q, z) such that atan(x)=q*atan(1/32)+z for -1 <= x < 1 /// this function is reasonably accurate (error < 7 ulp with ulp = 2^-261), but it consumes >7k gas /// this is sufficient for most purposes /// (int, fixed261) atan_aux(fixed256 x) @pure @inline_ref fun atan_aux_f256(x: int): (int, int) { var (q, a, b) = atan_aux_prereduce(x ~>> 232); // convert x to fixed24 // now b/a = tan(q*atan(1/32)) exactly, where q is near atan(x)/atan(1/32); so b/a is near x // compute y = u/v = (a*x-b)/(a+b*x) as fixed261 ; then |y|<0.0167 = 1.07/64 and atan(x)=atan(y)+q*atan(1/32) var (u, ul) = mulrshiftr256mod(a, x); u = (ul ~>> 250) + ((u - b) << 6); // |u| < 1/32, convert fixed255 -> fixed261 var v: int = a + mulrshiftr256(b, x); // v is scalar product of (a,b) and (1,x), it is approximately in [1..sqrt(2)] as fixed255 var y: int = mulDivRound(u, 1 << 255, v); // y = u/v as fixed261 var z: int = atan_f261_inlined(y, 18); // z = atan(x)-q*atan(1/32) return (q, z); } /// compute (q, z) such that atan(x)=q*atan(1/32)+z for -1 <= x < 1 /// this function is very accurate (error < 2 ulp), but it consumes >7k gas /// in most cases, faster function atan_aux_f256() should be used /// (int, fixed261) atan_auxx(fixed256 x) @pure @inline_ref fun atan_auxx_f256(x: int): (int, int) { var (q, a, b) = atan_aux_prereduce(x ~>> 232); // convert x to fixed24 // now b/a = tan(q*atan(1/32)) exactly, where q is near atan(x)/atan(1/32); so b/a is near x // compute y = (a*x-b)/(a+b*x) as fixed261 ; then |y|<0.0167 = 1.07/64 and atan(x)=atan(y)+q*atan(1/32) // use sort of double precision arithmetic for this var (u, ul) = mulrshiftr256mod(a, x); ul /= 2; u -= b; // |u| < 1/32 as fixed255 var (v, vl) = mulrshiftr256mod(b, x); vl /= 2; v += a; // v is scalar product of (a,b) and (1,x), it is approximately in [1..sqrt(2)] as fixed255 // y = (u + ul*eps) / (v + vl*eps) = u/v + (ul - vl * u/v)/v * eps where eps=1/2^255 var (y, r) = lshift255divmodr(u, v); // y = u/v as fixed255 var yl: int = mulDivRound(ul + r, 1 << 255, v) - mulDivRound(vl, y, v); // y/2^255 + yl/2^510 represent u/v y = (yl ~>> 249) + (y << 6); // convert y to fixed261 var z: int = atan_f261_inlined(y, 18); // z = atan(x)-q*atan(1/32) return (q, z); } /// consumes ~ 8k gas /// fixed255 atan(fixed255 x); @pure @inline_ref fun atan_f255(x: int): int { var s: int = (x ~>> 256); x.stackMoveToTop(); if (s) { x = lshift256divr(-1 << 255, x); // x:=-1/x as fixed256 } else { x *= 2; // convert to fixed256 } var (q, z) = atan_aux_f256(x); // now atan(x) = z + q*atan(1/32) + s*(Pi/2), z is fixed261 var (Pi_h, Pi_l) = Pi_xconst_f254(); // Pi/2 as fixed255 + fixed383 var (qh, ql) = mulrshiftr6mod(q, Atan1_32_f261()); return qh + s * Pi_h + (z + ql + mulDivRound(s, Pi_l, 1 << 122)) ~/ 64; } /// computes atan(x) for -1 <= x < 1 only /// fixed256 atan_small(fixed256 x); @pure @inline_ref fun atan_f256_small(x: int): int { var (q, z) = atan_aux_f256(x); // now atan(x) = z + q*atan(1/32), z is fixed261 var (qh, ql) = mulrshiftr5mod(q, Atan1_32_f261()); return qh + (z + ql) ~/ 32; } /// fixed255 asin(fixed255 x); @pure @inline_ref fun asin_f255(x: int): int { var a: int = fixed255_One - fixed255_sqr(x); // a:=1-x^2 if (!a) { return sign(x) * Pi_const_f254(); // Pi/2 or -Pi/2 } var y: int = fixed255_sqrt(a); // sqrt(1-x^2) var t: int = -lshift256divr(x, (-1 << 255) - y); // t = x/(1+sqrt(1-x^2)) avoiding overflow return atan_f256_small(t); // asin(x)=2*atan(t) } /// fixed254 acos(fixed255 x); @pure @inline_ref fun acos_f255(x: int): int { var Pi: int = Pi_const_f254(); if (x == (-1 << 255)) { return Pi; // acos(-1) = Pi } Pi /= 2; var y: int = fixed255_sqrt(fixed255_One - fixed255_sqr(x)); // sqrt(1-x^2) var t: int = lshift256divr(x, (-1 << 255) - y); // t = -x/(1+sqrt(1-x^2)) avoiding overflow return Pi + atan_f256_small(t) ~/ 2; // acos(x)=Pi/2 + 2*atan(t) } /// consumes ~ 10k gas /// fixed248 asin(fixed248 x) @pure @inline fun fixed248_asin(x: int): int { return asin_f255(x << 7) ~>> 7; } /// consumes ~ 10k gas /// fixed248 acos(fixed248 x) @pure @inline fun fixed248_acos(x: int): int { return acos_f255(x << 7) ~>> 6; } /// consumes ~ 7500 gas /// fixed248 atan(fixed248 x); @pure @inline_ref fun fixed248_atan(x: int): int { var s: int = (x ~>> 249); x.stackMoveToTop(); if (s) { s = sign(s); x = lshift256divr(-1 << 248, x); // x:=-1/x as fixed256 } else { x <<= 8; // convert to fixed256 } var (q, z) = atan_aux_f256(x); // now atan(x) = z + q*atan(1/32) + s*(Pi/2), z is fixed261 return (z ~/ 64 + s * Pi_const_f254() + mulDivRound(q, Atan1_32_f261(), 64)) ~/ 128; // compute in fixed255, then convert } /// fixed248 acot(fixed248 x); @pure @inline_ref fun fixed248_acot(x: int): int { var s: int = (x ~>> 249); x.stackMoveToTop(); if (s) { x = lshift256divr(-1 << 248, x); // x:=-1/x as fixed256 s = 0; } else { x <<= 8; // convert to fixed256 s = sign(x); } var (q, z) = atan_aux_f256(x); // now acot(x) = - z - q*atan(1/32) + s*(Pi/2), z is fixed261 return (s * Pi_const_f254() - z ~/ 64 - mulDivRound(q, Atan1_32_f261(), 64)) ~/ 128; // compute in fixed255, then convert } /*-------------------- PSEUDO-RANDOM NUMBERS ------------------*/ /// random number with standard normal distribution N(0,1) /// generated by Kinderman--Monahan ratio method modified by J.Leva /// spends ~ 2k..3k gas on average /// fixed252 nrand(); @inline_ref fun nrand_f252(): int { var (x, s, t, A, B, r0) = (nan(), 29483 << 236, -3167 << 239, 12845, 16693, 9043); // 4/sqrt(e*Pi) = 1.369 loop iterations on average do { var (u, v) = (random() / 16 + 1, mulDivRound(random() - (1 << 255), 7027, 1 << 16)); // fixed252; 7027=ceil(sqrt(8/e)*2^12) var va: int = abs(v); var (u1, v1) = (u - s, va - t); // (u - 29483/2^16, abs(v) + 3167/2^13) as fixed252 // Q := u1^2 + v1 * (A*v1 - B*u1) as fixed252 where A=12845/2^16, B=16693/2^16 var Q: int = mulDivRound(u1, u1, 1 << 252) + mulDivRound(v1, mulDivRound(v1, A, 1 << 16) - mulDivRound(u1, B, 1 << 16), 1 << 252); // must have 9043 / 2^15 < Q < 9125 / 2^15, otherwise accept if smaller, reject if larger var Qd: int = (Q >> 237) - r0; if ((Qd < 9125 - 9043) & (va / u < 16)) { x = mulDivRound(v, 1 << 252, u); // x:=v/u as fixed252; reject immediately if |v/u| >= 16 if (Qd >= 0) { // immediately accept if Qd < 0 // rarely taken branch - 0.012 times per call on average // check condition v^2 < -4*u^2*log(u), or equivalent condition u < exp(-x^2/4) for x=v/u var xx: int = mulrshiftr256(x, x) ~/ 4; // x^2/4 as fixed248 var ex: int = fixed248_exp(-xx) * 16; // exp(-x^2/4) as fixed252 if (u > ex) { x = nan(); // condition false, reject } } } } while (!(~ is_nan(x))); return x; } /// generates a random number approximately distributed according to the standard normal distribution /// much faster than nrand_f252(), should be suitable for most purposes when only several random numbers are needed /// fixed252 nrand_fast(); @inline_ref fun nrand_fast_f252(): int { var t: int = -3 << 253; // -6. as fixed252 repeat (12) { t += random() / 16; // add together 12 uniformly random numbers } return t; } /// random number uniformly distributed in [0..1) /// fixed248 random(); @inline fun fixed248_random(): int { return random() >> 8; } /// random number with standard normal distribution /// fixed248 nrand(); @inline fun fixed248_nrand(): int { return nrand_f252() ~>> 4; } /// generates a random number approximately distributed according to the standard normal distribution /// fixed248 nrand_fast(); @inline fun fixed248_nrand_fast(): int { return nrand_fast_f252() ~>> 4; } @pure fun tset(mutate self: tuple, idx: int, value: X): void asm(self value idx) "SETINDEXVAR"; // computes 1-acos(x)/Pi by a very simple, extremely slow (~70k gas) and imprecise method // fixed256 acos_prepare_slow(fixed255 x); @inline fun acos_prepare_slow_f255(x: int): int { x -= (x == 0); var t: int = 1; repeat (255) { t = t * sign(x) * 2 + 1; // decode Gray code (sign(x_0), sign(x_1), ...) x = (-1 << 255) - mulDivRound(x, - x, 1 << 254); // iterate x := 2*x^2 - 1 = cos(2*acos(x)) } return abs(t); } // extremely slow (~70k gas) and somewhat imprecise (very imprecise when x is small), for testing only // fixed254 acos_slow(fixed255 x); @inline_ref fun acos_slow_f255(x: int): int { var t: int = acos_prepare_slow_f255(x); return - mulrshiftr256(t + (-1<<256), Pi_const_f254()); } // fixed255 asin_slow(fixed255 x); @inline_ref fun asin_slow_f255(x: int): int { var t: int = acos_prepare_slow_f255(abs(x)) % (1 << 255); return mulDivRound(t, Pi_const_f254(), 1 << 255) * sign(x); } @inline_ref fun test_nrand(n: int): tuple { var t: tuple = createEmptyTuple(); repeat (255) { t.tuplePush(0); } repeat (n) { var x: int = fixed248_nrand(); var bucket: int = (abs(x) >> 243); // 255 buckets starting from x=0, each 1/32 wide t.tset(bucket, t.tupleAt(bucket) + 1); } return t; } @method_id(10000) fun geom_mean_test(x: int, y: int): int { return geom_mean(x, y); } @method_id(10001) fun tan_f260_test(x: int): int { return tan_f260(x); } @method_id(10002) fun sincosm1_f259_test(x: int): (int, int) { return sincosm1_f259(x); } @method_id(10003) fun sincosn_f256_test(x: int, y: int): (int, int) { return sincosn_f256(x, y); } @method_id(10004) fun sincosm1_f256_test(x: int): (int, int) { return sincosm1_f256(x); } @method_id(10005) fun tan_aux_f256_test(x: int): (int, int) { return tan_aux_f256(x); } @method_id(10006) fun fixed248_tan_test(x: int): int { return fixed248_tan(x); } /* (int) atanh_alt_f258_test(x) method_id(10007) { return atanh_alt_f258(x); } */ @method_id(10008) fun atanh_f258_test(x:int, y:int): int { return atanh_f258(x, y); } @method_id(10009) fun atanh_f261_test(x:int, y:int): int { return atanh_f261(x, y); } @method_id(10010) fun log2_aux_f256_test(x:int): (int, int) { return log2_aux_f256(x); } @method_id(10011) fun log_aux_f256_test(x:int): (int, int) { return log_aux_f256(x); } @method_id(10012) fun fixed248_pow_test(x:int, y:int): int { return fixed248_pow(x, y); } @method_id(10013) fun exp_log_div(x:int, y:int): int { return fixed248_exp(fixed248_log(x << 248) ~/ y); } @method_id(10014) fun fixed248_log_test(x:int): int { return fixed248_log(x); } @method_id(10015) fun log_aux_f257_test(x:int): (int,int) { return log_aux_f257(x); } @method_id(10016) fun fixed248_sincos_test(x:int): (int,int) { return fixed248_sincos(x); } @method_id(10017) fun fixed248_exp_test(x:int): int { return fixed248_exp(x); } @method_id(10018) fun fixed248_exp2_test(x:int): int { return fixed248_exp2(x); } @method_id(10019) fun expm1_f257_test(x:int): int { return expm1_f257(x); } @method_id(10020) fun atan_f255_test(x:int): int { return atan_f255(x); } @method_id(10021) fun atan_f259_test(x:int, n:int): int { return atan_f259(x, n); } @method_id(10022) fun atan_aux_f256_test(x:int): (int, int) { return atan_aux_f256(x); } @method_id(10023) fun asin_f255_test(x:int): int { return asin_f255(x); } @method_id(10024) fun asin_slow_f255_test(x:int): int { return asin_slow_f255(x); } @method_id(10025) fun acos_f255_test(x:int): int { return acos_f255(x); } @method_id(10026) fun acos_slow_f255_test(x:int): int { return acos_slow_f255(x); } @method_id(10027) fun fixed248_atan_test(x:int): int { return fixed248_atan(x); } @method_id(10028) fun fixed248_acot_test(x:int): int { return fixed248_acot(x); } fun main() { var One: int = 1; // repeat(76 / 4) { One *= 10000; } var sqrt2: int = geom_mean(One, 2 * One); var sqrt3: int = geom_mean(One, 3 * One); // return geom_mean(-1 - (-1 << 256), -1 - (-1 << 256)); // return geom_mean(-1 - (-1 << 256), -2 - (-1 << 256)); // return geom_mean(-1 - (-1 << 256), 1 << 255); // return (sqrt2, geom_mean(sqrt2, One)); // (sqrt(2), 2^(1/4)) // return (sqrt3, geom_mean(sqrt3, One)); // (sqrt(3), 3^(1/4)) // return geom_mean(3 << 254, 1 << 254); // return geom_mean(3, 5); // return tan_f260(115641670674223639132965820642403718536242645001775371762318060545014644837101 - 1); // return tan_f260(15 << 252); // tan(15/256) * 2^260 // return sincosm1_f259(1 << 255); // (sin,1-cos)(1/16) * 2^259 // return sincosm1_f259(115641670674223639132965820642403718536242645001775371762318060545014644837101 - 1); // return sincosm1_f256((1 << 255) - 1 + (1 << 255)); // (sin,1-cos)(1-2^(-256)) // return sincosm1_f256(Pi_const_f254()); // (sin,1-cos)(Pi/4) // return sincosn_f256(Pi_const_f254(), 0); // (sin,-cos)(Pi/4) // return sincosn_f256((1 << 255) + 1, 0); // (sin,-cos)(1/2+1/2^256) // return sincosn_f256(1 << 254, 0); // return sincosn_f256(stackMoveToTop(15) << 252, 0); // (sin,-cos)(15/16) // return sincosm1_f256(stackMoveToTop(15) << 252); // (sin,1-cos)(15/16) // return sincosn_f256(60628596148627720713372490462954977108898896221398738326462025186323149077698, 0); // (sin,-cos)(Pi/6) // return sincosm1_f256(60628596148627720713372490462954977108898896221398738326462025186323149077698); // (sin,1-cos)(Pi/6) // return tan_aux_f256(1899 << 245); // (p,q) such that p/q=tan(1899/2048) // return fixed248_tan(11 << 248); // tan(11) // return atanh_alt_f258(1 << 252); // atanh(1/64) * 2^258 // return atanh_f258(1 << 252, 18); // atanh(1/64) * 2^258 // return atanh_f261(mulDivRound(64, 1 << 255, 55), 18); // atanh(1/55) * 2^261 // return log2_aux_f256(1 << 255); // return log2_aux_f256(-1 - (-1 << 256)); // log2(2-1/2^255))*2^256 ~ 2^256 - 1.43 // return log_aux_f256(-1 - (-1 << 256)); // return log_aux_f256(3); // log(3/2)*2^256 // return fixed248_pow(3 << 248, 3 << 248); // 3^3 // return fixed248_exp(fixed248_log(5 << 248) ~/ 7); // exp(log(5)/7) = 5^(1/7) // return fixed248_log(Pi_const_f254() ~>> 6); // log(Pi) // return atanh_alt_f258(1 << 255); // atanh(1/8) * 2^258 // return atanh_f258(1 << 255, 37); // atanh(1/8) * 2^258 // return atanh_f258(81877371507464127617551201542979628307507432471243237061821853600756754782485, 36); // atanh(sqrt(2)/8) * 2^258 // return log_aux_f257(Pi_const_f254()); // log(Pi/4) // return log_aux_f257(3 << 254); // log(3) // return atanh_alt_f258(81877371507464127617551201542979628307507432471243237061821853600756754782485); // atanh(sqrt(2)/8) * 2^258 // return fixed248_sincos(Pi_const_f254() ~/ (64 * 3)); // (sin,cos)(Pi/3) // return fixed248_exp(3 << 248); // exp(3)*2^248 // return fixed248_exp2((1 << 248) ~/ 5); // 2^(1/5)*2^248 // return fixed248_pow(3 << 248, -3 << 247); // 3^(-1.5) // return fixed248_pow(10 << 248, -70 << 248); // 10^(-70) // return fixed248_pow(fixed248_Pi_const(), stackMoveToTop(3) << 248); // Pi^3 ~ 31.006, computed more precisely // return fixed248_pow(fixed248_Pi_const(), fixed248_Pi_const()); // Pi^Pi, more precisely // return fixed248_exp(fixed248_log(fixed248_Pi_const()) * 3); // Pi^3 ~ 31.006 // return fixed248_exp(mulDivRound(fixed248_log(fixed248_Pi_const()), fixed248_Pi_const(), 1 << 248)); // Pi^Pi // return fixed248_sin(fixed248_log(fixed248_exp(fixed248_Pi_const()))); // sin(log(e^Pi)) // return expm1_f257(1 << 255); // (exp(1/4)-1)*2^256 // return expm1_f257(-1 << 256); // (exp(-1/2)-1)*2^256 (argument out of range, will overflow) // return expm1_f257(log2_const_f256()); // (exp(log(2)/2)-1)*2^256 // return expm1_f257(- log2_const_f256()); // (exp(-log(2)/2)-1)*2^256 // return tanh_f258(log2_const_f256(), 17); // tanh(log(2)/4)*2^258 // return atan_f255(0xa0 << 247); // return atan_f259(1 << 255, 26); // atan(1/16) // return atan_f259(stackMoveToTop(2273) << 244, 26); // atan(2273/2^15) // return atan_aux_f256(0xa0 << 248); // return atan_aux_f256(-1 - (-1 << 256)); // return atan_aux_f256(-1 << 256); // return atan_aux_f256(1); // atan(1/2^256)*2^261 = 32 //return fixed248_nrand(); // return test_nrand(100000); var One2: int = 1 << 255; // return asin_f255(One); // return asin_f255(-2 * One ~/ -3); var arg: int = mulDivRound(12, One2, 17); // 12/17 // return [ asin_slow_f255(arg), asin_f255(arg) ]; // return [ acos_slow_f255(arg), acos_f255(arg) ]; // return 4 * atan_f255(One ~/ 5) - atan_f255(One ~/ 239); // 4 * atan(1/5) - atan(1/239) = Pi/4 as fixed255 var One3: int = 1 << 248; // return fixed248_atan(One) ~/ 5); // atan(1/5) // return fixed248_acot(One ~/ 239); // atan(1/5) } /** method_id | in | out @testcase | 10000 | -1-(-1<<256) -1-(-1<<256) | 115792089237316195423570985008687907853269984665640564039457584007913129639935 @testcase | 10000 | -1-(-1<<256) -2-(-1<<256) | 115792089237316195423570985008687907853269984665640564039457584007913129639934 @testcase | 10000 | -1-(-1<<256) 1<<255 | 81877371507464127617551201542979628307507432471243237061821853600756754782485 @testcase | 10000 | 1 2 | 1 @testcase | 10000 | 1 3 | 2 @testcase | 10000 | 3<<254 1<<254 | 50139445418395255283694704271811692336355250894665672355503583528635147053497 @testcase | 10000 | 3 5 | 4 @testcase | 10001 | 115641670674223639132965820642403718536242645001775371762318060545014644837101-1 | 115792089237316195423570985008687907853269984665640564039457584007913129639935 @testcase | 10001 | 15<<252 | 108679485937549714997960660780289583146059954551846264494610741505469565211201 @testcase | 10002 | 1<<255 | 57858359242454268843682786479537198006144860419130642837770554273561536355094 28938600351875109040123440645416448095273333920390487381363947585666516031269 @testcase | 10002 | 90942894222941581070058735694432465663348344332098107489693037779484723616546 | 90796875678616203090520439851979829600860326752181983760731669850687818036503 71369031536005973567205947792557760023823761636922618688720973932041901854510 @testcase | 10002 | 115641670674223639132965820642403718536242645001775371762318060545014644837100 | 115341536360906404779899502576747487978354537254490211650198994186870666100480 115341536360906404779899502576747487978354537254490211650198994186870666100479 @testcase | 10003 | 90942894222941581070058735694432465663348344332098107489693037779484723616546 0 | 81877371507464127617551201542979628307507432471243237061821853600756754782485 -81877371507464127617551201542979628307507432471243237061821853600756754782486 @testcase | 10003 | (1<<255)+1 0 | 55513684748706254392157395574451324146997108788015526773113170656738693667657 -101617118319522600545601981648807607350213579319835970884288805016705398675944 @testcase | 10003 | 1<<254 0 | 28647421327665059059430596260119789787021370826354543144805343654507971817712 -112192393597863122712065585177748900737784171216163716639418346853706594800924 @testcase | 10003 | 15<<252 0 | 93337815620236900315136494926097782162348358704087992554326802765553037216157 -68526346066204767396483080633934170508153877799043171682610011603005473885083 @testcase | 10004 | 15<<252 | 93337815620236900315136494926097782162348358704087992554326802765553037216158 94531486342222856054175808749507474690232213733194784713695144809815311509707 @testcase | 10003 | 60628596148627720713372490462954977108898896221398738326462025186323149077698 0 | 57896044618658097711785492504343953926634992332820282019728792003956564819968 -100278890836790510567389408543623384672710501789331344711007167057270294106993 @testcase | 10004 | 60628596148627720713372490462954977108898896221398738326462025186323149077698 | 57896044618658097711785492504343953926634992332820282019728792003956564819968 31026396801051369712363152930129046361118965752618438656900833901285671065886 @testcase | 10005 | 1899<<245 | -115784979074977116522606932816046735344768048129666123117516779696532375620701 -86847621900007587791673148476644866514014227467564880140262768165345715058771 @testcase | 10006 | 11<<248 | -102200470999497240398685962406597118965525125432278008915850368651878945159221 @testcase | 10008 | 1<<252 18 | 7237594612640731814076778712183932891481921212865048737772958953246047977071 @testcase! | 10009 | 64*(1<<255)//55 18 | 67377367986958444187782963285047188951340314639925508148698906136973510008513 @testcase | 10010 | 1<<255 | 0 255 @testcase | 10011 | -1-(-1<<256) | 80260960185991308862233904206310070533990667611589946606122867505419956976171 255 @testcase | 10012 | 3<<248 3<<248 | 12212446911748192486079752325135052781399568695204278238536542063334587891712 @testcase | 10013 | 5 7 | 569235245303856216139605450142923208167703167128528666640203654338408315932 @testcase | 10014 | 1420982722233462204219667745225507275989817880189032929526453715304448806508 | 517776035526939558040896860590142614178014859368681705591403663865964112176 @testcase | 10008 | 1<<255 37 | 58200445412255555045265806996802932280233368707362818578692888102488340124094 @testcase | 10008 | 81877371507464127617551201542979628307507432471243237061821853600756754782485 36 | 82746618329032515754939514227666784789465120373484337368014239356561508382845 @testcase | 10015 | 90942894222941581070058735694432465663348344332098107489693037779484723616546 | -55942510554172181731996424203087263676819062449594753161692794122306202470292 256 @testcase | 10015 | 3<<254 | -66622616410625360568738677407433830899150908037353507097280251369610028875158 256 @testcase | 10016 | 90942894222941581070058735694432465663348344332098107489693037779484723616546//(64*3) | 391714417331212931903864877123528846377775397614575565277371746317462086355 226156424291633194186662080095093570025917938800079226639565593765455331328 @testcase | 10017 | 3<<248 | 9084946421051389814103830025729847734065792062362132089390904679466687950835 @testcase | 10018 | (1<<248)//5 | 519571025111621076330285524602776985448579272766894385941850747946908706857 @testcase | 10012 | 3<<248 -3<<247 | 87047648295825095978636639360784188083950088358794570061638165848324908079 @testcase | 10012 | 10<<248 -70<<248 | 45231 @testcase | 10012 | 1420982722233462204219667745225507275989817880189032929526453715304448806508 3<<248 | 14024537329227316173680050897643053638073167245065581681188087336877135047241 @testcase | 10012 | 1420982722233462204219667745225507275989817880189032929526453715304448806508 1420982722233462204219667745225507275989817880189032929526453715304448806508 | 16492303277433924047657446877966346821161732581471802839855102123372676002295 @testcase | 10019 | 1<<255 | 65775792789545756849501669218806308540691279864498696756901136302101823231959 @testcase | 10019 | -1<<255 | -51226238931640701466578648374135745377468902266335737558089915608594425303282 @testcase | 10020 | 160<<247 | 32340690885082755723307749066376646841771751777398167772823878380310576779097 @testcase | 10021 | 1<<255 26 | 57820835337111819566482910321201859268121322500887685881159030272507322418551 @testcase | 10021 | 2273<<244 26 | 64153929153128256059565403901040178355488584937372975321150754259394300105908 @testcase | 10022 | 160<<248 | 18 -13775317617017974742132028403521581424991093186766868001115299479309514610238 @testcase | 10022 | -1-(-1<<256) | 25 16312150880916231694896252427912541090503675654570543195394548083530005073282 @testcase | 10022 | -1<<256 | -25 -16312150880916231694896252427912541090503675654570543195394548083530005073298 @testcase | 10022 | 1 | 0 32 @testcase | 10023 | 1<<255 | 90942894222941581070058735694432465663348344332098107489693037779484723616546 @testcase | 10023 | (1-(1<<255))//-3 | 19675212872822715586637341573564384553677006914302429002469838095945333339604 @testcase | 10023 | 12*(1<<255)//17 | 45371280744427205854111943101074857545572584208710061167826656461897302968384 @testcase | 10024 | 12*(1<<255)//17 | 45371280744427205854111943101074857545572584208710061167826656461897302968387 @testcase | 10025 | 12*(1<<255)//17 | 22785806739257187607973396296678804058887880061694023160933190658793710324081 @testcase | 10026 | 12*(1<<255)//17 | 22785806739257187607973396296678804058887880061694023160933190658793710324080 @testcase | 10027 | (1<<248)//5 | 89284547973388213553327350968415123522888028497458323165947767504203347189 @testcase | 10028 | (1<<248)//239 | 708598849781543798951441405045469962900811296151941404481049216461523216127 */