1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-02-12 11:12:16 +00:00
ton/crypto/vm/vm.cpp
2025-01-24 17:41:43 +03:00

794 lines
26 KiB
C++

/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
Copyright 2017-2020 Telegram Systems LLP
*/
#include "vm/dispatch.h"
#include "vm/continuation.h"
#include "vm/dict.h"
#include "vm/log.h"
#include "vm/vm.h"
#include "cp0.h"
#include "memo.h"
#include <sodium.h>
namespace vm {
VmState::VmState() : cp(-1), dispatch(&dummy_dispatch_table), quit0(true, 0), quit1(true, 1) {
ensure_throw(init_cp(0));
init_cregs();
}
VmState::VmState(Ref<CellSlice> _code, int global_version, Ref<Stack> _stack, const GasLimits& gas, int flags,
Ref<Cell> _data, VmLog log, std::vector<Ref<Cell>> _libraries, Ref<Tuple> init_c7)
: code(std::move(_code))
, stack(std::move(_stack))
, cp(-1)
, dispatch(&dummy_dispatch_table)
, quit0(true, 0)
, quit1(true, 1)
, log(log)
, gas(gas)
, libraries(std::move(_libraries))
, stack_trace((flags >> 2) & 1)
, global_version(global_version) {
ensure_throw(init_cp(0));
set_c4(std::move(_data));
if (init_c7.not_null()) {
set_c7(std::move(init_c7));
}
init_cregs(flags & 1, flags & 2);
}
void VmState::init_cregs(bool same_c3, bool push_0) {
cr.set_c0(quit0);
cr.set_c1(quit1);
cr.set_c2(Ref<ExcQuitCont>{true});
if (same_c3) {
cr.set_c3(Ref<OrdCont>{true, code, cp});
if (push_0) {
VM_LOG(this) << "implicit PUSH 0 at start\n";
get_stack().push_smallint(0);
}
} else {
cr.set_c3(Ref<QuitCont>{true, 11});
}
if (cr.d[0].is_null() || cr.d[1].is_null()) {
auto empty_cell = CellBuilder{}.finalize();
for (int i = 0; i < ControlRegs::dreg_num; i++) {
if (cr.d[i].is_null()) {
cr.d[i] = empty_cell;
}
}
}
if (cr.c7.is_null()) {
cr.set_c7(Ref<Tuple>{true});
}
}
Ref<CellSlice> VmState::convert_code_cell(Ref<Cell> code_cell, int global_version,
const std::vector<Ref<Cell>>& libraries) {
if (code_cell.is_null()) {
return {};
}
Ref<CellSlice> csr;
if (global_version >= 9) {
// Use DummyVmState instead of this to avoid consuming gas for cell loading
DummyVmState dummy{libraries, global_version};
Guard guard(&dummy);
try {
csr = load_cell_slice_ref(code_cell);
} catch (VmError&) { // NOLINT(*-empty-catch)
}
} else {
csr = td::Ref<CellSlice>{true, NoVmOrd(), code_cell};
}
if (csr.not_null() && csr->is_valid()) {
return csr;
}
return load_cell_slice_ref(CellBuilder{}.store_ref(std::move(code_cell)).finalize());
}
bool VmState::init_cp(int new_cp) {
const DispatchTable* dt = DispatchTable::get_table(new_cp);
if (dt) {
cp = new_cp;
dispatch = dt;
return true;
} else {
return false;
}
}
bool VmState::set_cp(int new_cp) {
return new_cp == cp || init_cp(new_cp);
}
void VmState::force_cp(int new_cp) {
if (!set_cp(new_cp)) {
throw VmError{Excno::inv_opcode, "unsupported codepage"};
}
}
// simple call to a continuation cont
int VmState::call(Ref<Continuation> cont) {
const ControlData* cont_data = cont->get_cdata();
if (cont_data) {
if (cont_data->save.c[0].not_null()) {
// call reduces to a jump
return jump(std::move(cont));
}
if (cont_data->stack.not_null() || cont_data->nargs >= 0) {
// if cont has non-empty stack or expects fixed number of arguments, call is not simple
return call(std::move(cont), -1, -1);
}
// create return continuation, to be stored into new c0
Ref<OrdCont> ret = Ref<OrdCont>{true, std::move(code), cp};
ret.unique_write().get_cdata()->save.set_c0(std::move(cr.c[0]));
cr.set_c0(
std::move(ret)); // set c0 to its final value before switching to cont; notice that cont.save.c0 is not set
return jump_to(std::move(cont));
}
// create return continuation, to be stored into new c0
Ref<OrdCont> ret = Ref<OrdCont>{true, std::move(code), cp};
ret.unique_write().get_cdata()->save.set_c0(std::move(cr.c[0]));
// general implementation of a simple call
cr.set_c0(std::move(ret)); // set c0 to its final value before switching to cont; notice that cont.save.c0 is not set
return jump_to(std::move(cont));
}
// call with parameters to continuation cont
int VmState::call(Ref<Continuation> cont, int pass_args, int ret_args) {
const ControlData* cont_data = cont->get_cdata();
if (cont_data) {
if (cont_data->save.c[0].not_null()) {
// call reduces to a jump
return jump(std::move(cont), pass_args);
}
int depth = stack->depth();
if (pass_args > depth || cont_data->nargs > depth) {
throw VmError{Excno::stk_und, "stack underflow while calling a continuation: not enough arguments on stack"};
}
if (cont_data->nargs > pass_args && pass_args >= 0) {
throw VmError{Excno::stk_und,
"stack underflow while calling a closure continuation: not enough arguments passed"};
}
auto old_c0 = std::move(cr.c[0]);
// optimization(?): decrease refcnts of unused continuations in c[i] as early as possible
preclear_cr(cont_data->save);
// no exceptions should be thrown after this point
int copy = cont_data->nargs, skip = 0;
if (pass_args >= 0) {
if (copy >= 0) {
skip = pass_args - copy;
} else {
copy = pass_args;
}
}
// copy=-1 : pass whole stack, else pass top `copy` elements, drop next `skip` elements.
Ref<Stack> new_stk;
if (cont_data->stack.not_null() && !cont_data->stack->is_empty()) {
// `cont` already has a stack, create resulting stack from it
if (copy < 0) {
copy = stack->depth();
}
if (cont->is_unique()) {
// optimization: avoid copying stack if we hold the only copy of `cont`
new_stk = std::move(cont.unique_write().get_cdata()->stack);
} else {
new_stk = cont_data->stack;
}
new_stk.write().move_from_stack(get_stack(), copy);
if (skip > 0) {
get_stack().pop_many(skip);
}
consume_stack_gas(new_stk);
} else if (copy >= 0) {
new_stk = get_stack().split_top(copy, skip);
consume_stack_gas(new_stk);
} else {
new_stk = std::move(stack);
stack.clear();
}
// create return continuation using the remainder of current stack
Ref<OrdCont> ret = Ref<OrdCont>{true, std::move(code), cp, std::move(stack), ret_args};
ret.unique_write().get_cdata()->save.set_c0(std::move(old_c0));
Ref<OrdCont> ord_cont = static_cast<Ref<OrdCont>>(cont);
set_stack(std::move(new_stk));
cr.set_c0(std::move(ret)); // ??? if codepage of code in ord_cont is unknown, will end up with incorrect c0
return jump_to(std::move(cont));
} else {
// have no continuation data, situation is somewhat simpler
int depth = stack->depth();
if (pass_args > depth) {
throw VmError{Excno::stk_und, "stack underflow while calling a continuation: not enough arguments on stack"};
}
// create new stack from the top `pass_args` elements of the current stack
Ref<Stack> new_stk;
if (pass_args >= 0) {
new_stk = get_stack().split_top(pass_args);
consume_stack_gas(new_stk);
} else {
new_stk = std::move(stack);
}
// create return continuation using the remainder of the current stack
Ref<OrdCont> ret = Ref<OrdCont>{true, std::move(code), cp, std::move(stack), ret_args};
ret.unique_write().get_cdata()->save.set_c0(std::move(cr.c[0]));
set_stack(std::move(new_stk));
cr.set_c0(std::move(ret)); // ??? if codepage of code in ord_cont is unknown, will end up with incorrect c0
return jump_to(std::move(cont));
}
}
// simple jump to continuation cont
int VmState::jump(Ref<Continuation> cont) {
const ControlData* cont_data = cont->get_cdata();
if (cont_data && (cont_data->stack.not_null() || cont_data->nargs >= 0)) {
// if cont has non-empty stack or expects fixed number of arguments, jump is not simple
return jump(std::move(cont), -1);
} else {
return jump_to(std::move(cont));
}
}
// general jump to continuation cont
int VmState::jump(Ref<Continuation> cont, int pass_args) {
cont = adjust_jump_cont(std::move(cont), pass_args);
return jump_to(std::move(cont));
}
Ref<Continuation> VmState::adjust_jump_cont(Ref<Continuation> cont, int pass_args) {
const ControlData* cont_data = cont->get_cdata();
if (cont_data) {
// first do the checks
int depth = stack->depth();
if (pass_args > depth || cont_data->nargs > depth) {
throw VmError{Excno::stk_und, "stack underflow while jumping to a continuation: not enough arguments on stack"};
}
if (cont_data->nargs > pass_args && pass_args >= 0) {
throw VmError{Excno::stk_und,
"stack underflow while jumping to closure continuation: not enough arguments passed"};
}
// optimization(?): decrease refcnts of unused continuations in c[i] as early as possible
preclear_cr(cont_data->save);
// no exceptions should be thrown after this point
int copy = cont_data->nargs;
if (pass_args >= 0 && copy < 0) {
copy = pass_args;
}
// copy=-1 : pass whole stack, else pass top `copy` elements, drop the remainder.
if (cont_data->stack.not_null() && !cont_data->stack->is_empty()) {
// `cont` already has a stack, create resulting stack from it
if (copy < 0) {
copy = get_stack().depth();
}
Ref<Stack> new_stk;
if (cont->is_unique()) {
// optimization: avoid copying the stack if we hold the only copy of `cont`
new_stk = std::move(cont.unique_write().get_cdata()->stack);
} else {
new_stk = cont_data->stack;
}
new_stk.write().move_from_stack(get_stack(), copy);
consume_stack_gas(new_stk);
set_stack(std::move(new_stk));
} else {
if (copy >= 0 && copy < stack->depth()) {
get_stack().drop_bottom(stack->depth() - copy);
consume_stack_gas(copy);
}
}
return cont;
} else {
// have no continuation data, situation is somewhat simpler
if (pass_args >= 0) {
int depth = get_stack().depth();
if (pass_args > depth) {
throw VmError{Excno::stk_und, "stack underflow while jumping to a continuation: not enough arguments on stack"};
} else if (pass_args < depth) {
get_stack().drop_bottom(depth - pass_args);
consume_stack_gas(pass_args);
}
}
return cont;
}
}
int VmState::ret() {
Ref<Continuation> cont = quit0;
cont.swap(cr.c[0]);
return jump(std::move(cont));
}
int VmState::ret(int ret_args) {
Ref<Continuation> cont = quit0;
cont.swap(cr.c[0]);
return jump(std::move(cont), ret_args);
}
int VmState::ret_alt() {
Ref<Continuation> cont = quit1;
cont.swap(cr.c[1]);
return jump(std::move(cont));
}
int VmState::ret_alt(int ret_args) {
Ref<Continuation> cont = quit1;
cont.swap(cr.c[1]);
return jump(std::move(cont), ret_args);
}
Ref<Continuation> VmState::c1_envelope(Ref<Continuation> cont, bool save) {
if (save) {
force_cregs(cont)->define_c1(cr.c[1]);
force_cregs(cont)->define_c0(cr.c[0]);
}
set_c1(cont);
return cont;
}
void VmState::c1_save_set(bool save) {
if (save) {
force_cregs(cr.c[0])->define_c1(cr.c[1]);
}
set_c1(cr.c[0]);
}
Ref<OrdCont> VmState::extract_cc(int save_cr, int stack_copy, int cc_args) {
Ref<Stack> new_stk;
if (stack_copy < 0 || stack_copy == stack->depth()) {
new_stk = std::move(stack);
stack.clear();
} else if (stack_copy > 0) {
stack->check_underflow(stack_copy);
new_stk = get_stack().split_top(stack_copy);
consume_stack_gas(new_stk);
} else {
new_stk = Ref<Stack>{true};
}
Ref<OrdCont> cc = Ref<OrdCont>{true, std::move(code), cp, std::move(stack), cc_args};
stack = std::move(new_stk);
if (save_cr & 7) {
ControlData* cdata = cc.unique_write().get_cdata();
if (save_cr & 1) {
cdata->save.set_c0(std::move(cr.c[0]));
cr.set_c0(quit0);
}
if (save_cr & 2) {
cdata->save.set_c1(std::move(cr.c[1]));
cr.set_c1(quit1);
}
if (save_cr & 4) {
cdata->save.set_c2(std::move(cr.c[2]));
// cr.set_c2(Ref<ExcQuitCont>{true});
}
}
return cc;
}
int VmState::throw_exception(int excno) {
Stack& stack_ref = get_stack();
stack_ref.clear();
stack_ref.push_smallint(0);
stack_ref.push_smallint(excno);
code.clear();
consume_gas_chk(exception_gas_price);
return jump(get_c2());
}
int VmState::throw_exception(int excno, StackEntry&& arg) {
Stack& stack_ref = get_stack();
stack_ref.clear();
stack_ref.push(std::move(arg));
stack_ref.push_smallint(excno);
code.clear();
consume_gas_chk(exception_gas_price);
return jump(get_c2());
}
void GasLimits::gas_exception() const {
throw VmNoGas{};
}
void GasLimits::set_limits(long long _max, long long _limit, long long _credit) {
gas_max = _max;
gas_limit = _limit;
gas_credit = _credit;
change_base(_limit + _credit);
}
void GasLimits::change_limit(long long _limit) {
_limit = std::min(std::max(_limit, 0LL), gas_max);
gas_credit = 0;
gas_limit = _limit;
change_base(_limit);
}
bool VmState::set_gas_limits(long long _max, long long _limit, long long _credit) {
gas.set_limits(_max, _limit, _credit);
return true;
}
void VmState::change_gas_limit(long long new_limit) {
VM_LOG(this) << "changing gas limit to " << std::min(new_limit, gas.gas_max);
gas.change_limit(new_limit);
}
int VmState::step() {
CHECK(code.not_null() && stack.not_null());
if (log.log_mask & vm::VmLog::DumpStack) {
std::stringstream ss;
int mode = 3;
if (log.log_mask & vm::VmLog::DumpStackVerbose) {
mode += 4;
}
std::unique_ptr<VmStateInterface> tmp_ctx;
// install temporary dummy vm state interface to prevent charging for cell load operations during dump
VmStateInterface::Guard guard(tmp_ctx.get());
stack->dump(ss, mode);
VM_LOG(this) << "stack:" << ss.str();
}
if (stack_trace) {
std::unique_ptr<VmStateInterface> tmp_ctx;
// install temporary dummy vm state interface to prevent charging for cell load operations during dump
VmStateInterface::Guard guard(tmp_ctx.get());
stack->dump(std::cerr, 3);
}
++steps;
if (code->size()) {
VM_LOG_MASK(this, vm::VmLog::ExecLocation) << "code cell hash: " << code->get_base_cell()->get_hash().to_hex() << " offset: " << code->cur_pos();
return dispatch->dispatch(this, code.write());
} else if (code->size_refs()) {
VM_LOG(this) << "execute implicit JMPREF";
auto ref_cell = code->prefetch_ref();
VM_LOG_MASK(this, vm::VmLog::ExecLocation) << "code cell hash: " << ref_cell->get_hash().to_hex() << " offset: 0";
consume_gas_chk(implicit_jmpref_gas_price);
Ref<Continuation> cont = Ref<OrdCont>{true, load_cell_slice_ref(std::move(ref_cell)), get_cp()};
return jump(std::move(cont));
} else {
VM_LOG(this) << "execute implicit RET";
consume_gas_chk(implicit_ret_gas_price);
return ret();
}
}
int VmState::run_inner() {
int res;
Guard guard(this);
do {
try {
try {
res = step();
VM_LOG_MASK(this, vm::VmLog::GasRemaining) << "gas remaining: " << gas.gas_remaining;
gas.check();
} catch (vm::CellBuilder::CellWriteError) {
throw VmError{Excno::cell_ov};
} catch (vm::CellBuilder::CellCreateError) {
throw VmError{Excno::cell_ov};
} catch (vm::CellSlice::CellReadError) {
throw VmError{Excno::cell_und};
}
} catch (const VmError& vme) {
VM_LOG(this) << "handling exception code " << vme.get_errno() << ": " << vme.get_msg();
try {
++steps;
res = throw_exception(vme.get_errno());
} catch (const VmError& vme2) {
VM_LOG(this) << "exception " << vme2.get_errno() << " while handling exception: " << vme.get_msg();
return ~vme2.get_errno();
}
}
} while (!res);
if ((res | 1) == -1 && !try_commit()) {
VM_LOG(this) << "automatic commit failed (new data or action cells too deep)";
get_stack().clear();
get_stack().push_smallint(0);
return ~(int)Excno::cell_ov;
}
return res;
}
int VmState::run() {
if (code.is_null() || stack.is_null()) {
// throw VmError{Excno::fatal, "cannot run an uninitialized VM"};
return (int)Excno::fatal; // no ~ for unhandled exceptions
}
int res = 0;
bool restore_parent = false;
while (true) {
try {
if (restore_parent) {
restore_parent_vm(~res);
}
res = run_inner();
} catch (VmNoGas &vmoog) {
++steps;
VM_LOG(this) << "unhandled out-of-gas exception: gas consumed=" << gas.gas_consumed()
<< ", limit=" << gas.gas_limit;
get_stack().clear();
get_stack().push_smallint(gas.gas_consumed());
res = vmoog.get_errno(); // no ~ for unhandled exceptions (to make their faking impossible)
}
if (!parent) {
if ((log.log_mask & VmLog::DumpC5) && cstate.committed) {
std::stringstream ss;
ss << "final c5: ";
StackEntry::maybe<Cell>(cstate.c5).dump(ss, true);
ss << "\n";
VM_LOG(this) << ss.str();
}
return res;
}
restore_parent = true;
}
}
bool VmState::try_commit() {
if (cr.d[0].not_null() && cr.d[1].not_null() && cr.d[0]->get_depth() <= max_data_depth &&
cr.d[1]->get_depth() <= max_data_depth && cr.d[0]->get_level() == 0 && cr.d[1]->get_level() == 0) {
cstate.c4 = cr.d[0];
cstate.c5 = cr.d[1];
cstate.committed = true;
return true;
} else {
return false;
}
}
void VmState::force_commit() {
if (!try_commit()) {
throw VmError{Excno::cell_ov, "cannot commit too deep cells as new data/actions"};
}
}
ControlData* force_cdata(Ref<Continuation>& cont) {
if (!cont->get_cdata()) {
cont = Ref<ArgContExt>{true, cont};
return cont.unique_write().get_cdata();
} else {
return cont.write().get_cdata();
}
}
ControlRegs* force_cregs(Ref<Continuation>& cont) {
return &force_cdata(cont)->save;
}
int run_vm_code(Ref<CellSlice> code, Ref<Stack>& stack, int flags, Ref<Cell>* data_ptr, VmLog log, long long* steps,
GasLimits* gas_limits, std::vector<Ref<Cell>> libraries, Ref<Tuple> init_c7, Ref<Cell>* actions_ptr,
int global_version) {
VmState vm{code,
global_version,
std::move(stack),
gas_limits ? *gas_limits : GasLimits{},
flags,
data_ptr ? *data_ptr : Ref<Cell>{},
log,
std::move(libraries),
std::move(init_c7)};
int res = vm.run();
stack = vm.get_stack_ref();
if (vm.committed() && data_ptr) {
*data_ptr = vm.get_committed_state().c4;
}
if (vm.committed() && actions_ptr) {
*actions_ptr = vm.get_committed_state().c5;
}
if (steps) {
*steps = vm.get_steps_count();
}
if (gas_limits) {
*gas_limits = vm.get_gas_limits();
LOG(INFO) << "steps: " << vm.get_steps_count() << " gas: used=" << gas_limits->gas_consumed()
<< ", max=" << gas_limits->gas_max << ", limit=" << gas_limits->gas_limit
<< ", credit=" << gas_limits->gas_credit;
}
if ((vm.get_log().log_mask & vm::VmLog::DumpStack) != 0) {
VM_LOG(&vm) << "BEGIN_STACK_DUMP";
for (int i = stack->depth(); i > 0; i--) {
VM_LOG(&vm) << (*stack)[i - 1].to_string();
}
VM_LOG(&vm) << "END_STACK_DUMP";
}
return ~res;
}
int run_vm_code(Ref<CellSlice> code, Stack& stack, int flags, Ref<Cell>* data_ptr, VmLog log, long long* steps,
GasLimits* gas_limits, std::vector<Ref<Cell>> libraries, Ref<Tuple> init_c7, Ref<Cell>* actions_ptr,
int global_version) {
Ref<Stack> stk{true};
stk.unique_write().set_contents(std::move(stack));
stack.clear();
int res = run_vm_code(code, stk, flags, data_ptr, log, steps, gas_limits, std::move(libraries), std::move(init_c7),
actions_ptr, global_version);
CHECK(stack.is_unique());
if (stk.is_null()) {
stack.clear();
} else if (&(*stk) != &stack) {
VmState* st = nullptr;
if (stk->is_unique()) {
VM_LOG(st) << "move resulting stack (" << stk->depth() << " entries)";
stack.set_contents(std::move(stk.unique_write()));
} else {
VM_LOG(st) << "copying resulting stack (" << stk->depth() << " entries)";
stack.set_contents(*stk);
}
}
return res;
}
// may throw a dictionary exception; returns nullptr if library is not found in context
Ref<Cell> VmState::load_library(td::ConstBitPtr hash) {
std::unique_ptr<VmStateInterface> tmp_ctx;
// install temporary dummy vm state interface to prevent charging for cell load operations during library lookup
VmStateInterface::Guard guard{global_version >= 4 ? tmp_ctx.get() : VmStateInterface::get()};
for (const auto& lib_collection : libraries) {
auto lib = lookup_library_in(hash, lib_collection);
if (lib.not_null()) {
return lib;
}
}
missing_library = td::Bits256{hash};
return {};
}
bool VmState::register_library_collection(Ref<Cell> lib) {
if (lib.is_null()) {
return true;
}
libraries.push_back(std::move(lib));
return true;
}
void VmState::register_cell_load(const CellHash& cell_hash) {
if (cell_load_gas_price == cell_reload_gas_price) {
consume_gas(cell_load_gas_price);
} else {
auto ok = loaded_cells.insert(cell_hash); // check whether this is the first time this cell is loaded
consume_gas(ok.second ? cell_load_gas_price : cell_reload_gas_price);
}
}
void VmState::register_cell_create() {
consume_gas(cell_create_gas_price);
}
td::BitArray<256> VmState::get_state_hash() const {
// TODO: implement properly, by serializing the stack etc, and computing the Merkle hash
td::BitArray<256> res;
res.clear();
return res;
}
td::BitArray<256> VmState::get_final_state_hash(int exit_code) const {
// TODO: implement properly, by serializing the stack etc, and computing the Merkle hash
td::BitArray<256> res;
res.clear();
return res;
}
Ref<vm::Cell> lookup_library_in(td::ConstBitPtr key, vm::Dictionary& dict) {
try {
auto val = dict.lookup(key, 256);
if (val.is_null() || !val->have_refs()) {
return {};
}
auto root = val->prefetch_ref();
if (root.not_null() && !root->get_hash().bits().compare(key, 256)) {
return root;
}
return {};
} catch (vm::VmError) {
return {};
}
}
Ref<vm::Cell> lookup_library_in(td::ConstBitPtr key, Ref<vm::Cell> lib_root) {
if (lib_root.is_null()) {
return lib_root;
}
vm::Dictionary dict{std::move(lib_root), 256};
return lookup_library_in(key, dict);
}
void VmState::run_child_vm(VmState&& new_state, bool return_data, bool return_actions, bool return_gas,
bool isolate_gas, int ret_vals) {
new_state.log = std::move(log);
new_state.libraries = std::move(libraries);
new_state.stack_trace = stack_trace;
new_state.max_data_depth = max_data_depth;
if (!isolate_gas) {
new_state.loaded_cells = std::move(loaded_cells);
} else {
consume_gas(std::min<long long>(chksgn_counter, chksgn_free_count) * chksgn_gas_price);
chksgn_counter = 0;
}
new_state.chksgn_counter = chksgn_counter;
auto new_parent = std::make_unique<ParentVmState>();
new_parent->return_data = return_data;
new_parent->return_actions = return_actions;
new_parent->return_gas = return_gas;
new_parent->isolate_gas = isolate_gas;
new_parent->ret_vals = ret_vals;
new_parent->state = std::move(*this);
new_state.parent = std::move(new_parent);
*this = std::move(new_state);
}
void VmState::restore_parent_vm(int res) {
auto parent = std::move(this->parent);
CHECK(parent);
VmState child_state = std::move(*this);
*this = std::move(parent->state);
log = std::move(child_state.log);
libraries = std::move(child_state.libraries);
steps += child_state.steps;
if (!parent->isolate_gas) {
loaded_cells = std::move(child_state.loaded_cells);
}
chksgn_counter = child_state.chksgn_counter;
VM_LOG(this) << "Child VM finished. res: " << res << ", steps: " << child_state.steps
<< ", gas: " << child_state.gas_consumed();
consume_gas(std::min(child_state.gas_consumed(), child_state.gas.gas_limit + 1));
Stack& cur_stack = get_stack();
int ret_cnt;
if (res == 0 || res == 1) {
if (parent->ret_vals >= 0) {
if (child_state.stack->depth() >= parent->ret_vals) {
ret_cnt = parent->ret_vals;
} else {
ret_cnt = 0;
res = ~(int)Excno::stk_und;
cur_stack.push(td::zero_refint());
}
} else {
ret_cnt = child_state.stack->depth();
}
} else {
ret_cnt = std::min(child_state.stack->depth(), 1);
}
consume_stack_gas(ret_cnt);
for (int i = ret_cnt - 1; i >= 0; --i) {
cur_stack.push(std::move(child_state.stack->at(i)));
}
cur_stack.push_smallint(res);
if (parent->return_data) {
cur_stack.push_cell(child_state.get_committed_state().c4);
}
if (parent->return_actions) {
cur_stack.push_cell(child_state.get_committed_state().c5);
}
if (parent->return_gas) {
cur_stack.push_smallint(child_state.gas.gas_consumed());
}
}
td::Status init_vm(bool enable_debug) {
if (!init_op_cp0(enable_debug)) {
return td::Status::Error("Failed to init TVM: failed to init cp0");
}
auto code = sodium_init();
if (code < 0) {
return td::Status::Error(PSTRING() << "Failed to init TVM: sodium_init, code=" << code);
}
return td::Status::OK();
}
} // namespace vm