mirror of
https://github.com/ton-blockchain/ton
synced 2025-02-12 11:12:16 +00:00
154 lines
3.4 KiB
C++
154 lines
3.4 KiB
C++
/*
|
|
This file is part of TON Blockchain Library.
|
|
|
|
TON Blockchain Library is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
TON Blockchain Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Copyright 2017-2020 Telegram Systems LLP
|
|
*/
|
|
|
|
#include "LossSender.h"
|
|
|
|
#include "td/utils/logging.h"
|
|
|
|
#if TON_HAVE_GSL
|
|
#include <gsl/gsl_cdf.h>
|
|
#endif
|
|
|
|
#include <cmath>
|
|
|
|
namespace ton {
|
|
namespace rldp2 {
|
|
namespace {
|
|
// works for 1e-x, where x in {1..10}
|
|
double ndtri_fast(double p) {
|
|
if (p < 2e-10) {
|
|
return 6.361340902404;
|
|
}
|
|
if (p < 2e-9) {
|
|
return 5.997807015008;
|
|
}
|
|
if (p < 2e-8) {
|
|
return 5.612001244175;
|
|
}
|
|
if (p < 2e-7) {
|
|
return 5.199337582193;
|
|
}
|
|
if (p < 2e-6) {
|
|
return 4.753424308823;
|
|
}
|
|
if (p < 2e-5) {
|
|
return 4.264890793923;
|
|
}
|
|
if (p < 2e-4) {
|
|
return 3.719016485456;
|
|
}
|
|
if (p < 2e-3) {
|
|
return 3.090232306168;
|
|
}
|
|
if (p < 2e-2) {
|
|
return 2.326347874041;
|
|
}
|
|
return 1.281551565545;
|
|
}
|
|
} // namespace
|
|
|
|
LossSender::LossSender(double loss, double p) : loss_(loss), p_(p) {
|
|
v_.resize(2);
|
|
v_[0] = 1;
|
|
res_.push_back(0);
|
|
S_ = ndtri_fast(p_);
|
|
sigma_ = p * (1 - p);
|
|
//LOG(ERROR) << S_ << " " << ndtri(1 - p_);
|
|
//CHECK(fabs(S_ - ndtri(1 - p_)) < 1e-6);
|
|
}
|
|
|
|
int LossSender::send_n(int n) {
|
|
if (n < 50) {
|
|
return send_n_exact(n);
|
|
}
|
|
return send_n_approx_nbd(n);
|
|
}
|
|
|
|
int LossSender::send_n_exact(int n) {
|
|
while ((int)res_.size() <= n) {
|
|
step();
|
|
}
|
|
return res_[n];
|
|
}
|
|
|
|
int LossSender::send_n_approx_norm(int n) {
|
|
double a = (1 - loss_) * (1 - loss_);
|
|
double b = loss_ * (loss_ - 1) * (2 * n + S_ * S_);
|
|
double c = loss_ * loss_ * n * n + S_ * S_ * n * loss_ * (loss_ - 1);
|
|
double x = ((-b + sqrt(b * b - 4 * a * c)) / (2 * a));
|
|
return (int)(x + n + 1);
|
|
}
|
|
|
|
int LossSender::send_n_approx_nbd(int n) {
|
|
#if TON_HAVE_GSL
|
|
auto mean = n * loss_ / (1 - loss_);
|
|
auto var = sqrt(mean / (1 - loss_));
|
|
auto min_k = static_cast<int>(mean + var);
|
|
auto max_k = min_k + static_cast<int>(var + 1) * 15;
|
|
while (min_k + 1 < max_k) {
|
|
int k = (min_k + max_k) / 2;
|
|
if (gsl_cdf_negative_binomial_P(k, 1 - loss_, n) > 1 - p_) {
|
|
max_k = k;
|
|
} else {
|
|
min_k = k;
|
|
}
|
|
}
|
|
return max_k + n;
|
|
#endif
|
|
return send_n_approx_norm(n);
|
|
}
|
|
|
|
int LossSender::send_n_approx_pd(int n) {
|
|
#if TON_HAVE_GSL
|
|
for (int k = 0;; k++) {
|
|
if (gsl_cdf_poisson_P(k, (n + k) * loss_) > 1 - p_) {
|
|
return k + n;
|
|
}
|
|
}
|
|
#endif
|
|
return send_n_approx_norm(n);
|
|
}
|
|
bool LossSender::has_good_approx() {
|
|
#if TON_HAVE_GSL
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void LossSender::step() {
|
|
n_++;
|
|
v_.push_back(0);
|
|
v_[n_] = v_[n_ - 1];
|
|
for (int j = n_; j >= 0; j--) {
|
|
v_[j + 1] += v_[j] * loss_;
|
|
v_[j] *= (1 - loss_);
|
|
}
|
|
|
|
while (res_i_ < n_ && v_[res_i_] < 1 - p_) {
|
|
res_i_++;
|
|
}
|
|
auto left_ = n_ - res_i_;
|
|
if ((int)res_.size() == left_) {
|
|
res_.push_back(n_);
|
|
}
|
|
}
|
|
|
|
} // namespace rldp2
|
|
} // namespace ton
|