mirror of
				https://github.com/ton-blockchain/ton
				synced 2025-03-09 15:40:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			255 lines
		
	
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			255 lines
		
	
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|     This file is part of TON Blockchain Library.
 | |
| 
 | |
|     TON Blockchain Library is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU Lesser General Public License as published by
 | |
|     the Free Software Foundation, either version 2 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     TON Blockchain Library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public License
 | |
|     along with TON Blockchain Library.  If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
|     Copyright 2017-2020 Telegram Systems LLP
 | |
| */
 | |
| #include "ellcurve/TwEdwards.h"
 | |
| #include <assert.h>
 | |
| #include <cstring>
 | |
| 
 | |
| namespace ellcurve {
 | |
| using namespace arith;
 | |
| 
 | |
| class TwEdwardsCurve;
 | |
| 
 | |
| TwEdwardsCurve::TwEdwardsCurve(const Residue& _D, const Residue& _Gy, td::Ref<ResidueRing> _R)
 | |
|     : ring(_R)
 | |
|     , D(_D)
 | |
|     , D2(_D + _D)
 | |
|     , Gy(_Gy)
 | |
|     , P_(_R->get_modulus())
 | |
|     , cofactor_short(0)
 | |
|     , G(_R)
 | |
|     , O(_R)
 | |
|     , table_lines(0)
 | |
|     , table() {
 | |
|   init();
 | |
| }
 | |
| 
 | |
| TwEdwardsCurve::~TwEdwardsCurve() {
 | |
| }
 | |
| 
 | |
| void TwEdwardsCurve::init() {
 | |
|   assert(D != ring->zero() && D != ring->convert(-1));
 | |
|   O.X = O.Z = ring->one();
 | |
|   G = SegrePoint(*this, Gy, 0);
 | |
|   assert(!G.XY.is_zero());
 | |
| }
 | |
| 
 | |
| void TwEdwardsCurve::set_order_cofactor(const Bignum& order, int cof) {
 | |
|   assert(order > 0);
 | |
|   assert(cof >= 0);
 | |
|   assert(cof == 0 || (order % cof) == 0);
 | |
|   Order = order;
 | |
|   cofactor = cofactor_short = cof;
 | |
|   if (cof > 0) {
 | |
|     L = order / cof;
 | |
|     assert(is_prime(L));
 | |
|     assert(!power_gen(1).is_zero());
 | |
|     assert(power_gen(L).is_zero());
 | |
|   }
 | |
| }
 | |
| 
 | |
| TwEdwardsCurve::SegrePoint::SegrePoint(const TwEdwardsCurve& E, const Residue& y, bool x_sign)
 | |
|     : XY(y), X(E.get_base_ring()), Y(y), Z(E.get_base_ring()->one()) {
 | |
|   Residue x(y.ring_ref());
 | |
|   if (E.recover_x(x, y, x_sign)) {
 | |
|     XY *= x;
 | |
|     X = x;
 | |
|   } else {
 | |
|     XY = Y = Z = E.get_base_ring()->zero();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool TwEdwardsCurve::recover_x(Residue& x, const Residue& y, bool x_sign) const {
 | |
|   // recovers x from equation -x^2+y^2 = 1+d*x^2*y^2
 | |
|   Residue z = inverse(ring->one() + D * sqr(y));
 | |
|   if (z.is_zero()) {
 | |
|     return false;
 | |
|   }
 | |
|   z *= sqr(y) - ring->one();
 | |
|   Residue t = sqrt(z);
 | |
|   if (sqr(t) == z) {
 | |
|     x = (t.extract().odd() == x_sign) ? t : -t;
 | |
|     //std::cout << "x=" << x << ", y=" << y << std::endl;
 | |
|     return true;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TwEdwardsCurve::add_points(SegrePoint& Res, const SegrePoint& P, const SegrePoint& Q) const {
 | |
|   Residue a((P.X + P.Y) * (Q.X + Q.Y));
 | |
|   Residue b((P.X - P.Y) * (Q.X - Q.Y));
 | |
|   Residue c(P.Z * Q.Z * ring->convert(2));
 | |
|   Residue d(P.XY * Q.XY * D2);
 | |
|   Residue x_num(a - b);   // 2(x1y2+x2y1)
 | |
|   Residue y_num(a + b);   // 2(x1x2+y1y2)
 | |
|   Residue x_den(c + d);   // 2(1+dx1x2y1y2)
 | |
|   Residue y_den(c - d);   // 2(1-dx1x2y1y2)
 | |
|   Res.X = x_num * y_den;  // x = x_num/x_den, y = y_num/y_den
 | |
|   Res.Y = y_num * x_den;
 | |
|   Res.XY = x_num * y_num;
 | |
|   Res.Z = x_den * y_den;
 | |
| }
 | |
| 
 | |
| TwEdwardsCurve::SegrePoint TwEdwardsCurve::add_points(const SegrePoint& P, const SegrePoint& Q) const {
 | |
|   SegrePoint Res(ring);
 | |
|   add_points(Res, P, Q);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| void TwEdwardsCurve::double_point(SegrePoint& Res, const SegrePoint& P) const {
 | |
|   add_points(Res, P, P);
 | |
| }
 | |
| 
 | |
| TwEdwardsCurve::SegrePoint TwEdwardsCurve::double_point(const SegrePoint& P) const {
 | |
|   SegrePoint Res(ring);
 | |
|   double_point(Res, P);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // computes u([n]P) in form (xy,x,y,1)*Z
 | |
| TwEdwardsCurve::SegrePoint TwEdwardsCurve::power_point(const SegrePoint& A, const Bignum& n, bool uniform) const {
 | |
|   assert(n >= 0);
 | |
|   if (n == 0) {
 | |
|     return O;
 | |
|   }
 | |
| 
 | |
|   int k = n.num_bits();
 | |
|   SegrePoint P(A);
 | |
| 
 | |
|   if (uniform) {
 | |
|     SegrePoint Q(double_point(A));
 | |
| 
 | |
|     for (int i = k - 2; i >= 0; --i) {
 | |
|       if (n[i]) {
 | |
|         add_points(P, P, Q);
 | |
|         double_point(Q, Q);
 | |
|       } else {
 | |
|         // we do more operations than necessary for uniformicity
 | |
|         add_points(Q, P, Q);
 | |
|         double_point(P, P);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     for (int i = k - 2; i >= 0; --i) {
 | |
|       double_point(P, P);
 | |
|       if (n[i]) {
 | |
|         add_points(P, P, A);  // may optimize further if A.z = 1
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return P;
 | |
| }
 | |
| 
 | |
| int TwEdwardsCurve::build_table() {
 | |
|   if (table.size()) {
 | |
|     return -1;
 | |
|   }
 | |
|   table_lines = (P_.num_bits() >> 2) + 2;
 | |
|   table.reserve(table_lines * 15 + 1);
 | |
|   table.emplace_back(get_base_point());
 | |
|   for (int i = 0; i < table_lines; i++) {
 | |
|     for (int j = 0; j < 15; j++) {
 | |
|       table.emplace_back(add_points(table[15 * i + j], table[15 * i]));
 | |
|     }
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| int get_nibble(const Bignum& n, int idx) {
 | |
|   return n[idx * 4 + 3] * 8 + n[idx * 4 + 2] * 4 + n[idx * 4 + 1] * 2 + n[idx * 4];
 | |
| }
 | |
| 
 | |
| TwEdwardsCurve::SegrePoint TwEdwardsCurve::power_gen(const Bignum& n, bool uniform) const {
 | |
|   if (uniform || n.num_bits() > table_lines * 4) {
 | |
|     return power_point(G, n, uniform);
 | |
|   } else if (n.is_zero()) {
 | |
|     return O;
 | |
|   } else {
 | |
|     int k = (n.num_bits() + 3) >> 2;
 | |
|     assert(k > 0 && k <= table_lines);
 | |
|     int x = get_nibble(n, k - 1);
 | |
|     assert(x > 0 && x < 16);
 | |
|     SegrePoint P(table[15 * (k - 1) + x - 1]);
 | |
|     for (int i = k - 2; i >= 0; i--) {
 | |
|       x = get_nibble(n, i);
 | |
|       assert(x >= 0 && x < 16);
 | |
|       if (x > 0) {
 | |
|         add_points(P, P, table[15 * i + x - 1]);
 | |
|       }
 | |
|     }
 | |
|     return P;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool TwEdwardsCurve::SegrePoint::export_point(unsigned char buffer[32], bool need_x) const {
 | |
|   if (!is_normalized()) {
 | |
|     if (Z.is_zero()) {
 | |
|       std::memset(buffer, 0xff, 32);
 | |
|       return false;
 | |
|     }
 | |
|     Residue f(inverse(Z));
 | |
|     Bignum y((Y * f).extract());
 | |
|     assert(!y[255]);
 | |
|     if (need_x) {
 | |
|       y[255] = (X * f).extract().odd();
 | |
|     }
 | |
|     y.export_lsb(buffer, 32);
 | |
|   } else {
 | |
|     Bignum y(Y.extract());
 | |
|     assert(!y[255]);
 | |
|     if (need_x) {
 | |
|       y[255] = X.extract().odd();
 | |
|     }
 | |
|     y.export_lsb(buffer, 32);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TwEdwardsCurve::SegrePoint::export_point_u(unsigned char buffer[32]) const {
 | |
|   if (Z == Y) {
 | |
|     std::memset(buffer, 0xff, 32);
 | |
|     return false;
 | |
|   }
 | |
|   Residue f(inverse(Z - Y));
 | |
|   ((Z + Y) * f).extract().export_lsb(buffer, 32);
 | |
|   assert(!(buffer[31] & 0x80));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| TwEdwardsCurve::SegrePoint TwEdwardsCurve::import_point(const unsigned char point[32], bool& ok) const {
 | |
|   Bignum y;
 | |
|   y.import_lsb(point, 32);
 | |
|   bool x_sign = y[255];
 | |
|   y[255] = 0;
 | |
|   Residue yr(y, ring);
 | |
|   Residue xr(ring);
 | |
|   ok = recover_x(xr, yr, x_sign);
 | |
|   return ok ? SegrePoint(xr, yr) : SegrePoint(ring);
 | |
| }
 | |
| 
 | |
| const TwEdwardsCurve& Ed25519() {
 | |
|   static const TwEdwardsCurve Ed25519 = [] {
 | |
|     TwEdwardsCurve res(Fp25519()->frac(-121665, 121666), Fp25519()->frac(4, 5), Fp25519());
 | |
|     res.set_order_cofactor(hex_string{"80000000000000000000000000000000a6f7cef517bce6b2c09318d2e7ae9f68"}, 8);
 | |
|     res.build_table();
 | |
|     return res;
 | |
|   }();
 | |
|   return Ed25519;
 | |
| }
 | |
| }  // namespace ellcurve
 |