1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-02-12 19:22:37 +00:00
ton/tolk/symtable.cpp
tolk-vm d9dba320cc
[Tolk] Get rid of ~tilda with mutate and self methods
This is a very big change.
If FunC has `.methods()` and `~methods()`, Tolk has only dot,
one and only way to call a `.method()`.
A method may mutate an object, or may not.
It's a behavioral and semantic difference from FunC.

- `cs.loadInt(32)` modifies a slice and returns an integer
- `b.storeInt(x, 32)` modifies a builder
- `b = b.storeInt()` also works, since it not only modifies, but returns
- chained methods also work, they return `self`
- everything works exactly as expected, similar to JS
- no runtime overhead, exactly same Fift instructions
- custom methods are created with ease
- tilda `~` does not exist in Tolk at all
2024-11-02 03:44:14 +04:00

169 lines
5 KiB
C++

/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "symtable.h"
#include "compiler-state.h"
#include <sstream>
#include <cassert>
namespace tolk {
std::string Symbol::unknown_symbol_name(sym_idx_t i) {
if (!i) {
return "_";
} else {
std::ostringstream os;
os << "SYM#" << i;
return os.str();
}
}
sym_idx_t SymTable::gen_lookup(std::string_view str, int mode, sym_idx_t idx) {
unsigned long long h1 = 1, h2 = 1;
for (char c : str) {
h1 = ((h1 * 239) + (unsigned char)(c)) % SIZE_PRIME;
h2 = ((h2 * 17) + (unsigned char)(c)) % (SIZE_PRIME - 1);
}
++h2;
++h1;
while (true) {
if (sym[h1]) {
if (sym[h1]->str == str) {
return (mode & 2) ? not_found : sym_idx_t(h1);
}
h1 += h2;
if (h1 > SIZE_PRIME) {
h1 -= SIZE_PRIME;
}
} else {
if (!(mode & 1)) {
return not_found;
}
if (def_sym >= ((long long)SIZE_PRIME * 3) / 4) {
throw SymTableOverflow{def_sym};
}
sym[h1] = std::make_unique<Symbol>(static_cast<std::string>(str), idx <= 0 ? sym_idx_t(h1) : -idx);
++def_sym;
return sym_idx_t(h1);
}
}
}
std::string SymDef::name() const {
return G.symbols.get_name(sym_idx);
}
void open_scope(SrcLocation loc) {
++G.scope_level;
G.scope_opened_at.push_back(loc);
}
void close_scope() {
if (!G.scope_level) {
throw Fatal{"cannot close the outer scope"};
}
while (!G.symbol_stack.empty() && G.symbol_stack.back().first == G.scope_level) {
SymDef old_def = G.symbol_stack.back().second;
auto idx = old_def.sym_idx;
G.symbol_stack.pop_back();
SymDef* cur_def = G.sym_def[idx];
assert(cur_def);
assert(cur_def->level == G.scope_level && cur_def->sym_idx == idx);
//std::cerr << "restoring local symbol `" << old_def.name << "` of level " << scope_level << " to its previous level " << old_def.level << std::endl;
if (cur_def->value) {
//std::cerr << "deleting value of symbol " << old_def.name << ":" << old_def.level << " at " << (const void*) it->second.value << std::endl;
delete cur_def->value;
}
if (!old_def.level && !old_def.value) {
delete cur_def; // ??? keep the definition always?
G.sym_def[idx] = nullptr;
} else {
cur_def->value = old_def.value;
cur_def->level = old_def.level;
}
old_def.value = nullptr;
}
--G.scope_level;
G.scope_opened_at.pop_back();
}
SymDef* lookup_symbol(sym_idx_t idx) {
if (!idx) {
return nullptr;
}
if (G.sym_def[idx]) {
return G.sym_def[idx];
}
if (G.global_sym_def[idx]) {
return G.global_sym_def[idx];
}
return nullptr;
}
SymDef* define_global_symbol(sym_idx_t name_idx, SrcLocation loc) {
if (SymDef* found = G.global_sym_def[name_idx]) {
return found; // found->value is filled; it means, that a symbol is redefined
}
SymDef* registered = G.global_sym_def[name_idx] = new SymDef(0, name_idx, loc);
#ifdef TOLK_DEBUG
registered->sym_name = registered->name();
#endif
return registered; // registered->value is nullptr; it means, it's just created
}
SymDef* define_parameter(sym_idx_t name_idx, SrcLocation loc) {
// note, that parameters (defined at function declaration) are not inserted into symtable
// their SymDef is registered to be inserted into SymValFunc::parameters
// (and later ->value is filled with SymValVariable)
SymDef* registered = new SymDef(0, name_idx, loc);
#ifdef TOLK_DEBUG
registered->sym_name = registered->name();
#endif
return registered;
}
SymDef* define_symbol(sym_idx_t name_idx, bool force_new, SrcLocation loc) {
if (!name_idx) {
return nullptr;
}
if (!G.scope_level) {
throw Fatal("unexpected scope_level = 0");
}
auto found = G.sym_def[name_idx];
if (found) {
if (found->level < G.scope_level) {
G.symbol_stack.emplace_back(G.scope_level, *found);
found->level = G.scope_level;
} else if (found->value && force_new) {
return nullptr;
}
found->value = nullptr;
found->loc = loc;
return found;
}
found = G.sym_def[name_idx] = new SymDef(G.scope_level, name_idx, loc);
G.symbol_stack.emplace_back(G.scope_level, SymDef{0, name_idx, loc});
#ifdef TOLK_DEBUG
found->sym_name = found->name();
G.symbol_stack.back().second.sym_name = found->name();
#endif
return found;
}
} // namespace tolk