mirror of
				https://github.com/ton-blockchain/ton
				synced 2025-03-09 15:40:10 +00:00 
			
		
		
		
	* Add special string literals "..."? (s,a,u,h,) * Add string literal H (256-bit hash) * Add string literal c (crc32) * Use td::hex_encode instead of homebrew function and add test * Fix error codes and use more generic address * Add support for int and slice constants * Add support for strongly typed constants * Add support for precompiled constant expressions (hard!) Co-authored-by: starlightduck <starlightduck@gmail.com>
		
			
				
	
	
		
			376 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			376 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
    This file is part of TON Blockchain Library.
 | 
						|
 | 
						|
    TON Blockchain Library is free software: you can redistribute it and/or modify
 | 
						|
    it under the terms of the GNU Lesser General Public License as published by
 | 
						|
    the Free Software Foundation, either version 2 of the License, or
 | 
						|
    (at your option) any later version.
 | 
						|
 | 
						|
    TON Blockchain Library is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
    GNU Lesser General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU Lesser General Public License
 | 
						|
    along with TON Blockchain Library.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
    Copyright 2017-2020 Telegram Systems LLP
 | 
						|
*/
 | 
						|
#include "func.h"
 | 
						|
 | 
						|
using namespace std::literals::string_literals;
 | 
						|
 | 
						|
namespace funC {
 | 
						|
 | 
						|
/*
 | 
						|
 * 
 | 
						|
 *   EXPRESSIONS
 | 
						|
 * 
 | 
						|
 */
 | 
						|
 | 
						|
Expr* Expr::copy() const {
 | 
						|
  auto res = new Expr{*this};
 | 
						|
  for (auto& arg : res->args) {
 | 
						|
    arg = arg->copy();
 | 
						|
  }
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
Expr::Expr(int c, sym_idx_t name_idx, std::initializer_list<Expr*> _arglist) : cls(c), args(std::move(_arglist)) {
 | 
						|
  sym = sym::lookup_symbol(name_idx);
 | 
						|
  if (!sym) {
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Expr::chk_rvalue(const Lexem& lem) const {
 | 
						|
  if (!is_rvalue()) {
 | 
						|
    lem.error_at("rvalue expected before `", "`");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Expr::chk_lvalue(const Lexem& lem) const {
 | 
						|
  if (!is_lvalue()) {
 | 
						|
    lem.error_at("lvalue expected before `", "`");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Expr::chk_type(const Lexem& lem) const {
 | 
						|
  if (!is_type()) {
 | 
						|
    lem.error_at("type expression expected before `", "`");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Expr::deduce_type(const Lexem& lem) {
 | 
						|
  if (e_type) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  switch (cls) {
 | 
						|
    case _Apply: {
 | 
						|
      if (!sym) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      SymVal* sym_val = dynamic_cast<SymVal*>(sym->value);
 | 
						|
      if (!sym_val || !sym_val->get_type()) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      std::vector<TypeExpr*> arg_types;
 | 
						|
      for (const auto& arg : args) {
 | 
						|
        arg_types.push_back(arg->e_type);
 | 
						|
      }
 | 
						|
      TypeExpr* fun_type = TypeExpr::new_map(TypeExpr::new_tensor(arg_types), TypeExpr::new_hole());
 | 
						|
      try {
 | 
						|
        unify(fun_type, sym_val->sym_type);
 | 
						|
      } catch (UnifyError& ue) {
 | 
						|
        std::ostringstream os;
 | 
						|
        os << "cannot apply function " << sym->name() << " : " << sym_val->get_type() << " to arguments of type "
 | 
						|
           << fun_type->args[0] << ": " << ue;
 | 
						|
        lem.error(os.str());
 | 
						|
      }
 | 
						|
      e_type = fun_type->args[1];
 | 
						|
      TypeExpr::remove_indirect(e_type);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case _VarApply: {
 | 
						|
      assert(args.size() == 2);
 | 
						|
      TypeExpr* fun_type = TypeExpr::new_map(args[1]->e_type, TypeExpr::new_hole());
 | 
						|
      try {
 | 
						|
        unify(fun_type, args[0]->e_type);
 | 
						|
      } catch (UnifyError& ue) {
 | 
						|
        std::ostringstream os;
 | 
						|
        os << "cannot apply expression of type " << args[0]->e_type << " to an expression of type " << args[1]->e_type
 | 
						|
           << ": " << ue;
 | 
						|
        lem.error(os.str());
 | 
						|
      }
 | 
						|
      e_type = fun_type->args[1];
 | 
						|
      TypeExpr::remove_indirect(e_type);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case _Letop: {
 | 
						|
      assert(args.size() == 2);
 | 
						|
      try {
 | 
						|
        // std::cerr << "in assignment: " << args[0]->e_type << " from " << args[1]->e_type << std::endl;
 | 
						|
        unify(args[0]->e_type, args[1]->e_type);
 | 
						|
      } catch (UnifyError& ue) {
 | 
						|
        std::ostringstream os;
 | 
						|
        os << "cannot assign an expression of type " << args[1]->e_type << " to a variable or pattern of type "
 | 
						|
           << args[0]->e_type << ": " << ue;
 | 
						|
        lem.error(os.str());
 | 
						|
      }
 | 
						|
      e_type = args[0]->e_type;
 | 
						|
      TypeExpr::remove_indirect(e_type);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case _LetFirst: {
 | 
						|
      assert(args.size() == 2);
 | 
						|
      TypeExpr* rhs_type = TypeExpr::new_tensor({args[0]->e_type, TypeExpr::new_hole()});
 | 
						|
      try {
 | 
						|
        // std::cerr << "in implicit assignment of a modifying method: " << rhs_type << " and " << args[1]->e_type << std::endl;
 | 
						|
        unify(rhs_type, args[1]->e_type);
 | 
						|
      } catch (UnifyError& ue) {
 | 
						|
        std::ostringstream os;
 | 
						|
        os << "cannot implicitly assign an expression of type " << args[1]->e_type
 | 
						|
           << " to a variable or pattern of type " << rhs_type << " in modifying method `" << sym::symbols.get_name(val)
 | 
						|
           << "` : " << ue;
 | 
						|
        lem.error(os.str());
 | 
						|
      }
 | 
						|
      e_type = rhs_type->args[1];
 | 
						|
      TypeExpr::remove_indirect(e_type);
 | 
						|
      // std::cerr << "result type is " << e_type << std::endl;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case _CondExpr: {
 | 
						|
      assert(args.size() == 3);
 | 
						|
      auto flag_type = TypeExpr::new_atomic(_Int);
 | 
						|
      try {
 | 
						|
        unify(args[0]->e_type, flag_type);
 | 
						|
      } catch (UnifyError& ue) {
 | 
						|
        std::ostringstream os;
 | 
						|
        os << "condition in a conditional expression has non-integer type " << args[0]->e_type << ": " << ue;
 | 
						|
        lem.error(os.str());
 | 
						|
      }
 | 
						|
      try {
 | 
						|
        unify(args[1]->e_type, args[2]->e_type);
 | 
						|
      } catch (UnifyError& ue) {
 | 
						|
        std::ostringstream os;
 | 
						|
        os << "the two variants in a conditional expression have different types " << args[1]->e_type << " and "
 | 
						|
           << args[2]->e_type << " : " << ue;
 | 
						|
        lem.error(os.str());
 | 
						|
      }
 | 
						|
      e_type = args[1]->e_type;
 | 
						|
      TypeExpr::remove_indirect(e_type);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
int Expr::define_new_vars(CodeBlob& code) {
 | 
						|
  switch (cls) {
 | 
						|
    case _Tensor:
 | 
						|
    case _MkTuple:
 | 
						|
    case _TypeApply: {
 | 
						|
      int res = 0;
 | 
						|
      for (const auto& x : args) {
 | 
						|
        res += x->define_new_vars(code);
 | 
						|
      }
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
    case _Var:
 | 
						|
      if (val < 0) {
 | 
						|
        val = code.create_var(TmpVar::_Named, e_type, sym, &here);
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case _Hole:
 | 
						|
      if (val < 0) {
 | 
						|
        val = code.create_var(TmpVar::_Tmp, e_type, nullptr, &here);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
int Expr::predefine_vars() {
 | 
						|
  switch (cls) {
 | 
						|
    case _Tensor:
 | 
						|
    case _MkTuple:
 | 
						|
    case _TypeApply: {
 | 
						|
      int res = 0;
 | 
						|
      for (const auto& x : args) {
 | 
						|
        res += x->predefine_vars();
 | 
						|
      }
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
    case _Var:
 | 
						|
      if (!sym) {
 | 
						|
        assert(val < 0 && here.defined());
 | 
						|
        sym = sym::define_symbol(~val, false, here);
 | 
						|
        // std::cerr << "predefining variable " << sym::symbols.get_name(~val) << std::endl;
 | 
						|
        if (!sym) {
 | 
						|
          throw src::ParseError{here, std::string{"redefined variable `"} + sym::symbols.get_name(~val) + "`"};
 | 
						|
        }
 | 
						|
        sym->value = new SymVal{SymVal::_Var, -1, e_type};
 | 
						|
        return 1;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
var_idx_t Expr::new_tmp(CodeBlob& code) const {
 | 
						|
  return code.create_tmp_var(e_type, &here);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<var_idx_t> Expr::pre_compile_let(CodeBlob& code, Expr* lhs, Expr* rhs, const SrcLocation& here) {
 | 
						|
  while (lhs->is_type_apply()) {
 | 
						|
    lhs = lhs->args.at(0);
 | 
						|
  }
 | 
						|
  while (rhs->is_type_apply()) {
 | 
						|
    rhs = rhs->args.at(0);
 | 
						|
  }
 | 
						|
  if (lhs->is_mktuple()) {
 | 
						|
    if (rhs->is_mktuple()) {
 | 
						|
      return pre_compile_let(code, lhs->args.at(0), rhs->args.at(0), here);
 | 
						|
    }
 | 
						|
    auto right = rhs->pre_compile(code);
 | 
						|
    TypeExpr::remove_indirect(rhs->e_type);
 | 
						|
    auto unpacked_type = rhs->e_type->args.at(0);
 | 
						|
    std::vector<var_idx_t> tmp{code.create_tmp_var(unpacked_type, &rhs->here)};
 | 
						|
    code.emplace_back(lhs->here, Op::_UnTuple, tmp, std::move(right));
 | 
						|
    auto tvar = new Expr{_Var};
 | 
						|
    tvar->set_val(tmp[0]);
 | 
						|
    tvar->set_location(rhs->here);
 | 
						|
    tvar->e_type = unpacked_type;
 | 
						|
    pre_compile_let(code, lhs->args.at(0), tvar, here);
 | 
						|
    return tmp;
 | 
						|
  }
 | 
						|
  auto right = rhs->pre_compile(code);
 | 
						|
  if (lhs->cls == Expr::_GlobVar) {
 | 
						|
    assert(lhs->sym);
 | 
						|
    auto& op = code.emplace_back(here, Op::_SetGlob, std::vector<var_idx_t>{}, right, lhs->sym);
 | 
						|
    op.flags |= Op::_Impure;
 | 
						|
  } else {
 | 
						|
    auto left = lhs->pre_compile(code, true);
 | 
						|
    code.emplace_back(here, Op::_Let, std::move(left), right);
 | 
						|
  }
 | 
						|
  return right;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<var_idx_t> Expr::pre_compile(CodeBlob& code, bool lval) const {
 | 
						|
  if (lval && !(cls == _Tensor || cls == _Var || cls == _Hole || cls == _TypeApply)) {
 | 
						|
    std::cerr << "lvalue expression constructor is " << cls << std::endl;
 | 
						|
    throw src::Fatal{"cannot compile lvalue expression with unknown constructor"};
 | 
						|
  }
 | 
						|
  switch (cls) {
 | 
						|
    case _Tensor: {
 | 
						|
      std::vector<var_idx_t> res;
 | 
						|
      for (const auto& x : args) {
 | 
						|
        auto add = x->pre_compile(code, lval);
 | 
						|
        res.insert(res.end(), add.cbegin(), add.cend());
 | 
						|
      }
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
    case _Apply: {
 | 
						|
      assert(sym);
 | 
						|
      std::vector<var_idx_t> res;
 | 
						|
      auto func = dynamic_cast<SymValFunc*>(sym->value);
 | 
						|
      if (func && func->arg_order.size() == args.size()) {
 | 
						|
        //std::cerr << "!!! reordering " << args.size() << " arguments of " << sym->name() << std::endl;
 | 
						|
        std::vector<std::vector<var_idx_t>> add_list(args.size());
 | 
						|
        for (int i : func->arg_order) {
 | 
						|
          add_list[i] = args[i]->pre_compile(code);
 | 
						|
        }
 | 
						|
        for (const auto& add : add_list) {
 | 
						|
          res.insert(res.end(), add.cbegin(), add.cend());
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        for (const auto& x : args) {
 | 
						|
          auto add = x->pre_compile(code);
 | 
						|
          res.insert(res.end(), add.cbegin(), add.cend());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      auto rvect = new_tmp_vect(code);
 | 
						|
      auto& op = code.emplace_back(here, Op::_Call, rvect, std::move(res), sym);
 | 
						|
      if (flags & _IsImpure) {
 | 
						|
        op.flags |= Op::_Impure;
 | 
						|
      }
 | 
						|
      return rvect;
 | 
						|
    }
 | 
						|
    case _TypeApply:
 | 
						|
      return args[0]->pre_compile(code, lval);
 | 
						|
    case _Var:
 | 
						|
    case _Hole:
 | 
						|
      return {val};
 | 
						|
    case _VarApply:
 | 
						|
      if (args[0]->cls == _Glob) {
 | 
						|
        auto res = args[1]->pre_compile(code);
 | 
						|
        auto rvect = new_tmp_vect(code);
 | 
						|
        auto& op = code.emplace_back(here, Op::_Call, rvect, std::move(res), args[0]->sym);
 | 
						|
        if (args[0]->flags & _IsImpure) {
 | 
						|
          op.flags |= Op::_Impure;
 | 
						|
        }
 | 
						|
        return rvect;
 | 
						|
      } else {
 | 
						|
        auto res = args[1]->pre_compile(code);
 | 
						|
        auto tfunc = args[0]->pre_compile(code);
 | 
						|
        if (tfunc.size() != 1) {
 | 
						|
          throw src::Fatal{"stack tuple used as a function"};
 | 
						|
        }
 | 
						|
        res.push_back(tfunc[0]);
 | 
						|
        auto rvect = new_tmp_vect(code);
 | 
						|
        code.emplace_back(here, Op::_CallInd, rvect, std::move(res));
 | 
						|
        return rvect;
 | 
						|
      }
 | 
						|
    case _Const: {
 | 
						|
      auto rvect = new_tmp_vect(code);
 | 
						|
      code.emplace_back(here, Op::_IntConst, rvect, intval);
 | 
						|
      return rvect;
 | 
						|
    }
 | 
						|
    case _Glob:
 | 
						|
    case _GlobVar: {
 | 
						|
      auto rvect = new_tmp_vect(code);
 | 
						|
      code.emplace_back(here, Op::_GlobVar, rvect, std::vector<var_idx_t>{}, sym);
 | 
						|
      return rvect;
 | 
						|
    }
 | 
						|
    case _Letop: {
 | 
						|
      return pre_compile_let(code, args.at(0), args.at(1), here);
 | 
						|
    }
 | 
						|
    case _LetFirst: {
 | 
						|
      auto rvect = new_tmp_vect(code);
 | 
						|
      auto right = args[1]->pre_compile(code);
 | 
						|
      auto left = args[0]->pre_compile(code, true);
 | 
						|
      left.push_back(rvect[0]);
 | 
						|
      code.emplace_back(here, Op::_Let, std::move(left), std::move(right));
 | 
						|
      return rvect;
 | 
						|
    }
 | 
						|
    case _MkTuple: {
 | 
						|
      auto left = new_tmp_vect(code);
 | 
						|
      auto right = args[0]->pre_compile(code);
 | 
						|
      code.emplace_back(here, Op::_Tuple, left, std::move(right));
 | 
						|
      return left;
 | 
						|
    }
 | 
						|
    case _CondExpr: {
 | 
						|
      auto cond = args[0]->pre_compile(code);
 | 
						|
      assert(cond.size() == 1);
 | 
						|
      auto rvect = new_tmp_vect(code);
 | 
						|
      Op& if_op = code.emplace_back(here, Op::_If, cond);
 | 
						|
      code.push_set_cur(if_op.block0);
 | 
						|
      code.emplace_back(here, Op::_Let, rvect, args[1]->pre_compile(code));
 | 
						|
      code.close_pop_cur(args[1]->here);
 | 
						|
      code.push_set_cur(if_op.block1);
 | 
						|
      code.emplace_back(here, Op::_Let, rvect, args[2]->pre_compile(code));
 | 
						|
      code.close_pop_cur(args[2]->here);
 | 
						|
      return rvect;
 | 
						|
    }
 | 
						|
    case _SliceConst: {
 | 
						|
      auto rvect = new_tmp_vect(code);
 | 
						|
      code.emplace_back(here, Op::_SliceConst, rvect, strval);
 | 
						|
      return rvect;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      std::cerr << "expression constructor is " << cls << std::endl;
 | 
						|
      throw src::Fatal{"cannot compile expression with unknown constructor"};
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace funC
 |