mirror of
				https://github.com/ton-blockchain/ton
				synced 2025-03-09 15:40:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			154 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
    This file is part of TON Blockchain Library.
 | 
						|
 | 
						|
    TON Blockchain Library is free software: you can redistribute it and/or modify
 | 
						|
    it under the terms of the GNU Lesser General Public License as published by
 | 
						|
    the Free Software Foundation, either version 2 of the License, or
 | 
						|
    (at your option) any later version.
 | 
						|
 | 
						|
    TON Blockchain Library is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
    GNU Lesser General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU Lesser General Public License
 | 
						|
    along with TON Blockchain Library.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
    Copyright 2017-2020 Telegram Systems LLP
 | 
						|
*/
 | 
						|
 | 
						|
#include "LossSender.h"
 | 
						|
 | 
						|
#include "td/utils/logging.h"
 | 
						|
 | 
						|
#if TON_HAVE_GSL
 | 
						|
#include <gsl/gsl_cdf.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
namespace ton {
 | 
						|
namespace rldp2 {
 | 
						|
namespace {
 | 
						|
// works for 1e-x, where x in {1..10}
 | 
						|
double ndtri_fast(double p) {
 | 
						|
  if (p < 2e-10) {
 | 
						|
    return 6.361340902404;
 | 
						|
  }
 | 
						|
  if (p < 2e-9) {
 | 
						|
    return 5.997807015008;
 | 
						|
  }
 | 
						|
  if (p < 2e-8) {
 | 
						|
    return 5.612001244175;
 | 
						|
  }
 | 
						|
  if (p < 2e-7) {
 | 
						|
    return 5.199337582193;
 | 
						|
  }
 | 
						|
  if (p < 2e-6) {
 | 
						|
    return 4.753424308823;
 | 
						|
  }
 | 
						|
  if (p < 2e-5) {
 | 
						|
    return 4.264890793923;
 | 
						|
  }
 | 
						|
  if (p < 2e-4) {
 | 
						|
    return 3.719016485456;
 | 
						|
  }
 | 
						|
  if (p < 2e-3) {
 | 
						|
    return 3.090232306168;
 | 
						|
  }
 | 
						|
  if (p < 2e-2) {
 | 
						|
    return 2.326347874041;
 | 
						|
  }
 | 
						|
  return 1.281551565545;
 | 
						|
}
 | 
						|
}  // namespace
 | 
						|
 | 
						|
LossSender::LossSender(double loss, double p) : loss_(loss), p_(p) {
 | 
						|
  v_.resize(2);
 | 
						|
  v_[0] = 1;
 | 
						|
  res_.push_back(0);
 | 
						|
  S_ = ndtri_fast(p_);
 | 
						|
  sigma_ = p * (1 - p);
 | 
						|
  //LOG(ERROR) << S_ << " " << ndtri(1 - p_);
 | 
						|
  //CHECK(fabs(S_ - ndtri(1 - p_)) < 1e-6);
 | 
						|
}
 | 
						|
 | 
						|
int LossSender::send_n(int n) {
 | 
						|
  if (n < 50) {
 | 
						|
    return send_n_exact(n);
 | 
						|
  }
 | 
						|
  return send_n_approx_nbd(n);
 | 
						|
}
 | 
						|
 | 
						|
int LossSender::send_n_exact(int n) {
 | 
						|
  while ((int)res_.size() <= n) {
 | 
						|
    step();
 | 
						|
  }
 | 
						|
  return res_[n];
 | 
						|
}
 | 
						|
 | 
						|
int LossSender::send_n_approx_norm(int n) {
 | 
						|
  double a = (1 - loss_) * (1 - loss_);
 | 
						|
  double b = loss_ * (loss_ - 1) * (2 * n + S_ * S_);
 | 
						|
  double c = loss_ * loss_ * n * n + S_ * S_ * n * loss_ * (loss_ - 1);
 | 
						|
  double x = ((-b + sqrt(b * b - 4 * a * c)) / (2 * a));
 | 
						|
  return (int)(x + n + 1);
 | 
						|
}
 | 
						|
 | 
						|
int LossSender::send_n_approx_nbd(int n) {
 | 
						|
#if TON_HAVE_GSL
 | 
						|
  auto mean = n * loss_ / (1 - loss_);
 | 
						|
  auto var = sqrt(mean / (1 - loss_));
 | 
						|
  auto min_k = static_cast<int>(mean + var);
 | 
						|
  auto max_k = min_k + static_cast<int>(var + 1) * 15;
 | 
						|
  while (min_k + 1 < max_k) {
 | 
						|
    int k = (min_k + max_k) / 2;
 | 
						|
    if (gsl_cdf_negative_binomial_P(k, 1 - loss_, n) > 1 - p_) {
 | 
						|
      max_k = k;
 | 
						|
    } else {
 | 
						|
      min_k = k;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return max_k + n;
 | 
						|
#endif
 | 
						|
  return send_n_approx_norm(n);
 | 
						|
}
 | 
						|
 | 
						|
int LossSender::send_n_approx_pd(int n) {
 | 
						|
#if TON_HAVE_GSL
 | 
						|
  for (int k = 0;; k++) {
 | 
						|
    if (gsl_cdf_poisson_P(k, (n + k) * loss_) > 1 - p_) {
 | 
						|
      return k + n;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  return send_n_approx_norm(n);
 | 
						|
}
 | 
						|
bool LossSender::has_good_approx() {
 | 
						|
#if TON_HAVE_GSL
 | 
						|
  return true;
 | 
						|
#else
 | 
						|
  return false;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void LossSender::step() {
 | 
						|
  n_++;
 | 
						|
  v_.push_back(0);
 | 
						|
  v_[n_] = v_[n_ - 1];
 | 
						|
  for (int j = n_; j >= 0; j--) {
 | 
						|
    v_[j + 1] += v_[j] * loss_;
 | 
						|
    v_[j] *= (1 - loss_);
 | 
						|
  }
 | 
						|
 | 
						|
  while (res_i_ < n_ && v_[res_i_] < 1 - p_) {
 | 
						|
    res_i_++;
 | 
						|
  }
 | 
						|
  auto left_ = n_ - res_i_;
 | 
						|
  if ((int)res_.size() == left_) {
 | 
						|
    res_.push_back(n_);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace rldp2
 | 
						|
}  // namespace ton
 |