mirror of
https://github.com/ton-blockchain/ton
synced 2025-02-12 19:22:37 +00:00
FunC's (and Tolk's before this PR) type system is based on Hindley-Milner. This is a common approach for functional languages, where types are inferred from usage through unification. As a result, type declarations are not necessary: () f(a,b) { return a+b; } // a and b now int, since `+` (int, int) While this approach works for now, problems arise with the introduction of new types like bool, where `!x` must handle both int and bool. It will also become incompatible with int32 and other strict integers. This will clash with structure methods, struggle with proper generics, and become entirely impractical for union types. This PR completely rewrites the type system targeting the future. 1) type of any expression is inferred and never changed 2) this is available because dependent expressions already inferred 3) forall completely removed, generic functions introduced (they work like template functions actually, instantiated while inferring) 4) instantiation `<...>` syntax, example: `t.tupleAt<int>(0)` 5) `as` keyword, for example `t.tupleAt(0) as int` 6) methods binding is done along with type inferring, not before ("before", as worked previously, was always a wrong approach)
1049 lines
41 KiB
C++
1049 lines
41 KiB
C++
/*
|
|
This file is part of TON Blockchain Library.
|
|
|
|
TON Blockchain Library is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
TON Blockchain Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include "fwd-declarations.h"
|
|
#include "platform-utils.h"
|
|
#include "src-file.h"
|
|
#include "lexer.h"
|
|
#include "symtable.h"
|
|
|
|
/*
|
|
* Here we introduce AST representation of Tolk source code.
|
|
* Historically, in FunC, there was no AST: while lexing, symbols were registered, types were inferred, and so on.
|
|
* There was no way to perform any more or less semantic analysis.
|
|
* In Tolk, I've implemented parsing .tolk files into AST at first, and then converting this AST
|
|
* into legacy representation (see pipe-ast-to-legacy.cpp).
|
|
* In the future, more and more code analysis will be moved out of legacy to AST-level.
|
|
*
|
|
* From the user's point of view, all AST vertices are constant. All API is based on constancy.
|
|
* Even though fields of vertex structs are public, they can't be modified, since vertices are accepted by const ref.
|
|
* Generally, there are three ways of accepting a vertex:
|
|
* * AnyV (= const ASTNodeBase*)
|
|
* the only you can do with this vertex is to see v->type (ASTNodeType) and to cast via v->as<node_type>()
|
|
* * AnyExprV (= const ASTNodeExpressionBase*)
|
|
* in contains expression-specific properties (lvalue/rvalue, inferred type)
|
|
* * V<node_type> (= const Vertex<node_type>*)
|
|
* a specific type of vertex, you can use its fields and methods
|
|
* There is one way of creating a vertex:
|
|
* * createV<node_type>(...constructor_args) (= new Vertex<node_type>(...))
|
|
* vertices are currently created on a heap, without any custom memory arena, just allocated and never deleted
|
|
* The only way to modify a field is to use "mutate()" method (drops constancy, the only point of mutation)
|
|
* and then to call "assign_*" method, like "assign_sym", "assign_src_file", etc.
|
|
*
|
|
* Having AnyV and knowing its node_type, a call
|
|
* v->as<node_type>()
|
|
* will return a typed vertex.
|
|
* There is also a shorthand v->try_as<node_type>() which returns V<node_type> or nullptr if types don't match:
|
|
* if (auto v_int = v->try_as<ast_int_const>())
|
|
* Note, that there casts are NOT DYNAMIC. ASTNode is not a virtual base, it has no vtable.
|
|
* So, as<...>() is just a compile-time casting, without any runtime overhead.
|
|
*
|
|
* Note, that ASTNodeBase doesn't store any vector of children. That's why there is no way to loop over
|
|
* a random (unknown) vertex. Only a concrete Vertex<node_type> stores its children (if any).
|
|
* Hence, to iterate over a custom vertex (e.g., a function body), one should inherit some kind of ASTVisitor.
|
|
* Besides read-only visiting, there is a "visit and replace" pattern.
|
|
* See ast-visitor.h and ast-replacer.h.
|
|
*/
|
|
|
|
namespace tolk {
|
|
|
|
enum ASTNodeType {
|
|
ast_identifier,
|
|
// expressions
|
|
ast_empty_expression,
|
|
ast_parenthesized_expression,
|
|
ast_tensor,
|
|
ast_typed_tuple,
|
|
ast_reference,
|
|
ast_local_var_lhs,
|
|
ast_local_vars_declaration,
|
|
ast_int_const,
|
|
ast_string_const,
|
|
ast_bool_const,
|
|
ast_null_keyword,
|
|
ast_argument,
|
|
ast_argument_list,
|
|
ast_dot_access,
|
|
ast_function_call,
|
|
ast_underscore,
|
|
ast_assign,
|
|
ast_set_assign,
|
|
ast_unary_operator,
|
|
ast_binary_operator,
|
|
ast_ternary_operator,
|
|
ast_cast_as_operator,
|
|
// statements
|
|
ast_empty_statement,
|
|
ast_sequence,
|
|
ast_return_statement,
|
|
ast_if_statement,
|
|
ast_repeat_statement,
|
|
ast_while_statement,
|
|
ast_do_while_statement,
|
|
ast_throw_statement,
|
|
ast_assert_statement,
|
|
ast_try_catch_statement,
|
|
ast_asm_body,
|
|
// other
|
|
ast_genericsT_item,
|
|
ast_genericsT_list,
|
|
ast_instantiationT_item,
|
|
ast_instantiationT_list,
|
|
ast_parameter,
|
|
ast_parameter_list,
|
|
ast_annotation,
|
|
ast_function_declaration,
|
|
ast_global_var_declaration,
|
|
ast_constant_declaration,
|
|
ast_tolk_required_version,
|
|
ast_import_directive,
|
|
ast_tolk_file,
|
|
};
|
|
|
|
enum class AnnotationKind {
|
|
inline_simple,
|
|
inline_ref,
|
|
method_id,
|
|
pure,
|
|
deprecated,
|
|
unknown,
|
|
};
|
|
|
|
template<ASTNodeType node_type>
|
|
struct Vertex;
|
|
|
|
template<ASTNodeType node_type>
|
|
using V = const Vertex<node_type>*;
|
|
|
|
#define createV new Vertex
|
|
|
|
struct UnexpectedASTNodeType final : std::exception {
|
|
AnyV v_unexpected;
|
|
std::string message;
|
|
|
|
explicit UnexpectedASTNodeType(AnyV v_unexpected, const char* place_where);
|
|
|
|
const char* what() const noexcept override {
|
|
return message.c_str();
|
|
}
|
|
};
|
|
|
|
// ---------------------------------------------------------
|
|
|
|
struct ASTNodeBase {
|
|
const ASTNodeType type;
|
|
const SrcLocation loc;
|
|
|
|
ASTNodeBase(ASTNodeType type, SrcLocation loc) : type(type), loc(loc) {}
|
|
ASTNodeBase(const ASTNodeBase&) = delete;
|
|
|
|
template<ASTNodeType node_type>
|
|
V<node_type> as() const {
|
|
#ifdef TOLK_DEBUG
|
|
if (type != node_type) {
|
|
throw Fatal("v->as<...> to wrong node_type");
|
|
}
|
|
#endif
|
|
return static_cast<V<node_type>>(this);
|
|
}
|
|
|
|
template<ASTNodeType node_type>
|
|
V<node_type> try_as() const {
|
|
return type == node_type ? static_cast<V<node_type>>(this) : nullptr;
|
|
}
|
|
|
|
#ifdef TOLK_DEBUG
|
|
std::string to_debug_string() const { return to_debug_string(false); }
|
|
std::string to_debug_string(bool colored) const;
|
|
void debug_print() const;
|
|
#endif
|
|
|
|
GNU_ATTRIBUTE_NORETURN GNU_ATTRIBUTE_COLD
|
|
void error(const std::string& err_msg) const;
|
|
};
|
|
|
|
struct ASTNodeExpressionBase : ASTNodeBase {
|
|
friend class ASTDuplicatorFunction;
|
|
|
|
TypePtr inferred_type = nullptr;
|
|
bool is_rvalue: 1 = false;
|
|
bool is_lvalue: 1 = false;
|
|
|
|
ASTNodeExpressionBase* mutate() const { return const_cast<ASTNodeExpressionBase*>(this); }
|
|
void assign_inferred_type(TypePtr type);
|
|
void assign_rvalue_true();
|
|
void assign_lvalue_true();
|
|
|
|
ASTNodeExpressionBase(ASTNodeType type, SrcLocation loc) : ASTNodeBase(type, loc) {}
|
|
};
|
|
|
|
struct ASTNodeStatementBase : ASTNodeBase {
|
|
ASTNodeStatementBase(ASTNodeType type, SrcLocation loc) : ASTNodeBase(type, loc) {}
|
|
};
|
|
|
|
struct ASTExprLeaf : ASTNodeExpressionBase {
|
|
friend class ASTVisitor;
|
|
friend class ASTReplacer;
|
|
|
|
protected:
|
|
ASTExprLeaf(ASTNodeType type, SrcLocation loc)
|
|
: ASTNodeExpressionBase(type, loc) {}
|
|
};
|
|
|
|
struct ASTExprUnary : ASTNodeExpressionBase {
|
|
friend class ASTVisitor;
|
|
friend class ASTReplacer;
|
|
|
|
protected:
|
|
AnyExprV child;
|
|
|
|
ASTExprUnary(ASTNodeType type, SrcLocation loc, AnyExprV child)
|
|
: ASTNodeExpressionBase(type, loc), child(child) {}
|
|
};
|
|
|
|
struct ASTExprBinary : ASTNodeExpressionBase {
|
|
friend class ASTVisitor;
|
|
friend class ASTReplacer;
|
|
|
|
protected:
|
|
AnyExprV lhs;
|
|
AnyExprV rhs;
|
|
|
|
ASTExprBinary(ASTNodeType type, SrcLocation loc, AnyExprV lhs, AnyExprV rhs)
|
|
: ASTNodeExpressionBase(type, loc), lhs(lhs), rhs(rhs) {}
|
|
};
|
|
|
|
struct ASTExprVararg : ASTNodeExpressionBase {
|
|
friend class ASTVisitor;
|
|
friend class ASTReplacer;
|
|
|
|
protected:
|
|
std::vector<AnyExprV> children;
|
|
|
|
AnyExprV child(int i) const { return children.at(i); }
|
|
|
|
ASTExprVararg(ASTNodeType type, SrcLocation loc, std::vector<AnyExprV> children)
|
|
: ASTNodeExpressionBase(type, loc), children(std::move(children)) {}
|
|
|
|
public:
|
|
int size() const { return static_cast<int>(children.size()); }
|
|
bool empty() const { return children.empty(); }
|
|
};
|
|
|
|
struct ASTStatementUnary : ASTNodeStatementBase {
|
|
friend class ASTVisitor;
|
|
friend class ASTReplacer;
|
|
|
|
protected:
|
|
AnyV child;
|
|
|
|
AnyExprV child_as_expr() const { return reinterpret_cast<AnyExprV>(child); }
|
|
|
|
ASTStatementUnary(ASTNodeType type, SrcLocation loc, AnyV child)
|
|
: ASTNodeStatementBase(type, loc), child(child) {}
|
|
};
|
|
|
|
struct ASTStatementVararg : ASTNodeStatementBase {
|
|
friend class ASTVisitor;
|
|
friend class ASTReplacer;
|
|
|
|
protected:
|
|
std::vector<AnyV> children;
|
|
|
|
AnyExprV child_as_expr(int i) const { return reinterpret_cast<AnyExprV>(children.at(i)); }
|
|
|
|
ASTStatementVararg(ASTNodeType type, SrcLocation loc, std::vector<AnyV> children)
|
|
: ASTNodeStatementBase(type, loc), children(std::move(children)) {}
|
|
|
|
public:
|
|
int size() const { return static_cast<int>(children.size()); }
|
|
bool empty() const { return children.empty(); }
|
|
};
|
|
|
|
struct ASTOtherLeaf : ASTNodeBase {
|
|
friend class ASTVisitor;
|
|
friend class ASTReplacer;
|
|
|
|
protected:
|
|
ASTOtherLeaf(ASTNodeType type, SrcLocation loc)
|
|
: ASTNodeBase(type, loc) {}
|
|
};
|
|
|
|
struct ASTOtherVararg : ASTNodeBase {
|
|
friend class ASTVisitor;
|
|
friend class ASTReplacer;
|
|
|
|
protected:
|
|
std::vector<AnyV> children;
|
|
|
|
AnyExprV child_as_expr(int i) const { return reinterpret_cast<AnyExprV>(children.at(i)); }
|
|
|
|
ASTOtherVararg(ASTNodeType type, SrcLocation loc, std::vector<AnyV> children)
|
|
: ASTNodeBase(type, loc), children(std::move(children)) {}
|
|
|
|
public:
|
|
int size() const { return static_cast<int>(children.size()); }
|
|
bool empty() const { return children.empty(); }
|
|
};
|
|
|
|
|
|
template<>
|
|
// ast_identifier is "a name" in AST structure
|
|
// it's NOT a standalone expression, it's "implementation details" of other AST vertices
|
|
// example: `var x = 5` then "x" is identifier (inside local var declaration)
|
|
// example: `global g: int` then "g" is identifier
|
|
// example: `someF` is a reference, which contains identifier
|
|
// example: `someF<int>` is a reference which contains identifier and generics instantiation
|
|
// example: `fun f<T>()` then "f" is identifier, "<T>" is a generics declaration
|
|
struct Vertex<ast_identifier> final : ASTOtherLeaf {
|
|
std::string_view name; // empty for underscore
|
|
|
|
Vertex(SrcLocation loc, std::string_view name)
|
|
: ASTOtherLeaf(ast_identifier, loc)
|
|
, name(name) {}
|
|
};
|
|
|
|
|
|
//
|
|
// ---------------------------------------------------------
|
|
// expressions
|
|
//
|
|
|
|
|
|
template<>
|
|
// ast_empty_expression is "nothing" in context of expression, it has "unknown" type
|
|
// example: `throw 123;` then "throw arg" is empty expression (opposed to `throw (123, arg)`)
|
|
struct Vertex<ast_empty_expression> final : ASTExprLeaf {
|
|
explicit Vertex(SrcLocation loc)
|
|
: ASTExprLeaf(ast_empty_expression, loc) {}
|
|
};
|
|
|
|
|
|
template<>
|
|
// ast_parenthesized_expression is something surrounded embraced by (parenthesis)
|
|
// example: `(1)`, `((f()))` (two nested)
|
|
struct Vertex<ast_parenthesized_expression> final : ASTExprUnary {
|
|
AnyExprV get_expr() const { return child; }
|
|
|
|
Vertex(SrcLocation loc, AnyExprV expr)
|
|
: ASTExprUnary(ast_parenthesized_expression, loc, expr) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_tensor is a set of expressions embraced by (parenthesis)
|
|
// in most languages, it's called "tuple", but in TVM, "tuple" is a TVM primitive, that's why "tensor"
|
|
// example: `(1, 2)`, `(1, (2, 3))` (nested), `()` (empty tensor)
|
|
// note, that `(1)` is not a tensor, it's a parenthesized expression
|
|
// a tensor of N elements occupies N slots on a stack (opposed to TVM tuple primitive, 1 slot)
|
|
struct Vertex<ast_tensor> final : ASTExprVararg {
|
|
const std::vector<AnyExprV>& get_items() const { return children; }
|
|
AnyExprV get_item(int i) const { return child(i); }
|
|
|
|
Vertex(SrcLocation loc, std::vector<AnyExprV> items)
|
|
: ASTExprVararg(ast_tensor, loc, std::move(items)) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_typed_tuple is a set of expressions in [square brackets]
|
|
// in TVM, it's a TVM tuple, that occupies 1 slot, but the compiler knows its "typed structure"
|
|
// example: `[1, x]`, `[[0]]` (nested)
|
|
// typed tuples can be assigned to N variables, like `[one, _, three] = [1,2,3]`
|
|
struct Vertex<ast_typed_tuple> final : ASTExprVararg {
|
|
const std::vector<AnyExprV>& get_items() const { return children; }
|
|
AnyExprV get_item(int i) const { return child(i); }
|
|
|
|
Vertex(SrcLocation loc, std::vector<AnyExprV> items)
|
|
: ASTExprVararg(ast_typed_tuple, loc, std::move(items)) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_reference is "something that references a symbol"
|
|
// examples: `x` / `someF` / `someF<int>`
|
|
// it's a leaf expression from traversing point of view, but actually, has children (not expressions)
|
|
// note, that both `someF()` and `someF<int>()` are function calls, where a callee is just a reference
|
|
struct Vertex<ast_reference> final : ASTExprLeaf {
|
|
private:
|
|
V<ast_identifier> identifier; // its name, `x` / `someF`
|
|
V<ast_instantiationT_list> instantiationTs; // not null if `<int>`, otherwise nullptr
|
|
|
|
public:
|
|
const Symbol* sym = nullptr; // filled on resolve or type inferring; points to local / global / function / constant
|
|
|
|
auto get_identifier() const { return identifier; }
|
|
bool has_instantiationTs() const { return instantiationTs != nullptr; }
|
|
auto get_instantiationTs() const { return instantiationTs; }
|
|
std::string_view get_name() const { return identifier->name; }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_sym(const Symbol* sym);
|
|
|
|
Vertex(SrcLocation loc, V<ast_identifier> name_identifier, V<ast_instantiationT_list> instantiationTs)
|
|
: ASTExprLeaf(ast_reference, loc)
|
|
, identifier(name_identifier), instantiationTs(instantiationTs) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_local_var_lhs is one variable inside `var` declaration
|
|
// example: `var x = 0;` then "x" is local var lhs
|
|
// example: `val (x: int, [y redef], _) = rhs` then "x" and "y" and "_" are
|
|
// it's a leaf from expression's point of view, though technically has an "identifier" child
|
|
struct Vertex<ast_local_var_lhs> final : ASTExprLeaf {
|
|
private:
|
|
V<ast_identifier> identifier;
|
|
|
|
public:
|
|
const LocalVarData* var_ref = nullptr; // filled on resolve identifiers; for `redef` points to declared above; for underscore, name is empty
|
|
TypePtr declared_type; // not null for `var x: int = rhs`, otherwise nullptr
|
|
bool is_immutable; // declared via 'val', not 'var'
|
|
bool marked_as_redef; // var (existing_var redef, new_var: int) = ...
|
|
|
|
V<ast_identifier> get_identifier() const { return identifier; }
|
|
std::string_view get_name() const { return identifier->name; } // empty for underscore
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_var_ref(const LocalVarData* var_ref);
|
|
void assign_resolved_type(TypePtr declared_type);
|
|
|
|
Vertex(SrcLocation loc, V<ast_identifier> identifier, TypePtr declared_type, bool is_immutable, bool marked_as_redef)
|
|
: ASTExprLeaf(ast_local_var_lhs, loc)
|
|
, identifier(identifier), declared_type(declared_type), is_immutable(is_immutable), marked_as_redef(marked_as_redef) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_local_vars_declaration is an expression declaring local variables on the left side of assignment
|
|
// examples: see above
|
|
// for `var (x, [y])` its expr is "tensor (local var, typed tuple (local var))"
|
|
// for assignment `var x = 5`, this node is `var x`, lhs of assignment
|
|
struct Vertex<ast_local_vars_declaration> final : ASTExprUnary {
|
|
AnyExprV get_expr() const { return child; } // ast_local_var_lhs / ast_tensor / ast_typed_tuple
|
|
|
|
Vertex(SrcLocation loc, AnyExprV expr)
|
|
: ASTExprUnary(ast_local_vars_declaration, loc, expr) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_int_const is an integer literal
|
|
// examples: `0` / `0xFF`
|
|
// note, that `-1` is unary minus of `1` int const
|
|
struct Vertex<ast_int_const> final : ASTExprLeaf {
|
|
td::RefInt256 intval; // parsed value, 255 for "0xFF"
|
|
std::string_view orig_str; // original "0xFF"; empty for nodes generated by compiler (e.g. in constant folding)
|
|
|
|
Vertex(SrcLocation loc, td::RefInt256 intval, std::string_view orig_str)
|
|
: ASTExprLeaf(ast_int_const, loc)
|
|
, intval(std::move(intval))
|
|
, orig_str(orig_str) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_string_const is a string literal in double quotes or """ when multiline
|
|
// examples: "asdf" / "Ef8zMz..."a / "to_calc_crc32_from"c
|
|
// an optional modifier specifies how a string is parsed (probably, like an integer)
|
|
// note, that TVM doesn't have strings, it has only slices, so "hello" has type slice
|
|
struct Vertex<ast_string_const> final : ASTExprLeaf {
|
|
std::string_view str_val;
|
|
char modifier;
|
|
|
|
bool is_bitslice() const {
|
|
char m = modifier;
|
|
return m == 0 || m == 's' || m == 'a';
|
|
}
|
|
bool is_intval() const {
|
|
char m = modifier;
|
|
return m == 'u' || m == 'h' || m == 'H' || m == 'c';
|
|
}
|
|
|
|
Vertex(SrcLocation loc, std::string_view str_val, char modifier)
|
|
: ASTExprLeaf(ast_string_const, loc)
|
|
, str_val(str_val), modifier(modifier) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_bool_const is either `true` or `false`
|
|
struct Vertex<ast_bool_const> final : ASTExprLeaf {
|
|
bool bool_val;
|
|
|
|
Vertex(SrcLocation loc, bool bool_val)
|
|
: ASTExprLeaf(ast_bool_const, loc)
|
|
, bool_val(bool_val) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_null_keyword is the `null` literal
|
|
// it should be handled with care; for instance, `null` takes special place in the type system
|
|
struct Vertex<ast_null_keyword> final : ASTExprLeaf {
|
|
explicit Vertex(SrcLocation loc)
|
|
: ASTExprLeaf(ast_null_keyword, loc) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_argument is an element of an argument list of a function/method call
|
|
// example: `f(1, x)` has 2 arguments, `t.tupleFirst()` has no arguments (though `t` is passed as `self`)
|
|
// example: `f(mutate arg)` has 1 argument with `passed_as_mutate` flag
|
|
// (without `mutate` keyword, the entity "argument" could be replaced just by "any expression")
|
|
struct Vertex<ast_argument> final : ASTExprUnary {
|
|
bool passed_as_mutate;
|
|
|
|
AnyExprV get_expr() const { return child; }
|
|
|
|
Vertex(SrcLocation loc, AnyExprV expr, bool passed_as_mutate)
|
|
: ASTExprUnary(ast_argument, loc, expr)
|
|
, passed_as_mutate(passed_as_mutate) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_argument_list contains N arguments of a function/method call
|
|
struct Vertex<ast_argument_list> final : ASTExprVararg {
|
|
const std::vector<AnyExprV>& get_arguments() const { return children; }
|
|
auto get_arg(int i) const { return child(i)->as<ast_argument>(); }
|
|
|
|
Vertex(SrcLocation loc, std::vector<AnyExprV> arguments)
|
|
: ASTExprVararg(ast_argument_list, loc, std::move(arguments)) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_dot_access is "object before dot, identifier + optional <T> after dot"
|
|
// examples: `tensorVar.0` / `obj.field` / `getObj().method` / `t.tupleFirst<int>`
|
|
// from traversing point of view, it's an unary expression: only obj is expression, field name is not
|
|
// note, that `obj.method()` is a function call with "dot access `obj.method`" callee
|
|
struct Vertex<ast_dot_access> final : ASTExprUnary {
|
|
private:
|
|
V<ast_identifier> identifier; // `0` / `field` / `method`
|
|
V<ast_instantiationT_list> instantiationTs; // not null if `<int>`, otherwise nullptr
|
|
|
|
public:
|
|
|
|
typedef const FunctionData* DotTarget; // for `t.tupleAt` target is `tupleAt` global function
|
|
DotTarget target = nullptr; // filled at type inferring
|
|
|
|
AnyExprV get_obj() const { return child; }
|
|
auto get_identifier() const { return identifier; }
|
|
bool has_instantiationTs() const { return instantiationTs != nullptr; }
|
|
auto get_instantiationTs() const { return instantiationTs; }
|
|
std::string_view get_field_name() const { return identifier->name; }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_target(const DotTarget& target);
|
|
|
|
Vertex(SrcLocation loc, AnyExprV obj, V<ast_identifier> identifier, V<ast_instantiationT_list> instantiationTs)
|
|
: ASTExprUnary(ast_dot_access, loc, obj)
|
|
, identifier(identifier), instantiationTs(instantiationTs) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_function_call is "calling some lhs with parenthesis", lhs is arbitrary expression (callee)
|
|
// example: `globalF()` then callee is reference
|
|
// example: `globalF<int>()` then callee is reference (with instantiation Ts filled)
|
|
// example: `local_var()` then callee is reference (points to local var, filled at resolve identifiers)
|
|
// example: `getF()()` then callee is another func call (which type is TypeDataFunCallable)
|
|
// example: `obj.method()` then callee is dot access (resolved while type inferring)
|
|
struct Vertex<ast_function_call> final : ASTExprBinary {
|
|
const FunctionData* fun_maybe = nullptr; // filled while type inferring for `globalF()` / `obj.f()`; remains nullptr for `local_var()` / `getF()()`
|
|
|
|
AnyExprV get_callee() const { return lhs; }
|
|
bool is_dot_call() const { return lhs->type == ast_dot_access; }
|
|
AnyExprV get_dot_obj() const { return lhs->as<ast_dot_access>()->get_obj(); }
|
|
auto get_arg_list() const { return rhs->as<ast_argument_list>(); }
|
|
int get_num_args() const { return rhs->as<ast_argument_list>()->size(); }
|
|
auto get_arg(int i) const { return rhs->as<ast_argument_list>()->get_arg(i); }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_fun_ref(const FunctionData* fun_ref);
|
|
|
|
Vertex(SrcLocation loc, AnyExprV lhs_f, V<ast_argument_list> arguments)
|
|
: ASTExprBinary(ast_function_call, loc, lhs_f, arguments) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_underscore represents `_` symbol used for left side of assignment
|
|
// example: `(cs, _) = cs.loadAndReturn()`
|
|
// though it's the only correct usage, using _ as rvalue like `var x = _;` is correct from AST point of view
|
|
// note, that for declaration `var _ = 1` underscore is a regular local var declared (with empty name)
|
|
// but for `_ = 1` (not declaration) it's underscore; it's because `var _:int` is also correct
|
|
struct Vertex<ast_underscore> final : ASTExprLeaf {
|
|
explicit Vertex(SrcLocation loc)
|
|
: ASTExprLeaf(ast_underscore, loc) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_assign represents assignment "lhs = rhs"
|
|
// examples: `a = 4` / `var a = 4` / `(cs, b, mode) = rhs` / `f() = g()`
|
|
// note, that `a = 4` lhs is ast_reference, `var a = 4` lhs is ast_local_vars_declaration
|
|
struct Vertex<ast_assign> final : ASTExprBinary {
|
|
AnyExprV get_lhs() const { return lhs; }
|
|
AnyExprV get_rhs() const { return rhs; }
|
|
|
|
explicit Vertex(SrcLocation loc, AnyExprV lhs, AnyExprV rhs)
|
|
: ASTExprBinary(ast_assign, loc, lhs, rhs) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_set_assign represents assignment-and-set operation "lhs <op>= rhs"
|
|
// examples: `a += 4` / `b <<= c`
|
|
struct Vertex<ast_set_assign> final : ASTExprBinary {
|
|
const FunctionData* fun_ref = nullptr; // filled at type inferring, points to `_+_` built-in for +=
|
|
std::string_view operator_name; // without equal sign, "+" for operator +=
|
|
TokenType tok; // tok_set_*
|
|
|
|
AnyExprV get_lhs() const { return lhs; }
|
|
AnyExprV get_rhs() const { return rhs; }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_fun_ref(const FunctionData* fun_ref);
|
|
|
|
Vertex(SrcLocation loc, std::string_view operator_name, TokenType tok, AnyExprV lhs, AnyExprV rhs)
|
|
: ASTExprBinary(ast_set_assign, loc, lhs, rhs)
|
|
, operator_name(operator_name), tok(tok) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_unary_operator is "some operator over one expression"
|
|
// examples: `-1` / `~found`
|
|
struct Vertex<ast_unary_operator> final : ASTExprUnary {
|
|
const FunctionData* fun_ref = nullptr; // filled at type inferring, points to some built-in function
|
|
std::string_view operator_name;
|
|
TokenType tok;
|
|
|
|
AnyExprV get_rhs() const { return child; }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_fun_ref(const FunctionData* fun_ref);
|
|
|
|
Vertex(SrcLocation loc, std::string_view operator_name, TokenType tok, AnyExprV rhs)
|
|
: ASTExprUnary(ast_unary_operator, loc, rhs)
|
|
, operator_name(operator_name), tok(tok) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_binary_operator is "some operator over two expressions"
|
|
// examples: `a + b` / `x & true` / `(a, b) << g()`
|
|
// note, that `a = b` is NOT a binary operator, it's ast_assign, also `a += b`, it's ast_set_assign
|
|
struct Vertex<ast_binary_operator> final : ASTExprBinary {
|
|
const FunctionData* fun_ref = nullptr; // filled at type inferring, points to some built-in function
|
|
std::string_view operator_name;
|
|
TokenType tok;
|
|
|
|
AnyExprV get_lhs() const { return lhs; }
|
|
AnyExprV get_rhs() const { return rhs; }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_fun_ref(const FunctionData* fun_ref);
|
|
|
|
Vertex(SrcLocation loc, std::string_view operator_name, TokenType tok, AnyExprV lhs, AnyExprV rhs)
|
|
: ASTExprBinary(ast_binary_operator, loc, lhs, rhs)
|
|
, operator_name(operator_name), tok(tok) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_ternary_operator is a traditional ternary construction
|
|
// example: `cond ? a : b`
|
|
struct Vertex<ast_ternary_operator> final : ASTExprVararg {
|
|
AnyExprV get_cond() const { return child(0); }
|
|
AnyExprV get_when_true() const { return child(1); }
|
|
AnyExprV get_when_false() const { return child(2); }
|
|
|
|
Vertex(SrcLocation loc, AnyExprV cond, AnyExprV when_true, AnyExprV when_false)
|
|
: ASTExprVararg(ast_ternary_operator, loc, {cond, when_true, when_false}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_cast_as_operator is explicit casting with "as" keyword
|
|
// examples: `arg as int` / `null as cell` / `t.tupleAt(2) as slice`
|
|
struct Vertex<ast_cast_as_operator> final : ASTExprUnary {
|
|
AnyExprV get_expr() const { return child; }
|
|
|
|
TypePtr cast_to_type;
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_resolved_type(TypePtr cast_to_type);
|
|
|
|
Vertex(SrcLocation loc, AnyExprV expr, TypePtr cast_to_type)
|
|
: ASTExprUnary(ast_cast_as_operator, loc, expr)
|
|
, cast_to_type(cast_to_type) {}
|
|
};
|
|
|
|
|
|
//
|
|
// ---------------------------------------------------------
|
|
// statements
|
|
//
|
|
|
|
|
|
template<>
|
|
// ast_empty_statement is very similar to "empty sequence" but has a special treatment
|
|
// example: `;` (just semicolon)
|
|
// example: body of `builtin` function is empty statement (not a zero sequence)
|
|
struct Vertex<ast_empty_statement> final : ASTStatementVararg {
|
|
explicit Vertex(SrcLocation loc)
|
|
: ASTStatementVararg(ast_empty_statement, loc, {}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_sequence is "some sequence of statements"
|
|
// example: function body is a sequence
|
|
// example: do while body is a sequence
|
|
struct Vertex<ast_sequence> final : ASTStatementVararg {
|
|
SrcLocation loc_end;
|
|
|
|
const std::vector<AnyV>& get_items() const { return children; }
|
|
AnyV get_item(int i) const { return children.at(i); }
|
|
|
|
Vertex(SrcLocation loc, SrcLocation loc_end, std::vector<AnyV> items)
|
|
: ASTStatementVararg(ast_sequence, loc, std::move(items))
|
|
, loc_end(loc_end) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_return_statement is "return something from a function"
|
|
// examples: `return a` / `return any_expr()()` / `return;`
|
|
// note, that for `return;` (without a value, meaning "void"), in AST, it's stored as empty expression
|
|
struct Vertex<ast_return_statement> : ASTStatementUnary {
|
|
AnyExprV get_return_value() const { return child_as_expr(); }
|
|
bool has_return_value() const { return child->type != ast_empty_expression; }
|
|
|
|
Vertex(SrcLocation loc, AnyExprV child)
|
|
: ASTStatementUnary(ast_return_statement, loc, child) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_if_statement is a traditional if statement, probably followed by an else branch
|
|
// examples: `if (cond) { ... } else { ... }` / `if (cond) { ... }`
|
|
// when else branch is missing, it's stored as empty statement
|
|
// for "else if", it's just "if statement" inside a sequence of else branch
|
|
struct Vertex<ast_if_statement> final : ASTStatementVararg {
|
|
bool is_ifnot; // if(!cond), to generate more optimal fift code
|
|
|
|
AnyExprV get_cond() const { return child_as_expr(0); }
|
|
auto get_if_body() const { return children.at(1)->as<ast_sequence>(); }
|
|
auto get_else_body() const { return children.at(2)->as<ast_sequence>(); } // always exists (when else omitted, it's empty)
|
|
|
|
Vertex(SrcLocation loc, bool is_ifnot, AnyExprV cond, V<ast_sequence> if_body, V<ast_sequence> else_body)
|
|
: ASTStatementVararg(ast_if_statement, loc, {cond, if_body, else_body})
|
|
, is_ifnot(is_ifnot) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_repeat_statement is "repeat something N times"
|
|
// example: `repeat (10) { ... }`
|
|
struct Vertex<ast_repeat_statement> final : ASTStatementVararg {
|
|
AnyExprV get_cond() const { return child_as_expr(0); }
|
|
auto get_body() const { return children.at(1)->as<ast_sequence>(); }
|
|
|
|
Vertex(SrcLocation loc, AnyExprV cond, V<ast_sequence> body)
|
|
: ASTStatementVararg(ast_repeat_statement, loc, {cond, body}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_while_statement is a standard "while" loop
|
|
// example: `while (x > 0) { ... }`
|
|
struct Vertex<ast_while_statement> final : ASTStatementVararg {
|
|
AnyExprV get_cond() const { return child_as_expr(0); }
|
|
auto get_body() const { return children.at(1)->as<ast_sequence>(); }
|
|
|
|
Vertex(SrcLocation loc, AnyExprV cond, V<ast_sequence> body)
|
|
: ASTStatementVararg(ast_while_statement, loc, {cond, body}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_do_while_statement is a standard "do while" loop
|
|
// example: `do { ... } while (x > 0);`
|
|
struct Vertex<ast_do_while_statement> final : ASTStatementVararg {
|
|
auto get_body() const { return children.at(0)->as<ast_sequence>(); }
|
|
AnyExprV get_cond() const { return child_as_expr(1); }
|
|
|
|
Vertex(SrcLocation loc, V<ast_sequence> body, AnyExprV cond)
|
|
: ASTStatementVararg(ast_do_while_statement, loc, {body, cond}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_throw_statement is throwing an exception, it accepts excNo and optional arg
|
|
// examples: `throw 10` / `throw (ERR_LOW_BALANCE)` / `throw (1001, incomingAddr)`
|
|
// when thrown arg is missing, it's stored as empty expression
|
|
struct Vertex<ast_throw_statement> final : ASTStatementVararg {
|
|
AnyExprV get_thrown_code() const { return child_as_expr(0); }
|
|
bool has_thrown_arg() const { return child_as_expr(1)->type != ast_empty_expression; }
|
|
AnyExprV get_thrown_arg() const { return child_as_expr(1); }
|
|
|
|
Vertex(SrcLocation loc, AnyExprV thrown_code, AnyExprV thrown_arg)
|
|
: ASTStatementVararg(ast_throw_statement, loc, {thrown_code, thrown_arg}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_assert_statement is "assert that cond is true, otherwise throw an exception"
|
|
// examples: `assert (balance > 0, ERR_ZERO_BALANCE)` / `assert (balance > 0) throw (ERR_ZERO_BALANCE)`
|
|
struct Vertex<ast_assert_statement> final : ASTStatementVararg {
|
|
AnyExprV get_cond() const { return child_as_expr(0); }
|
|
AnyExprV get_thrown_code() const { return child_as_expr(1); }
|
|
|
|
Vertex(SrcLocation loc, AnyExprV cond, AnyExprV thrown_code)
|
|
: ASTStatementVararg(ast_assert_statement, loc, {cond, thrown_code}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_try_catch_statement is a standard try catch (finally block doesn't exist)
|
|
// example: `try { ... } catch (excNo) { ... }`
|
|
// there are two formal "arguments" of catch: excNo and arg, but both can be omitted
|
|
// when omitted, they are stored as underscores, so len of a catch tensor is always 2
|
|
struct Vertex<ast_try_catch_statement> final : ASTStatementVararg {
|
|
auto get_try_body() const { return children.at(0)->as<ast_sequence>(); }
|
|
auto get_catch_expr() const { return children.at(1)->as<ast_tensor>(); } // (excNo, arg), always len 2
|
|
auto get_catch_body() const { return children.at(2)->as<ast_sequence>(); }
|
|
|
|
Vertex(SrcLocation loc, V<ast_sequence> try_body, V<ast_tensor> catch_expr, V<ast_sequence> catch_body)
|
|
: ASTStatementVararg(ast_try_catch_statement, loc, {try_body, catch_expr, catch_body}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_asm_body is a body of `asm` function — a set of strings, and optionally stack order manipulations
|
|
// example: `fun skipMessageOp... asm "32 PUSHINT" "SDSKIPFIRST";`
|
|
// user can specify "arg order"; example: `fun store(self: builder, op: int) asm (op self)` then [1, 0]
|
|
// user can specify "ret order"; example: `fun modDiv... asm(-> 1 0) "DIVMOD";` then [1, 0]
|
|
struct Vertex<ast_asm_body> final : ASTStatementVararg {
|
|
std::vector<int> arg_order;
|
|
std::vector<int> ret_order;
|
|
|
|
const std::vector<AnyV>& get_asm_commands() const { return children; } // ast_string_const[]
|
|
|
|
Vertex(SrcLocation loc, std::vector<int> arg_order, std::vector<int> ret_order, std::vector<AnyV> asm_commands)
|
|
: ASTStatementVararg(ast_asm_body, loc, std::move(asm_commands))
|
|
, arg_order(std::move(arg_order)), ret_order(std::move(ret_order)) {}
|
|
};
|
|
|
|
|
|
//
|
|
// ---------------------------------------------------------
|
|
// other
|
|
//
|
|
|
|
|
|
template<>
|
|
// ast_genericsT_item is generics T at declaration
|
|
// example: `fun f<T1, T2>` has a list of 2 generic Ts
|
|
struct Vertex<ast_genericsT_item> final : ASTOtherLeaf {
|
|
std::string_view nameT;
|
|
|
|
Vertex(SrcLocation loc, std::string_view nameT)
|
|
: ASTOtherLeaf(ast_genericsT_item, loc)
|
|
, nameT(nameT) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_genericsT_list is a container for generics T at declaration
|
|
// example: see above
|
|
struct Vertex<ast_genericsT_list> final : ASTOtherVararg {
|
|
std::vector<AnyV> get_items() const { return children; }
|
|
auto get_item(int i) const { return children.at(i)->as<ast_genericsT_item>(); }
|
|
|
|
Vertex(SrcLocation loc, std::vector<AnyV> genericsT_items)
|
|
: ASTOtherVararg(ast_genericsT_list, loc, std::move(genericsT_items)) {}
|
|
|
|
int lookup_idx(std::string_view nameT) const;
|
|
};
|
|
|
|
|
|
template<>
|
|
// ast_instantiationT_item is manual substitution of generic T used in code, mostly for func calls
|
|
// examples: `g<int>()` / `t.tupleFirst<slice>()` / `f<(int, slice), builder>()`
|
|
struct Vertex<ast_instantiationT_item> final : ASTOtherLeaf {
|
|
TypePtr substituted_type;
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_resolved_type(TypePtr substituted_type);
|
|
|
|
Vertex(SrcLocation loc, TypePtr substituted_type)
|
|
: ASTOtherLeaf(ast_instantiationT_item, loc)
|
|
, substituted_type(substituted_type) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_instantiationT_list is a container for generic T substitutions used in code
|
|
// examples: see above
|
|
struct Vertex<ast_instantiationT_list> final : ASTOtherVararg {
|
|
std::vector<AnyV> get_items() const { return children; }
|
|
auto get_item(int i) const { return children.at(i)->as<ast_instantiationT_item>(); }
|
|
|
|
Vertex(SrcLocation loc, std::vector<AnyV> instantiationTs)
|
|
: ASTOtherVararg(ast_instantiationT_list, loc, std::move(instantiationTs)) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_parameter is a parameter of a function in its declaration
|
|
// example: `fun f(a: int, mutate b: slice)` has 2 parameters
|
|
struct Vertex<ast_parameter> final : ASTOtherLeaf {
|
|
const LocalVarData* param_ref = nullptr; // filled on resolve identifiers
|
|
std::string_view param_name;
|
|
TypePtr declared_type;
|
|
bool declared_as_mutate; // declared as `mutate param_name`
|
|
|
|
bool is_underscore() const { return param_name.empty(); }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_param_ref(const LocalVarData* param_ref);
|
|
void assign_resolved_type(TypePtr declared_type);
|
|
|
|
Vertex(SrcLocation loc, std::string_view param_name, TypePtr declared_type, bool declared_as_mutate)
|
|
: ASTOtherLeaf(ast_parameter, loc)
|
|
, param_name(param_name), declared_type(declared_type), declared_as_mutate(declared_as_mutate) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_parameter_list is a container of parameters
|
|
// example: see above
|
|
struct Vertex<ast_parameter_list> final : ASTOtherVararg {
|
|
const std::vector<AnyV>& get_params() const { return children; }
|
|
auto get_param(int i) const { return children.at(i)->as<ast_parameter>(); }
|
|
|
|
Vertex(SrcLocation loc, std::vector<AnyV> params)
|
|
: ASTOtherVararg(ast_parameter_list, loc, std::move(params)) {}
|
|
|
|
int lookup_idx(std::string_view param_name) const;
|
|
int get_mutate_params_count() const;
|
|
bool has_mutate_params() const { return get_mutate_params_count() > 0; }
|
|
};
|
|
|
|
template<>
|
|
// ast_annotation is @annotation above a declaration
|
|
// example: `@pure fun ...`
|
|
struct Vertex<ast_annotation> final : ASTOtherVararg {
|
|
AnnotationKind kind;
|
|
|
|
auto get_arg() const { return children.at(0)->as<ast_tensor>(); }
|
|
|
|
static AnnotationKind parse_kind(std::string_view name);
|
|
|
|
Vertex(SrcLocation loc, AnnotationKind kind, V<ast_tensor> arg_probably_empty)
|
|
: ASTOtherVararg(ast_annotation, loc, {arg_probably_empty})
|
|
, kind(kind) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_function_declaration is declaring a function/method
|
|
// methods are still global functions, just accepting "self" first parameter
|
|
// example: `fun f() { ... }`
|
|
// functions can be generic, `fun f<T>(params) { ... }`
|
|
// their body is either sequence (regular code function), or `asm`, or `builtin`
|
|
struct Vertex<ast_function_declaration> final : ASTOtherVararg {
|
|
auto get_identifier() const { return children.at(0)->as<ast_identifier>(); }
|
|
int get_num_params() const { return children.at(1)->as<ast_parameter_list>()->size(); }
|
|
auto get_param_list() const { return children.at(1)->as<ast_parameter_list>(); }
|
|
auto get_param(int i) const { return children.at(1)->as<ast_parameter_list>()->get_param(i); }
|
|
AnyV get_body() const { return children.at(2); } // ast_sequence / ast_asm_body
|
|
|
|
const FunctionData* fun_ref = nullptr; // filled after register
|
|
TypePtr declared_return_type; // filled at ast parsing; if unspecified (nullptr), means "auto infer"
|
|
V<ast_genericsT_list> genericsT_list; // for non-generics it's nullptr
|
|
td::RefInt256 method_id; // specified via @method_id annotation
|
|
int flags; // from enum in FunctionData
|
|
|
|
bool is_asm_function() const { return children.at(2)->type == ast_asm_body; }
|
|
bool is_code_function() const { return children.at(2)->type == ast_sequence; }
|
|
bool is_builtin_function() const { return children.at(2)->type == ast_empty_statement; }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_fun_ref(const FunctionData* fun_ref);
|
|
void assign_resolved_type(TypePtr declared_return_type);
|
|
|
|
Vertex(SrcLocation loc, V<ast_identifier> name_identifier, V<ast_parameter_list> parameters, AnyV body, TypePtr declared_return_type, V<ast_genericsT_list> genericsT_list, td::RefInt256 method_id, int flags)
|
|
: ASTOtherVararg(ast_function_declaration, loc, {name_identifier, parameters, body})
|
|
, declared_return_type(declared_return_type), genericsT_list(genericsT_list), method_id(std::move(method_id)), flags(flags) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_global_var_declaration is declaring a global var, outside a function
|
|
// example: `global g: int;`
|
|
// note, that globals don't have default values, since there is no single "entrypoint" for a contract
|
|
struct Vertex<ast_global_var_declaration> final : ASTOtherVararg {
|
|
const GlobalVarData* var_ref = nullptr; // filled after register
|
|
TypePtr declared_type; // filled always, typing globals is mandatory
|
|
|
|
auto get_identifier() const { return children.at(0)->as<ast_identifier>(); }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_var_ref(const GlobalVarData* var_ref);
|
|
void assign_resolved_type(TypePtr declared_type);
|
|
|
|
Vertex(SrcLocation loc, V<ast_identifier> name_identifier, TypePtr declared_type)
|
|
: ASTOtherVararg(ast_global_var_declaration, loc, {name_identifier})
|
|
, declared_type(declared_type) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_constant_declaration is declaring a global constant, outside a function
|
|
// example: `const op = 0x123;`
|
|
struct Vertex<ast_constant_declaration> final : ASTOtherVararg {
|
|
const GlobalConstData* const_ref = nullptr; // filled after register
|
|
TypePtr declared_type; // not null for `const op: int = ...`
|
|
|
|
auto get_identifier() const { return children.at(0)->as<ast_identifier>(); }
|
|
AnyExprV get_init_value() const { return child_as_expr(1); }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_const_ref(const GlobalConstData* const_ref);
|
|
void assign_resolved_type(TypePtr declared_type);
|
|
|
|
Vertex(SrcLocation loc, V<ast_identifier> name_identifier, TypePtr declared_type, AnyExprV init_value)
|
|
: ASTOtherVararg(ast_constant_declaration, loc, {name_identifier, init_value})
|
|
, declared_type(declared_type) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_tolk_required_version is a preamble fixating compiler's version at the top of the file
|
|
// example: `tolk 0.6`
|
|
// when compiler version mismatches, it means, that another compiler was earlier for that sources, a warning is emitted
|
|
struct Vertex<ast_tolk_required_version> final : ASTOtherLeaf {
|
|
std::string_view semver;
|
|
|
|
Vertex(SrcLocation loc, std::string_view semver)
|
|
: ASTOtherLeaf(ast_tolk_required_version, loc)
|
|
, semver(semver) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_import_directive is an import at the top of the file
|
|
// examples: `import "another.tolk"` / `import "@stdlib/tvm-dicts"`
|
|
struct Vertex<ast_import_directive> final : ASTOtherVararg {
|
|
const SrcFile* file = nullptr; // assigned after imports have been resolved, just after parsing a file to ast
|
|
|
|
auto get_file_leaf() const { return children.at(0)->as<ast_string_const>(); }
|
|
|
|
std::string get_file_name() const { return static_cast<std::string>(children.at(0)->as<ast_string_const>()->str_val); }
|
|
|
|
Vertex* mutate() const { return const_cast<Vertex*>(this); }
|
|
void assign_src_file(const SrcFile* file);
|
|
|
|
Vertex(SrcLocation loc, V<ast_string_const> file_name)
|
|
: ASTOtherVararg(ast_import_directive, loc, {file_name}) {}
|
|
};
|
|
|
|
template<>
|
|
// ast_tolk_file represents a whole parsed input .tolk file
|
|
// with functions, constants, etc.
|
|
// particularly, it contains imports that lead to loading other files
|
|
// a whole program consists of multiple parsed files, each of them has a parsed ast tree (stdlib is also parsed)
|
|
struct Vertex<ast_tolk_file> final : ASTOtherVararg {
|
|
const SrcFile* const file;
|
|
|
|
const std::vector<AnyV>& get_toplevel_declarations() const { return children; }
|
|
|
|
Vertex(const SrcFile* file, std::vector<AnyV> toplevel_declarations)
|
|
: ASTOtherVararg(ast_tolk_file, SrcLocation(file), std::move(toplevel_declarations))
|
|
, file(file) {}
|
|
};
|
|
|
|
} // namespace tolk
|