1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-02-15 04:32:21 +00:00
ton/tdfec/td/fec/algebra/BeliefPropagationDecoding.cpp
2020-04-10 23:06:01 +04:00

114 lines
3.7 KiB
C++

/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
Copyright 2017-2020 Telegram Systems LLP
*/
#include "td/fec/algebra/BeliefPropagationDecoding.h"
namespace td {
BeliefPropagationDecoding::BeliefPropagationDecoding(size_t symbols_count, size_t symbol_size)
: max_equation_count_{static_cast<size_t>(static_cast<double>(symbols_count) * 1.1 + 5)}
, C_{symbols_count, symbol_size}
, D_{max_equation_count_, symbol_size} {
equations_.reserve(max_equation_count_);
symbols_.resize(symbols_count);
edges_.resize(1);
}
Slice BeliefPropagationDecoding::get_symbol(uint32 symbol_id) const {
CHECK(symbols_[symbol_id].is_ready);
return C_.row(symbol_id);
}
void BeliefPropagationDecoding::add_equation(Span<uint32> symbol_ids, Slice data) {
if (equations_.size() >= D_.rows()) {
MatrixGF256 new_D(D_.rows() * 2, D_.cols());
new_D.set_from(D_, 0, 0);
D_ = std::move(new_D);
}
CHECK(symbol_ids.size() != 0);
uint32 equation_id = static_cast<uint32>(equations_.size());
D_.row_set(equation_id, data);
EquationInfo equation;
for (auto symbol_id : symbol_ids) {
CHECK(symbol_id < symbols_.size());
auto &symbol = symbols_[symbol_id];
if (symbol.is_ready) {
D_.row_add(equation_id, C_.row(symbol_id));
} else {
equation.symbols_xor ^= symbol_id;
equation.symbols_count++;
edges_.push_back({equation_id, symbol.head_});
symbol.head_ = uint32(edges_.size() - 1);
}
}
if (equation.symbols_count == 0) {
return;
}
equations_.push_back(equation);
if (equation.symbols_count == 1) {
ready_equations_.push_back(equation_id);
loop();
}
}
bool BeliefPropagationDecoding::is_ready() const {
return ready_symbols().size() == C_.rows();
}
Span<uint32> BeliefPropagationDecoding::ready_symbols() const {
return ready_symbols_;
}
void BeliefPropagationDecoding::loop() {
while (!is_ready() && !ready_equations_.empty()) {
auto equation_id = ready_equations_.back();
ready_equations_.pop_back();
auto &equation = equations_[equation_id];
LOG_CHECK(equation.symbols_count <= 1) << equation.symbols_count;
if (equation.symbols_count == 0) {
continue;
}
auto symbol_id = equation.symbols_xor;
auto &symbol = symbols_[symbol_id];
LOG_CHECK(symbol_id < symbols_.size())
<< equation.symbols_xor << " " << equation.symbols_count << " " << equation_id;
if (symbol.is_ready) {
continue;
}
C_.row_set(symbol_id, D_.row(equation_id));
symbol.is_ready = true;
ready_symbols_.push_back(symbol_id);
for (auto i = symbol.head_; i != 0;) {
auto &edge = edges_[i];
auto next_equation_id = edge.value;
i = edge.next;
D_.row_add(next_equation_id, C_.row(symbol_id));
auto &next_equation = equations_[next_equation_id];
next_equation.symbols_xor ^= symbol_id;
next_equation.symbols_count--;
if (next_equation.symbols_count == 1) {
ready_equations_.push_back(next_equation_id);
}
}
}
}
} // namespace td