mirror of
				https://github.com/ton-blockchain/ton
				synced 2025-03-09 15:40:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			314 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			314 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* 
 | |
|     This file is part of TON Blockchain source code.
 | |
| 
 | |
|     TON Blockchain is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU General Public License
 | |
|     as published by the Free Software Foundation; either version 2
 | |
|     of the License, or (at your option) any later version.
 | |
| 
 | |
|     TON Blockchain is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU General Public License
 | |
|     along with TON Blockchain.  If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
|     In addition, as a special exception, the copyright holders give permission 
 | |
|     to link the code of portions of this program with the OpenSSL library. 
 | |
|     You must obey the GNU General Public License in all respects for all 
 | |
|     of the code used other than OpenSSL. If you modify file(s) with this 
 | |
|     exception, you may extend this exception to your version of the file(s), 
 | |
|     but you are not obligated to do so. If you do not wish to do so, delete this 
 | |
|     exception statement from your version. If you delete this exception statement 
 | |
|     from all source files in the program, then also delete it here.
 | |
| 
 | |
|     Copyright 2017-2020 Telegram Systems LLP
 | |
| */
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| #include <string>
 | |
| #include <cstring>
 | |
| 
 | |
| #include "crypto/ellcurve/Ed25519.h"
 | |
| 
 | |
| static void my_assert_impl(bool cond, const char* str, const char* file, int line) {
 | |
|   if (!cond) {
 | |
|     std::cerr << "Failed " << str << " in " << file << " at " << line << ".\n";
 | |
|   }
 | |
| }
 | |
| #define my_assert(x) my_assert_impl(x, #x, __FILE__, __LINE__)
 | |
| 
 | |
| void print_buffer(const unsigned char buffer[32]) {
 | |
|   for (int i = 0; i < 32; i++) {
 | |
|     char buff[4];
 | |
|     sprintf(buff, "%02x", buffer[i]);
 | |
|     std::cout << buff;
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::string buffer_to_hex(const unsigned char* buffer, std::size_t size = 32) {
 | |
|   const char* hex = "0123456789ABCDEF";
 | |
|   std::string res(2 * size, '\0');
 | |
|   for (std::size_t i = 0; i < size; i++) {
 | |
|     auto c = buffer[i];
 | |
|     res[2 * i] = hex[c & 15];
 | |
|     res[2 * i + 1] = hex[c >> 4];
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| // export of (17/12)G on twisted Edwards curve
 | |
| unsigned char test_vector1[32] = {0xfc, 0xb7, 0x42, 0x1e, 0x26, 0xad, 0x1b, 0x17, 0xf6, 0xb1, 0x52,
 | |
|                                   0x0c, 0xdb, 0x8a, 0x64, 0x7d, 0x28, 0xa7, 0x56, 0x69, 0xd4, 0xb6,
 | |
|                                   0x0c, 0xec, 0x63, 0x72, 0x5e, 0xe6, 0x32, 0x4d, 0xf7, 0xe6};
 | |
| 
 | |
| unsigned char rfc7748_output[32] = {
 | |
|     0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8,
 | |
|     0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57,
 | |
| };
 | |
| 
 | |
| bool test_ed25519_impl(void) {
 | |
|   std::cout << "************** Testing Curve25519 / Ed25519 operations ************\n";
 | |
|   auto& E = ellcurve::Curve25519();
 | |
|   auto& Edw = ellcurve::Ed25519();
 | |
|   arith::Bignum L = E.get_ell();
 | |
|   my_assert(arith::is_prime(L));
 | |
|   my_assert(L == Edw.get_ell());
 | |
|   arith::ResidueRing Fl(L);
 | |
|   arith::Bignum s = Fl.frac(17, 12).extract();
 | |
|   arith::Bignum t = Fl.frac(12, 17).extract();
 | |
|   std::cout << "l = " << L << std::endl;
 | |
|   std::cout << "s = 17/12 mod l = " << s << std::endl;
 | |
|   std::cout << "t = 12/17 mod l = " << t << std::endl;
 | |
|   auto sG = E.power_gen_xz(s);
 | |
|   auto u_sG = sG.get_u();
 | |
|   std::cout << "Curve25519 u(sG) = " << sG.get_u().extract() << std::endl;
 | |
|   std::cout << "Curve25519 y(sG) = " << sG.get_y().extract() << std::endl;
 | |
|   auto sG1 = Edw.power_gen(s);
 | |
|   std::cout << "Ed25519 u(sG) = " << sG1.get_u().extract() << std::endl;
 | |
|   std::cout << "Ed25519 y(sG) = " << sG1.get_y().extract() << std::endl;
 | |
|   std::cout << "Ed25519 x(sG) = " << sG1.get_x().extract() << std::endl;
 | |
|   my_assert(sG1.get_x().extract() != sG1.get_y().extract());
 | |
|   my_assert(sG.get_u() == sG1.get_u());
 | |
|   my_assert(sG.get_y() == sG1.get_y());
 | |
| 
 | |
|   my_assert(
 | |
|       sG1.get_x().extract() ==
 | |
|       arith::Bignum(arith::dec_string{"9227429025021714590777223519505276506601225973596506606120015751301699519597"}));
 | |
|   my_assert(sG1.get_y().extract() ==
 | |
|             arith::Bignum(
 | |
|                 arith::dec_string{"46572854587220149033453000581008590225032365765275643343836649812808016508924"}));
 | |
| 
 | |
|   auto sG2 = Edw.power_gen(s, true);
 | |
|   my_assert(sG1.get_u() == sG2.get_u());
 | |
|   my_assert(sG1.get_y() == sG2.get_y());
 | |
|   unsigned char buff[32];
 | |
|   std::memset(buff, 0, 32);
 | |
|   my_assert(sG1.export_point(buff));
 | |
|   std::cout << "sG export = " << buffer_to_hex(buff) << std::endl;
 | |
|   bool ok;
 | |
|   auto sG3 = Edw.import_point(buff, ok);
 | |
|   my_assert(ok);
 | |
|   my_assert(!std::memcmp(buff, test_vector1, 32));
 | |
|   my_assert(sG3.get_u() == sG1.get_u());
 | |
|   my_assert(sG2.get_x() == sG2.get_x());
 | |
|   my_assert(sG2.get_y() == sG2.get_y());
 | |
| 
 | |
|   auto stG = E.power_xz(u_sG, t);
 | |
|   std::cout << "Curve25519 u(stG) = " << stG.get_u().extract() << std::endl;
 | |
|   my_assert(stG.get_u().extract() == 9);
 | |
|   auto stG1 = Edw.power_point(sG1, t);
 | |
|   std::cout << "Ed25519 u(stG) = " << stG1.get_u().extract() << std::endl;
 | |
|   my_assert(stG1.get_u().extract() == 9);
 | |
|   stG1.normalize();
 | |
|   my_assert(stG1.XY == Edw.get_base_point().XY);
 | |
|   my_assert(stG1.X == Edw.get_base_point().X);
 | |
|   my_assert(stG1.Y == Edw.get_base_point().Y);
 | |
|   my_assert(stG1.Z == Edw.get_base_point().Z);
 | |
|   auto stG2 = Edw.power_point(sG2, t, true);
 | |
|   my_assert(stG2.get_u().extract() == 9);
 | |
|   stG2.normalize();
 | |
|   my_assert(stG2.XY == stG1.XY && stG2.X == stG1.X && stG2.Y == stG1.Y);
 | |
|   auto stG3 = Edw.power_point(sG3, t).normalize();
 | |
|   auto stG4 = Edw.power_point(sG3, t, true).normalize();
 | |
|   my_assert(stG3.XY == stG1.XY && stG3.X == stG1.X && stG3.Y == stG1.Y);
 | |
|   my_assert(stG4.XY == stG1.XY && stG4.X == stG1.X && stG4.Y == stG1.Y);
 | |
| 
 | |
|   // RFC7748 test vector
 | |
|   auto u =
 | |
|       arith::Bignum(arith::dec_string{"8883857351183929894090759386610649319417338800022198945255395922347792736741"});
 | |
|   //u[255] = 0;
 | |
|   auto n =
 | |
|       arith::Bignum(arith::dec_string{"35156891815674817266734212754503633747128614016119564763269015315466259359304"});
 | |
|   //n[255] = 0; n[254] = 1;
 | |
|   //n[0] = n[1] = n[2] = 0;
 | |
|   auto umodp = arith::Residue(u, E.get_base_ring());
 | |
|   auto nP = E.power_xz(umodp, n);
 | |
|   std::cout << "u(P) = " << u.to_hex() << std::endl;
 | |
|   std::cout << "n = " << n.to_hex() << std::endl;
 | |
|   std::cout << "u(nP) = " << nP.get_u().extract().to_hex() << std::endl;
 | |
|   unsigned char buffer[32];
 | |
|   std::memset(buffer, 0, 32);
 | |
|   nP.export_point_u(buffer);
 | |
|   std::cout << "u(nP) export = " << buffer_to_hex(buffer) << std::endl;
 | |
|   my_assert(!std::memcmp(buffer, rfc7748_output, 32));
 | |
| 
 | |
|   std::cout << "********* ok\n\n";
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned char fixed_privkey[32] = "abacabadabacabaeabacabadabacaba";
 | |
| unsigned char fixed_pubkey[32] = {0x6f, 0x9e, 0x5b, 0xde, 0xce, 0x87, 0x21, 0xeb, 0x57, 0x37, 0xfb,
 | |
|                                   0xb5, 0x92, 0x28, 0xba, 0x07, 0xf7, 0x88, 0x0f, 0x73, 0xce, 0x5b,
 | |
|                                   0xfa, 0xa1, 0xb7, 0x15, 0x73, 0x03, 0xd4, 0x20, 0x1e, 0x74};
 | |
| 
 | |
| unsigned char rfc8032_secret_key1[32] = {0x9d, 0x61, 0xb1, 0x9d, 0xef, 0xfd, 0x5a, 0x60, 0xba, 0x84, 0x4a,
 | |
|                                          0xf4, 0x92, 0xec, 0x2c, 0xc4, 0x44, 0x49, 0xc5, 0x69, 0x7b, 0x32,
 | |
|                                          0x69, 0x19, 0x70, 0x3b, 0xac, 0x03, 0x1c, 0xae, 0x7f, 0x60};
 | |
| 
 | |
| unsigned char rfc8032_public_key1[32] = {0xd7, 0x5a, 0x98, 0x01, 0x82, 0xb1, 0x0a, 0xb7, 0xd5, 0x4b, 0xfe,
 | |
|                                          0xd3, 0xc9, 0x64, 0x07, 0x3a, 0x0e, 0xe1, 0x72, 0xf3, 0xda, 0xa6,
 | |
|                                          0x23, 0x25, 0xaf, 0x02, 0x1a, 0x68, 0xf7, 0x07, 0x51, 0x1a};
 | |
| 
 | |
| unsigned char rfc8032_signature1[64] = {
 | |
|     0xe5, 0x56, 0x43, 0x00, 0xc3, 0x60, 0xac, 0x72, 0x90, 0x86, 0xe2, 0xcc, 0x80, 0x6e, 0x82, 0x8a,
 | |
|     0x84, 0x87, 0x7f, 0x1e, 0xb8, 0xe5, 0xd9, 0x74, 0xd8, 0x73, 0xe0, 0x65, 0x22, 0x49, 0x01, 0x55,
 | |
|     0x5f, 0xb8, 0x82, 0x15, 0x90, 0xa3, 0x3b, 0xac, 0xc6, 0x1e, 0x39, 0x70, 0x1c, 0xf9, 0xb4, 0x6b,
 | |
|     0xd2, 0x5b, 0xf5, 0xf0, 0x59, 0x5b, 0xbe, 0x24, 0x65, 0x51, 0x41, 0x43, 0x8e, 0x7a, 0x10, 0x0b,
 | |
| };
 | |
| 
 | |
| unsigned char rfc8032_secret_key2[32] = {
 | |
|     0xc5, 0xaa, 0x8d, 0xf4, 0x3f, 0x9f, 0x83, 0x7b, 0xed, 0xb7, 0x44, 0x2f, 0x31, 0xdc, 0xb7, 0xb1,
 | |
|     0x66, 0xd3, 0x85, 0x35, 0x07, 0x6f, 0x09, 0x4b, 0x85, 0xce, 0x3a, 0x2e, 0x0b, 0x44, 0x58, 0xf7,
 | |
| };
 | |
| 
 | |
| unsigned char rfc8032_public_key2[32] = {
 | |
|     0xfc, 0x51, 0xcd, 0x8e, 0x62, 0x18, 0xa1, 0xa3, 0x8d, 0xa4, 0x7e, 0xd0, 0x02, 0x30, 0xf0, 0x58,
 | |
|     0x08, 0x16, 0xed, 0x13, 0xba, 0x33, 0x03, 0xac, 0x5d, 0xeb, 0x91, 0x15, 0x48, 0x90, 0x80, 0x25,
 | |
| };
 | |
| 
 | |
| unsigned char rfc8032_message2[2] = {0xaf, 0x82};
 | |
| 
 | |
| unsigned char rfc8032_signature2[64] = {
 | |
|     0x62, 0x91, 0xd6, 0x57, 0xde, 0xec, 0x24, 0x02, 0x48, 0x27, 0xe6, 0x9c, 0x3a, 0xbe, 0x01, 0xa3,
 | |
|     0x0c, 0xe5, 0x48, 0xa2, 0x84, 0x74, 0x3a, 0x44, 0x5e, 0x36, 0x80, 0xd7, 0xdb, 0x5a, 0xc3, 0xac,
 | |
|     0x18, 0xff, 0x9b, 0x53, 0x8d, 0x16, 0xf2, 0x90, 0xae, 0x67, 0xf7, 0x60, 0x98, 0x4d, 0xc6, 0x59,
 | |
|     0x4a, 0x7c, 0x15, 0xe9, 0x71, 0x6e, 0xd2, 0x8d, 0xc0, 0x27, 0xbe, 0xce, 0xea, 0x1e, 0xc4, 0x0a,
 | |
| };
 | |
| 
 | |
| bool test_ed25519_crypto() {
 | |
|   std::cout << "************** Testing Curve25519 / Ed25519 cryptographic primitives ************\n";
 | |
|   crypto::Ed25519::PrivateKey PK1, PK2, PK3, PK4, PK5;
 | |
|   PK1.random_private_key();
 | |
|   PK2.import_private_key(fixed_privkey);
 | |
|   unsigned char priv2_export[32];
 | |
|   bool ok = PK1.export_private_key(priv2_export);
 | |
|   std::cout << "PK1 = " << ok << " " << buffer_to_hex(priv2_export) << std::endl;
 | |
|   my_assert(ok);
 | |
|   ok = PK2.export_private_key(priv2_export);
 | |
|   std::cout << "PK2 = " << ok << " " << buffer_to_hex(priv2_export) << std::endl;
 | |
|   my_assert(ok);
 | |
|   PK3.import_private_key(priv2_export);
 | |
|   std::cout << "PK3 = " << PK3.ok() << std::endl;
 | |
|   my_assert(PK3.ok());
 | |
| 
 | |
|   unsigned char pub_export[32];
 | |
|   ok = PK1.export_public_key(pub_export);
 | |
|   std::cout << "PubK1 = " << ok << " " << buffer_to_hex(pub_export) << std::endl;
 | |
|   my_assert(ok);
 | |
|   crypto::Ed25519::PublicKey PubK1(pub_export);
 | |
|   ok = PK2.export_public_key(pub_export);
 | |
|   std::cout << "PubK2 = " << ok << " " << buffer_to_hex(pub_export) << std::endl;
 | |
|   my_assert(ok);
 | |
|   my_assert(!std::memcmp(pub_export, fixed_pubkey, 32));
 | |
|   crypto::Ed25519::PublicKey PubK2(pub_export);
 | |
|   ok = PK3.export_public_key(pub_export);
 | |
|   std::cout << "PubK3 = " << ok << " " << buffer_to_hex(pub_export) << std::endl;
 | |
|   my_assert(ok);
 | |
|   my_assert(!std::memcmp(pub_export, fixed_pubkey, 32));
 | |
|   crypto::Ed25519::PublicKey PubK3(pub_export);
 | |
|   ok = PubK1.export_public_key(pub_export);
 | |
|   std::cout << "PubK1 = " << ok << " " << buffer_to_hex(pub_export) << std::endl;
 | |
|   my_assert(ok);
 | |
| 
 | |
|   unsigned char secret22[32];
 | |
|   ok = PK2.compute_shared_secret(secret22, PubK3);
 | |
|   std::cout << "secret(PK2,PubK2)=" << ok << " " << buffer_to_hex(secret22) << std::endl;
 | |
|   my_assert(ok);
 | |
| 
 | |
|   unsigned char secret12[32], secret21[32];
 | |
|   ok = PK1.compute_shared_secret(secret12, PubK3);
 | |
|   std::cout << "secret(PK1,PubK2)=" << ok << " " << buffer_to_hex(secret12) << std::endl;
 | |
|   my_assert(ok);
 | |
|   ok = PK2.compute_shared_secret(secret21, PubK1);
 | |
|   std::cout << "secret(PK2,PubK1)=" << ok << " " << buffer_to_hex(secret21) << std::endl;
 | |
|   my_assert(ok);
 | |
|   my_assert(!std::memcmp(secret12, secret21, 32));
 | |
| 
 | |
|   //  for (int i = 0; i < 1000; i++) {
 | |
|   //    ok = PK1.compute_shared_secret(secret12, PubK3);
 | |
|   //    my_assert(ok);
 | |
|   //    ok = PK2.compute_shared_secret(secret21, PubK1);
 | |
|   //    my_assert(ok);
 | |
|   //  }
 | |
| 
 | |
|   unsigned char signature[64];
 | |
|   ok = PK1.sign_message(signature, (const unsigned char*)"abc", 3);
 | |
|   std::cout << "PK1.signature=" << ok << " " << buffer_to_hex(signature, 64) << std::endl;
 | |
|   my_assert(ok);
 | |
| 
 | |
|   // signature[63] ^= 1;
 | |
|   ok = PubK1.check_message_signature(signature, (const unsigned char*)"abc", 3);
 | |
|   std::cout << "PubK1.check_signature=" << ok << std::endl;
 | |
|   my_assert(ok);
 | |
| 
 | |
|   PK4.import_private_key(rfc8032_secret_key1);
 | |
|   PK4.export_public_key(pub_export);
 | |
|   std::cout << "PK4.private_key = " << buffer_to_hex(rfc8032_secret_key1) << std::endl;
 | |
|   std::cout << "PK4.public_key = " << buffer_to_hex(pub_export) << std::endl;
 | |
|   my_assert(!std::memcmp(pub_export, rfc8032_public_key1, 32));
 | |
|   ok = PK4.sign_message(signature, (const unsigned char*)"", 0);
 | |
|   std::cout << "PK4.signature('') = " << buffer_to_hex(signature, 64) << std::endl;
 | |
|   my_assert(ok);
 | |
|   my_assert(!std::memcmp(signature, rfc8032_signature1, 32));
 | |
| 
 | |
|   PK5.import_private_key(rfc8032_secret_key2);
 | |
|   PK5.export_public_key(pub_export);
 | |
|   std::cout << "PK5.private_key = " << buffer_to_hex(rfc8032_secret_key2) << std::endl;
 | |
|   std::cout << "PK5.public_key = " << buffer_to_hex(pub_export) << std::endl;
 | |
|   my_assert(!std::memcmp(pub_export, rfc8032_public_key2, 32));
 | |
|   ok = PK5.sign_message(signature, rfc8032_message2, 2);
 | |
|   std::cout << "PK5.signature('') = " << buffer_to_hex(signature, 64) << std::endl;
 | |
|   my_assert(ok);
 | |
|   my_assert(!std::memcmp(signature, rfc8032_signature2, 32));
 | |
|   crypto::Ed25519::PublicKey PubK5(pub_export);
 | |
| 
 | |
|   //  for (int i = 0; i < 10000; i++) {
 | |
|   //    ok = PK5.sign_message (signature, rfc8032_message2, 2);
 | |
|   //    my_assert (ok);
 | |
|   //  }
 | |
|   //  for (int i = 0; i < 10000; i++) {
 | |
|   //    ok = PubK5.check_message_signature (signature, rfc8032_message2, 2);
 | |
|   //    my_assert (ok);
 | |
|   //  }
 | |
| 
 | |
|   unsigned char temp_pubkey[32];
 | |
|   crypto::Ed25519::TempKeyGenerator TKG;  // use one generator a lot of times
 | |
| 
 | |
|   TKG.create_temp_shared_secret(temp_pubkey, secret12, PubK1, (const unsigned char*)"abc", 3);
 | |
|   std::cout << "secret12=" << buffer_to_hex(secret12) << "; temp_pubkey=" << buffer_to_hex(temp_pubkey) << std::endl;
 | |
| 
 | |
|   PK1.compute_temp_shared_secret(secret21, temp_pubkey);
 | |
|   std::cout << "secret21=" << buffer_to_hex(secret21) << std::endl;
 | |
|   my_assert(!std::memcmp(secret12, secret21, 32));
 | |
| 
 | |
|   std::cout << "********* ok\n\n";
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int main(void) {
 | |
|   test_ed25519_impl();
 | |
|   test_ed25519_crypto();
 | |
|   return 0;
 | |
| }
 |