mirror of
https://github.com/ton-blockchain/ton
synced 2025-02-12 19:22:37 +00:00
261 lines
6.9 KiB
C++
261 lines
6.9 KiB
C++
/*
|
|
This file is part of TON Blockchain Library.
|
|
|
|
TON Blockchain Library is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
TON Blockchain Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Copyright 2017-2020 Telegram Systems LLP
|
|
*/
|
|
#include "bigexp.h"
|
|
#include "td/utils/bits.h"
|
|
#include "td/utils/as.h"
|
|
#include "td/utils/misc.h"
|
|
|
|
namespace td {
|
|
|
|
bool NegExpBinTable::init() {
|
|
init_one();
|
|
int k;
|
|
for (k = minpw2; k <= 0; k++) {
|
|
exp_pw2_table.emplace_back(series_exp(-k));
|
|
exp_pw2_ref_table.emplace_back(true, exp_pw2_table.back());
|
|
}
|
|
for (; k < maxpw2; k++) {
|
|
td::BigIntG<257 * 2> tmp{0};
|
|
auto& x = exp_pw2_table.back();
|
|
tmp.add_mul(x, x).rshift(precision, 0).normalize();
|
|
exp_pw2_table.emplace_back(tmp);
|
|
exp_pw2_ref_table.emplace_back(true, exp_pw2_table.back());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NegExpBinTable::adjust_precision(int new_precision, int rmode) {
|
|
if (new_precision <= 0 || new_precision > precision) {
|
|
return false;
|
|
}
|
|
if (new_precision == precision) {
|
|
return true;
|
|
}
|
|
int s = precision - new_precision;
|
|
for (auto& x : exp_pw2_table) {
|
|
x.rshift(s, rmode).normalize();
|
|
}
|
|
for (auto& x : exp_pw2_ref_table) {
|
|
x.write().rshift(s, rmode).normalize();
|
|
}
|
|
precision = new_precision;
|
|
return init_one();
|
|
}
|
|
|
|
bool NegExpBinTable::init_one() {
|
|
One.set_pow2(precision);
|
|
return true;
|
|
}
|
|
|
|
bool NegExpBinTable::nexpf(td::BigInt256& res, long long x, int k) const { // res := 2^precision * exp(-x * 2^k)
|
|
if (!x) {
|
|
res.set_pow2(precision);
|
|
return true;
|
|
}
|
|
if (x < 0) {
|
|
return false;
|
|
}
|
|
int s = td::count_trailing_zeroes64(x);
|
|
x >>= s;
|
|
k -= s;
|
|
if (k + minpw2 > 0) {
|
|
return false;
|
|
}
|
|
int t = 63 - td::count_leading_zeroes64(x);
|
|
if (t - k >= maxpw2) {
|
|
return false;
|
|
}
|
|
res.set_pow2(precision);
|
|
while (true) {
|
|
td::BigIntG<257 * 2> tmp{0};
|
|
tmp.add_mul(res, exp_pw2_table.at(t - k - minpw2)).rshift(precision, 0).normalize();
|
|
res = tmp;
|
|
x -= (1LL << t);
|
|
if (!x) {
|
|
return true;
|
|
}
|
|
t = 63 - td::count_leading_zeroes64(x);
|
|
}
|
|
}
|
|
|
|
td::RefInt256 NegExpBinTable::nexpf(long long x, int k) const {
|
|
td::RefInt256 res{true};
|
|
if (nexpf(res.unique_write(), x, k)) {
|
|
return res;
|
|
} else {
|
|
return {};
|
|
}
|
|
}
|
|
|
|
td::BigInt256 NegExpBinTable::series_exp(int k) const { // returns 2^precision * exp(-2^(-k)), k >= 0
|
|
td::BigIntG<257 * 2> s{0}, q;
|
|
const int prec = 52 * 6;
|
|
q.set_pow2(prec);
|
|
int i = 0;
|
|
do {
|
|
s += q;
|
|
--i;
|
|
q.rshift(k).add_tiny(i / 2).divmod_short(i);
|
|
q.normalize();
|
|
} while (q.sgn());
|
|
s.rshift(prec - precision).normalize();
|
|
return s;
|
|
}
|
|
|
|
NegExpInt64Table::NegExpInt64Table() {
|
|
NegExpBinTable t{252, 8, -32};
|
|
CHECK(t.is_valid());
|
|
table0[0] = 0;
|
|
table0_shift[0] = 0;
|
|
for (int i = 1; i <= max_exp; i++) {
|
|
SuperFloat v(*t.nexpf(i, 0)); // compute exp(-i)
|
|
CHECK(!v.is_nan());
|
|
if (v.is_zero()) {
|
|
table0[i] = 0;
|
|
table0_shift[i] = 0;
|
|
} else {
|
|
CHECK(v.normalize());
|
|
int k = v.s + 64 - 252;
|
|
CHECK(k <= -64);
|
|
if (k > -128) {
|
|
table0[i] = v.top();
|
|
table0_shift[i] = td::narrow_cast<unsigned char>(-k - 1);
|
|
} else {
|
|
table0[i] = 0;
|
|
table0_shift[i] = 0;
|
|
}
|
|
}
|
|
// std::cerr << "table0[" << i << "] = exp(-" << i << ") : " << table0[i] << " / 2^" << table0_shift[i] + 1 << std::endl;
|
|
}
|
|
td::BigInt256 One;
|
|
One.set_pow2(252);
|
|
for (int i = 0; i < 256; i++) {
|
|
td::BigInt256 x;
|
|
CHECK(t.nexpf(x, i, 8));
|
|
(x.negate() += One).rshift(252 - 64, 0).normalize();
|
|
table1[i] = SuperFloat::as_uint64(x);
|
|
// std::cerr << "table1[" << i << "] = 1 - exp(-" << i << "/256) : " << table1[i] << " / 2^64" << std::endl;
|
|
}
|
|
for (int i = 0; i < 256; i++) {
|
|
td::BigInt256 x;
|
|
CHECK(t.nexpf(x, i, 16));
|
|
(x.negate() += One).rshift(252 - 64 - 8, 0).normalize();
|
|
table2[i] = SuperFloat::as_uint64(x);
|
|
// std::cerr << "table2[" << i << "] = 1 - exp(-" << i << "/2^16) : " << table2[i] << " / 2^72" << std::endl;
|
|
}
|
|
}
|
|
|
|
td::uint64 NegExpInt64Table::umulnexps32(td::uint64 x, unsigned k, bool trunc) const { // compute x * exp(-k / 2^16)
|
|
if (!k || !x) {
|
|
return x;
|
|
}
|
|
unsigned k0 = (k >> 16);
|
|
if (k0 > max_exp) {
|
|
return 0;
|
|
}
|
|
unsigned s = td::count_leading_zeroes_non_zero64(x);
|
|
x <<= s;
|
|
unsigned k1 = (k >> 8) & 0xff;
|
|
unsigned k2 = k & 0xff;
|
|
if (k2) {
|
|
x -= ((td::uint128::from_unsigned(x).mult(table2[k2]).rounded_hi() + 0x80) >> 8);
|
|
}
|
|
if (k1) {
|
|
x -= td::uint128::from_unsigned(x).mult(table1[k1]).rounded_hi();
|
|
}
|
|
if (k0) {
|
|
if (trunc) {
|
|
return td::uint128::from_unsigned(x).mult(table0[k0]).shr(table0_shift[k0] + s + 1).lo();
|
|
} else {
|
|
return (td::uint128::from_unsigned(x).mult(table0[k0]).shr(table0_shift[k0] + s).lo() + 1) >> 1;
|
|
}
|
|
}
|
|
if (!s) {
|
|
return x;
|
|
} else if (trunc) {
|
|
return x >> s;
|
|
} else {
|
|
return ((x >> (s - 1)) + 1) >> 1;
|
|
}
|
|
}
|
|
|
|
td::int64 NegExpInt64Table::mulnexps32(td::int64 x, unsigned k, bool trunc) const {
|
|
return x >= 0 ? umulnexps32(x, k, trunc) : -umulnexps32(-x, k, trunc);
|
|
}
|
|
|
|
const NegExpInt64Table& NegExpInt64Table::table() {
|
|
static NegExpInt64Table tab;
|
|
return tab;
|
|
}
|
|
|
|
td::uint64 umulnexps32(td::uint64 x, unsigned k, bool trunc) { // compute x * exp(-k / 2^16)
|
|
return NegExpInt64Table::table().umulnexps32(x, k, trunc);
|
|
}
|
|
|
|
td::int64 mulnexps32(td::int64 x, unsigned k, bool trunc) {
|
|
return NegExpInt64Table::table().mulnexps32(x, k, trunc);
|
|
}
|
|
|
|
td::uint128 SuperFloat::as_uint128(const td::BigInt256& x) {
|
|
td::uint64 t[2];
|
|
if (!x.export_bytes_lsb((unsigned char*)(void*)t, sizeof(t), false)) {
|
|
return {std::numeric_limits<uint64>::max(), 0};
|
|
} else {
|
|
return {t[1], t[0]};
|
|
}
|
|
}
|
|
|
|
td::uint64 SuperFloat::as_uint64(const td::BigInt256& x) {
|
|
td::uint64 t;
|
|
if (!x.export_bytes_lsb((unsigned char*)&t, sizeof(t), false)) {
|
|
return std::numeric_limits<uint64>::max();
|
|
} else {
|
|
return t;
|
|
}
|
|
}
|
|
|
|
SuperFloat::SuperFloat(td::BigInt256 x) {
|
|
if (x.unsigned_fits_bits(128)) {
|
|
m = as_uint128(x);
|
|
s = 0;
|
|
} else if (x.sgn() == 1) {
|
|
s = x.bit_size(false) - 128;
|
|
x.rshift(s, 0).normalize();
|
|
m = as_uint128(x);
|
|
} else {
|
|
set_nan();
|
|
}
|
|
}
|
|
|
|
bool SuperFloat::normalize() {
|
|
if (is_nan()) {
|
|
return false;
|
|
}
|
|
if (is_zero()) {
|
|
s = 0;
|
|
return true;
|
|
}
|
|
auto hi = m.hi();
|
|
int t = (hi ? td::count_leading_zeroes_non_zero64(hi) : 64 + td::count_leading_zeroes_non_zero64(m.lo()));
|
|
m.shl(t);
|
|
s -= t;
|
|
return true;
|
|
}
|
|
|
|
} // namespace td
|