mirror of
				https://github.com/ton-blockchain/ton
				synced 2025-03-09 15:40:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			261 lines
		
	
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			261 lines
		
	
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|     This file is part of TON Blockchain Library.
 | |
| 
 | |
|     TON Blockchain Library is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU Lesser General Public License as published by
 | |
|     the Free Software Foundation, either version 2 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     TON Blockchain Library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public License
 | |
|     along with TON Blockchain Library.  If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
|     Copyright 2017-2020 Telegram Systems LLP
 | |
| */
 | |
| #include "bigexp.h"
 | |
| #include "td/utils/bits.h"
 | |
| #include "td/utils/as.h"
 | |
| #include "td/utils/misc.h"
 | |
| 
 | |
| namespace td {
 | |
| 
 | |
| bool NegExpBinTable::init() {
 | |
|   init_one();
 | |
|   int k;
 | |
|   for (k = minpw2; k <= 0; k++) {
 | |
|     exp_pw2_table.emplace_back(series_exp(-k));
 | |
|     exp_pw2_ref_table.emplace_back(true, exp_pw2_table.back());
 | |
|   }
 | |
|   for (; k < maxpw2; k++) {
 | |
|     td::BigIntG<257 * 2> tmp{0};
 | |
|     auto& x = exp_pw2_table.back();
 | |
|     tmp.add_mul(x, x).rshift(precision, 0).normalize();
 | |
|     exp_pw2_table.emplace_back(tmp);
 | |
|     exp_pw2_ref_table.emplace_back(true, exp_pw2_table.back());
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool NegExpBinTable::adjust_precision(int new_precision, int rmode) {
 | |
|   if (new_precision <= 0 || new_precision > precision) {
 | |
|     return false;
 | |
|   }
 | |
|   if (new_precision == precision) {
 | |
|     return true;
 | |
|   }
 | |
|   int s = precision - new_precision;
 | |
|   for (auto& x : exp_pw2_table) {
 | |
|     x.rshift(s, rmode).normalize();
 | |
|   }
 | |
|   for (auto& x : exp_pw2_ref_table) {
 | |
|     x.write().rshift(s, rmode).normalize();
 | |
|   }
 | |
|   precision = new_precision;
 | |
|   return init_one();
 | |
| }
 | |
| 
 | |
| bool NegExpBinTable::init_one() {
 | |
|   One.set_pow2(precision);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool NegExpBinTable::nexpf(td::BigInt256& res, long long x, int k) const {  // res := 2^precision * exp(-x * 2^k)
 | |
|   if (!x) {
 | |
|     res.set_pow2(precision);
 | |
|     return true;
 | |
|   }
 | |
|   if (x < 0) {
 | |
|     return false;
 | |
|   }
 | |
|   int s = td::count_trailing_zeroes64(x);
 | |
|   x >>= s;
 | |
|   k -= s;
 | |
|   if (k + minpw2 > 0) {
 | |
|     return false;
 | |
|   }
 | |
|   int t = 63 - td::count_leading_zeroes64(x);
 | |
|   if (t - k >= maxpw2) {
 | |
|     return false;
 | |
|   }
 | |
|   res.set_pow2(precision);
 | |
|   while (true) {
 | |
|     td::BigIntG<257 * 2> tmp{0};
 | |
|     tmp.add_mul(res, exp_pw2_table.at(t - k - minpw2)).rshift(precision, 0).normalize();
 | |
|     res = tmp;
 | |
|     x -= (1LL << t);
 | |
|     if (!x) {
 | |
|       return true;
 | |
|     }
 | |
|     t = 63 - td::count_leading_zeroes64(x);
 | |
|   }
 | |
| }
 | |
| 
 | |
| td::RefInt256 NegExpBinTable::nexpf(long long x, int k) const {
 | |
|   td::RefInt256 res{true};
 | |
|   if (nexpf(res.unique_write(), x, k)) {
 | |
|     return res;
 | |
|   } else {
 | |
|     return {};
 | |
|   }
 | |
| }
 | |
| 
 | |
| td::BigInt256 NegExpBinTable::series_exp(int k) const {  // returns 2^precision * exp(-2^(-k)), k >= 0
 | |
|   td::BigIntG<257 * 2> s{0}, q;
 | |
|   const int prec = 52 * 6;
 | |
|   q.set_pow2(prec);
 | |
|   int i = 0;
 | |
|   do {
 | |
|     s += q;
 | |
|     --i;
 | |
|     q.rshift(k).add_tiny(i / 2).divmod_short(i);
 | |
|     q.normalize();
 | |
|   } while (q.sgn());
 | |
|   s.rshift(prec - precision).normalize();
 | |
|   return s;
 | |
| }
 | |
| 
 | |
| NegExpInt64Table::NegExpInt64Table() {
 | |
|   NegExpBinTable t{252, 8, -32};
 | |
|   CHECK(t.is_valid());
 | |
|   table0[0] = 0;
 | |
|   table0_shift[0] = 0;
 | |
|   for (int i = 1; i <= max_exp; i++) {
 | |
|     SuperFloat v(*t.nexpf(i, 0));  // compute exp(-i)
 | |
|     CHECK(!v.is_nan());
 | |
|     if (v.is_zero()) {
 | |
|       table0[i] = 0;
 | |
|       table0_shift[i] = 0;
 | |
|     } else {
 | |
|       CHECK(v.normalize());
 | |
|       int k = v.s + 64 - 252;
 | |
|       CHECK(k <= -64);
 | |
|       if (k > -128) {
 | |
|         table0[i] = v.top();
 | |
|         table0_shift[i] = td::narrow_cast<unsigned char>(-k - 1);
 | |
|       } else {
 | |
|         table0[i] = 0;
 | |
|         table0_shift[i] = 0;
 | |
|       }
 | |
|     }
 | |
|     // std::cerr << "table0[" << i << "] = exp(-" << i << ") : " << table0[i] << " / 2^" << table0_shift[i] + 1 << std::endl;
 | |
|   }
 | |
|   td::BigInt256 One;
 | |
|   One.set_pow2(252);
 | |
|   for (int i = 0; i < 256; i++) {
 | |
|     td::BigInt256 x;
 | |
|     CHECK(t.nexpf(x, i, 8));
 | |
|     (x.negate() += One).rshift(252 - 64, 0).normalize();
 | |
|     table1[i] = SuperFloat::as_uint64(x);
 | |
|     // std::cerr << "table1[" << i << "] = 1 - exp(-" << i << "/256) : " << table1[i] << " / 2^64" << std::endl;
 | |
|   }
 | |
|   for (int i = 0; i < 256; i++) {
 | |
|     td::BigInt256 x;
 | |
|     CHECK(t.nexpf(x, i, 16));
 | |
|     (x.negate() += One).rshift(252 - 64 - 8, 0).normalize();
 | |
|     table2[i] = SuperFloat::as_uint64(x);
 | |
|     // std::cerr << "table2[" << i << "] = 1 - exp(-" << i << "/2^16) : " << table2[i] << " / 2^72" << std::endl;
 | |
|   }
 | |
| }
 | |
| 
 | |
| td::uint64 NegExpInt64Table::umulnexps32(td::uint64 x, unsigned k, bool trunc) const {  // compute x * exp(-k / 2^16)
 | |
|   if (!k || !x) {
 | |
|     return x;
 | |
|   }
 | |
|   unsigned k0 = (k >> 16);
 | |
|   if (k0 > max_exp) {
 | |
|     return 0;
 | |
|   }
 | |
|   unsigned s = td::count_leading_zeroes_non_zero64(x);
 | |
|   x <<= s;
 | |
|   unsigned k1 = (k >> 8) & 0xff;
 | |
|   unsigned k2 = k & 0xff;
 | |
|   if (k2) {
 | |
|     x -= ((td::uint128::from_unsigned(x).mult(table2[k2]).rounded_hi() + 0x80) >> 8);
 | |
|   }
 | |
|   if (k1) {
 | |
|     x -= td::uint128::from_unsigned(x).mult(table1[k1]).rounded_hi();
 | |
|   }
 | |
|   if (k0) {
 | |
|     if (trunc) {
 | |
|       return td::uint128::from_unsigned(x).mult(table0[k0]).shr(table0_shift[k0] + s + 1).lo();
 | |
|     } else {
 | |
|       return (td::uint128::from_unsigned(x).mult(table0[k0]).shr(table0_shift[k0] + s).lo() + 1) >> 1;
 | |
|     }
 | |
|   }
 | |
|   if (!s) {
 | |
|     return x;
 | |
|   } else if (trunc) {
 | |
|     return x >> s;
 | |
|   } else {
 | |
|     return ((x >> (s - 1)) + 1) >> 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| td::int64 NegExpInt64Table::mulnexps32(td::int64 x, unsigned k, bool trunc) const {
 | |
|   return x >= 0 ? umulnexps32(x, k, trunc) : -umulnexps32(-x, k, trunc);
 | |
| }
 | |
| 
 | |
| const NegExpInt64Table& NegExpInt64Table::table() {
 | |
|   static NegExpInt64Table tab;
 | |
|   return tab;
 | |
| }
 | |
| 
 | |
| td::uint64 umulnexps32(td::uint64 x, unsigned k, bool trunc) {  // compute x * exp(-k / 2^16)
 | |
|   return NegExpInt64Table::table().umulnexps32(x, k, trunc);
 | |
| }
 | |
| 
 | |
| td::int64 mulnexps32(td::int64 x, unsigned k, bool trunc) {
 | |
|   return NegExpInt64Table::table().mulnexps32(x, k, trunc);
 | |
| }
 | |
| 
 | |
| td::uint128 SuperFloat::as_uint128(const td::BigInt256& x) {
 | |
|   td::uint64 t[2];
 | |
|   if (!x.export_bytes_lsb((unsigned char*)(void*)t, sizeof(t), false)) {
 | |
|     return {std::numeric_limits<uint64>::max(), 0};
 | |
|   } else {
 | |
|     return {t[1], t[0]};
 | |
|   }
 | |
| }
 | |
| 
 | |
| td::uint64 SuperFloat::as_uint64(const td::BigInt256& x) {
 | |
|   td::uint64 t;
 | |
|   if (!x.export_bytes_lsb((unsigned char*)&t, sizeof(t), false)) {
 | |
|     return std::numeric_limits<uint64>::max();
 | |
|   } else {
 | |
|     return t;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SuperFloat::SuperFloat(td::BigInt256 x) {
 | |
|   if (x.unsigned_fits_bits(128)) {
 | |
|     m = as_uint128(x);
 | |
|     s = 0;
 | |
|   } else if (x.sgn() == 1) {
 | |
|     s = x.bit_size(false) - 128;
 | |
|     x.rshift(s, 0).normalize();
 | |
|     m = as_uint128(x);
 | |
|   } else {
 | |
|     set_nan();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SuperFloat::normalize() {
 | |
|   if (is_nan()) {
 | |
|     return false;
 | |
|   }
 | |
|   if (is_zero()) {
 | |
|     s = 0;
 | |
|     return true;
 | |
|   }
 | |
|   auto hi = m.hi();
 | |
|   int t = (hi ? td::count_leading_zeroes_non_zero64(hi) : 64 + td::count_leading_zeroes_non_zero64(m.lo()));
 | |
|   m.shl(t);
 | |
|   s -= t;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace td
 |