1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-02-12 19:22:37 +00:00
ton/rldp2/LossSender.cpp
2020-07-06 17:07:20 +03:00

154 lines
3.4 KiB
C++

/*
This file is part of TON Blockchain Library.
TON Blockchain Library is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
TON Blockchain Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with TON Blockchain Library. If not, see <http://www.gnu.org/licenses/>.
Copyright 2017-2020 Telegram Systems LLP
*/
#include "LossSender.h"
#include "td/utils/logging.h"
#if TON_HAVE_GSL
#include <gsl/gsl_cdf.h>
#endif
#include <cmath>
namespace ton {
namespace rldp2 {
namespace {
// works for 1e-x, where x in {1..10}
double ndtri_fast(double p) {
if (p < 2e-10) {
return 6.361340902404;
}
if (p < 2e-9) {
return 5.997807015008;
}
if (p < 2e-8) {
return 5.612001244175;
}
if (p < 2e-7) {
return 5.199337582193;
}
if (p < 2e-6) {
return 4.753424308823;
}
if (p < 2e-5) {
return 4.264890793923;
}
if (p < 2e-4) {
return 3.719016485456;
}
if (p < 2e-3) {
return 3.090232306168;
}
if (p < 2e-2) {
return 2.326347874041;
}
return 1.281551565545;
}
} // namespace
LossSender::LossSender(double loss, double p) : loss_(loss), p_(p) {
v_.resize(2);
v_[0] = 1;
res_.push_back(0);
S_ = ndtri_fast(p_);
sigma_ = p * (1 - p);
//LOG(ERROR) << S_ << " " << ndtri(1 - p_);
//CHECK(fabs(S_ - ndtri(1 - p_)) < 1e-6);
}
int LossSender::send_n(int n) {
if (n < 50) {
return send_n_exact(n);
}
return send_n_approx_nbd(n);
}
int LossSender::send_n_exact(int n) {
while ((int)res_.size() <= n) {
step();
}
return res_[n];
}
int LossSender::send_n_approx_norm(int n) {
double a = (1 - loss_) * (1 - loss_);
double b = loss_ * (loss_ - 1) * (2 * n + S_ * S_);
double c = loss_ * loss_ * n * n + S_ * S_ * n * loss_ * (loss_ - 1);
double x = ((-b + sqrt(b * b - 4 * a * c)) / (2 * a));
return (int)(x + n + 1);
}
int LossSender::send_n_approx_nbd(int n) {
#if TON_HAVE_GSL
auto mean = n * loss_ / (1 - loss_);
auto var = sqrt(mean / (1 - loss_));
auto min_k = static_cast<int>(mean + var);
auto max_k = min_k + static_cast<int>(var + 1) * 15;
while (min_k + 1 < max_k) {
int k = (min_k + max_k) / 2;
if (gsl_cdf_negative_binomial_P(k, 1 - loss_, n) > 1 - p_) {
max_k = k;
} else {
min_k = k;
}
}
return max_k + n;
#endif
return send_n_approx_norm(n);
}
int LossSender::send_n_approx_pd(int n) {
#if TON_HAVE_GSL
for (int k = 0;; k++) {
if (gsl_cdf_poisson_P(k, (n + k) * loss_) > 1 - p_) {
return k + n;
}
}
#endif
return send_n_approx_norm(n);
}
bool LossSender::has_good_approx() {
#if TON_HAVE_GSL
return true;
#else
return false;
#endif
}
void LossSender::step() {
n_++;
v_.push_back(0);
v_[n_] = v_[n_ - 1];
for (int j = n_; j >= 0; j--) {
v_[j + 1] += v_[j] * loss_;
v_[j] *= (1 - loss_);
}
while (res_i_ < n_ && v_[res_i_] < 1 - p_) {
res_i_++;
}
auto left_ = n_ - res_i_;
if ((int)res_.size() == left_) {
res_.push_back(n_);
}
}
} // namespace rldp2
} // namespace ton