1
0
Fork 0
mirror of https://github.com/ton-blockchain/ton synced 2025-02-12 19:22:37 +00:00
ton/utils/opcode-timing.cpp
Evan Sultanik 77204a549a
Adds a script for testing opcode timing and gas costs (#537)
* Adds a utility to test opcode timing and gas costs

* Remove unnecessary dependencies

* Adds a missing error code parameter
2022-11-30 08:41:12 +03:00

171 lines
5.5 KiB
C++

#include <ctime>
#include <iomanip>
#include "vm/vm.h"
#include "vm/cp0.h"
#include "vm/dict.h"
#include "fift/utils.h"
#include "common/bigint.hpp"
#include "td/utils/base64.h"
#include "td/utils/tests.h"
#include "td/utils/ScopeGuard.h"
#include "td/utils/StringBuilder.h"
td::Ref<vm::Cell> to_cell(const unsigned char *buff, int bits) {
return vm::CellBuilder().store_bits(buff, bits, 0).finalize();
}
long double timingBaseline;
typedef struct {
long double mean;
long double stddev;
} stats;
struct runInfo {
long double runtime;
long long gasUsage;
int vmReturnCode;
runInfo() : runtime(0.0), gasUsage(0), vmReturnCode(0) {}
runInfo(long double runtime, long long gasUsage, int vmReturnCode) :
runtime(runtime), gasUsage(gasUsage), vmReturnCode(vmReturnCode) {}
runInfo operator+(const runInfo& addend) const {
return {runtime + addend.runtime, gasUsage + addend.gasUsage, vmReturnCode ? vmReturnCode : addend.vmReturnCode};
}
runInfo& operator+=(const runInfo& addend) {
runtime += addend.runtime;
gasUsage += addend.gasUsage;
if(!vmReturnCode && addend.vmReturnCode) {
vmReturnCode = addend.vmReturnCode;
}
return *this;
}
bool errored() const {
return vmReturnCode != 0;
}
};
typedef struct {
stats runtime;
stats gasUsage;
bool errored;
} runtimeStats;
runInfo time_run_vm(td::Slice command) {
unsigned char buff[128];
const int bits = (int)td::bitstring::parse_bitstring_hex_literal(buff, sizeof(buff), command.begin(), command.end());
CHECK(bits >= 0);
const auto cell = to_cell(buff, bits);
vm::init_op_cp0();
vm::DictionaryBase::get_empty_dictionary();
class Logger : public td::LogInterface {
public:
void append(td::CSlice slice) override {
res.append(slice.data(), slice.size());
}
std::string res;
};
static Logger logger;
logger.res = "";
td::set_log_fatal_error_callback([](td::CSlice message) { td::default_log_interface->append(logger.res); });
vm::VmLog log{&logger, td::LogOptions::plain()};
log.log_options.level = 4;
log.log_options.fix_newlines = true;
log.log_mask |= vm::VmLog::DumpStack;
vm::Stack stack;
try {
vm::GasLimits gas_limit(10000, 10000);
std::clock_t cStart = std::clock();
int ret = vm::run_vm_code(vm::load_cell_slice_ref(cell), stack, 0 /*flags*/, nullptr /*data*/,
std::move(log) /*VmLog*/, nullptr, &gas_limit);
std::clock_t cEnd = std::clock();
const auto time = (1000.0 * static_cast<long double>(cEnd - cStart) / CLOCKS_PER_SEC) - timingBaseline;
return {time >= 0 ? time : 0, gas_limit.gas_consumed(), ret};
} catch (...) {
LOG(FATAL) << "catch unhandled exception";
return {-1, -1, 1};
}
}
runtimeStats averageRuntime(td::Slice command) {
const size_t samples = 5000;
runInfo total;
std::vector<runInfo> values;
values.reserve(samples);
for(size_t i=0; i<samples; ++i) {
const auto value = time_run_vm(command);
values.push_back(value);
total += value;
}
const auto runtimeMean = total.runtime / static_cast<long double>(samples);
const auto gasMean = static_cast<long double>(total.gasUsage) / static_cast<long double>(samples);
long double runtimeDiffSum = 0.0;
long double gasDiffSum = 0.0;
bool errored = false;
for(const auto value : values) {
const auto runtime = value.runtime - runtimeMean;
const auto gasUsage = static_cast<long double>(value.gasUsage) - gasMean;
runtimeDiffSum += runtime * runtime;
gasDiffSum += gasUsage * gasUsage;
errored = errored || value.errored();
}
return {
{runtimeMean, sqrt(runtimeDiffSum / static_cast<long double>(samples))},
{gasMean, sqrt(gasDiffSum / static_cast<long double>(samples))},
errored
};
}
runtimeStats timeInstruction(const std::string& setupCode, const std::string& toMeasure) {
const auto setupCodeTime = averageRuntime(setupCode);
const auto totalCodeTime = averageRuntime(setupCode + toMeasure);
return {
{totalCodeTime.runtime.mean - setupCodeTime.runtime.mean, totalCodeTime.runtime.stddev},
{totalCodeTime.gasUsage.mean - setupCodeTime.gasUsage.mean, totalCodeTime.gasUsage.stddev},
false
};
}
int main(int argc, char** argv) {
if(argc != 2 && argc != 3) {
std::cerr <<
"This utility compares the timing of VM execution against the gas used.\n"
"It can be used to discover opcodes or opcode sequences that consume an "
"inordinate amount of computational resources relative to their gas cost.\n"
"\n"
"The utility expects two command line arguments, each a hex string: \n"
"The TVM code used to set up the stack and VM state followed by the TVM code to measure.\n"
"For example, to test the DIVMODC opcode:\n"
"\t$ " << argv[0] << " 80FF801C A90E 2>/dev/null\n"
"\tOPCODE,runtime mean,runtime stddev,gas mean,gas stddev\n"
"\tA90E,0.0066416,0.00233496,26,0\n"
"\n"
"Usage: " << argv[0] <<
" [TVM_SETUP_BYTECODE_HEX] TVM_BYTECODE_HEX" << std::endl << std::endl;
return 1;
}
std::cout << "OPCODE,runtime mean,runtime stddev,gas mean,gas stddev" << std::endl;
timingBaseline = averageRuntime("").runtime.mean;
std::string setup, code;
if(argc == 2) {
setup = "";
code = argv[1];
} else {
setup = argv[1];
code = argv[2];
}
const auto time = timeInstruction(setup, code);
std::cout << code << "," << time.runtime.mean << "," << time.runtime.stddev << "," <<
time.gasUsage.mean << "," << time.gasUsage.stddev << std::endl;
return 0;
}