Refactor code to be more clean and modularized. Bump package version

This commit is contained in:
Lars Baunwall 2025-09-29 18:27:29 +02:00
parent ef1526c76a
commit 70a077ca51
No known key found for this signature in database
11 changed files with 701 additions and 251 deletions

View file

@ -4,7 +4,7 @@
"name": "copilot-bridge",
"displayName": "Copilot Bridge",
"description": "Local OpenAI-compatible chat endpoint (inference) bridging to GitHub Copilot via the VS Code Language Model API.",
"version": "0.2.2",
"version": "1.0.0",
"publisher": "thinkability",
"repository": {
"type": "git",

View file

@ -1,54 +1,20 @@
import * as vscode from 'vscode';
import type { IncomingMessage, ServerResponse } from 'http';
import { state } from '../../state';
import { getBridgeConfig } from '../../config';
import { isChatCompletionRequest, normalizeMessagesLM, convertOpenAIToolsToLM, convertFunctionsToTools } from '../../messages';
import { getModel, hasLMApi } from '../../models';
import { readJson, writeErrorResponse, writeJson } from '../utils';
import { isChatCompletionRequest, type ChatCompletionRequest } from '../../messages';
import { readJson, writeErrorResponse } from '../utils';
import { verbose } from '../../log';
import { ModelService } from '../../services/model-service';
import { StreamingResponseHandler } from '../../services/streaming-handler';
import { processLanguageModelResponse, sendCompletionResponse } from '../../services/response-formatter';
import type { ChatCompletionContext } from '../../types/openai-types';
// OpenAI response interfaces for better typing
interface OpenAIToolCall {
id: string;
type: 'function';
function: {
name: string;
arguments: string;
};
}
interface OpenAIMessage {
role: 'assistant';
content: string | null;
tool_calls?: OpenAIToolCall[];
function_call?: {
name: string;
arguments: string;
};
}
interface OpenAIChoice {
index: number;
message?: OpenAIMessage;
delta?: Partial<OpenAIMessage>;
finish_reason: 'stop' | 'length' | 'tool_calls' | 'content_filter' | 'function_call' | null;
}
interface OpenAIResponse {
id: string;
object: 'chat.completion' | 'chat.completion.chunk';
created: number;
model: string;
choices: OpenAIChoice[];
usage?: {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
};
}
export const handleChatCompletion = async (req: IncomingMessage, res: ServerResponse): Promise<void> => {
const config = getBridgeConfig();
/**
* Handles OpenAI-compatible chat completion requests with support for streaming and tool calling
* @param req - HTTP request object
* @param res - HTTP response object
*/
export async function handleChatCompletion(req: IncomingMessage, res: ServerResponse): Promise<void> {
state.activeRequests++;
verbose(`Request started (active=${state.activeRequests})`);
@ -58,202 +24,75 @@ export const handleChatCompletion = async (req: IncomingMessage, res: ServerResp
return writeErrorResponse(res, 400, 'invalid request', 'invalid_request_error', 'invalid_payload');
}
const requestedModel = body.model;
const stream = body.stream !== false; // default true
const modelService = new ModelService();
// Handle tools and deprecated functions
let tools = body.tools || [];
if (body.functions) {
// Convert deprecated functions to tools format
tools = [...tools, ...convertFunctionsToTools(body.functions)];
}
const model = await getModel(false, requestedModel);
if (!model) {
const hasLM = hasLMApi();
if (requestedModel && hasLM) {
state.lastReason = 'not_found';
return writeErrorResponse(res, 404, 'model not found', 'invalid_request_error', 'model_not_found', 'not_found');
}
const reason = !hasLM ? 'missing_language_model_api' : (state.lastReason || 'copilot_model_unavailable');
return writeErrorResponse(res, 503, 'Copilot unavailable', 'server_error', 'copilot_unavailable', reason);
// Validate model availability
const modelValidation = await modelService.validateModel(body.model);
if (!modelValidation.isValid) {
const errorMessage = body.model ? 'model not found' : 'Copilot unavailable';
return writeErrorResponse(
res,
modelValidation.statusCode!,
errorMessage,
modelValidation.errorType!,
modelValidation.errorCode!,
modelValidation.reason || 'unknown_error'
);
}
const lmMessages = normalizeMessagesLM(body.messages, config.historyWindow) as vscode.LanguageModelChatMessage[];
const lmTools = convertOpenAIToolsToLM(tools);
// Create processing context
const context = await modelService.createProcessingContext(body);
const chatContext = modelService.createChatCompletionContext(body, context.lmTools.length > 0);
// Prepare request options for Language Model API
const requestOptions: any = {};
if (lmTools.length > 0) {
requestOptions.tools = lmTools;
}
verbose(`LM request via API model=${model.family || model.id || model.name || 'unknown'} tools=${lmTools.length}`);
verbose(`LM request via API model=${context.model.family || context.model.id || context.model.name || 'unknown'} tools=${context.lmTools.length}`);
const cts = new vscode.CancellationTokenSource();
const response = await model.sendRequest(lmMessages, requestOptions, cts.token);
await sendResponse(res, response, stream, body, tools);
} catch (e) {
const msg = e instanceof Error ? e.message : String(e);
writeErrorResponse(res, 500, msg || 'internal_error', 'server_error', 'internal_error');
// Execute the Language Model request
const cancellationToken = new vscode.CancellationTokenSource();
const response = await context.model.sendRequest(
context.lmMessages,
context.requestOptions,
cancellationToken.token
);
// Handle response based on streaming preference
if (chatContext.isStreaming) {
await handleStreamingResponse(res, response, chatContext, body);
} else {
await handleNonStreamingResponse(res, response, chatContext, body);
}
} catch (error) {
const errorMessage = error instanceof Error ? error.message : String(error);
writeErrorResponse(res, 500, errorMessage || 'internal_error', 'server_error', 'internal_error');
} finally {
state.activeRequests--;
verbose(`Request complete (active=${state.activeRequests})`);
}
};
}
const sendResponse = async (
res: ServerResponse,
response: vscode.LanguageModelChatResponse,
stream: boolean,
requestBody?: any,
tools?: any[]
): Promise<void> => {
const modelName = requestBody?.model || 'copilot';
const responseId = `chatcmpl-${Math.random().toString(36).slice(2)}`;
const created = Math.floor(Date.now() / 1000);
/**
* Handles streaming response using Server-Sent Events
*/
async function handleStreamingResponse(
res: ServerResponse,
response: vscode.LanguageModelChatResponse,
chatContext: ChatCompletionContext,
requestBody: ChatCompletionRequest
): Promise<void> {
const streamHandler = new StreamingResponseHandler(res, chatContext, requestBody);
streamHandler.initializeStream();
await streamHandler.processAndStreamResponse(response);
}
if (stream) {
res.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
});
verbose(`SSE start id=${responseId}`);
let toolCalls: OpenAIToolCall[] = [];
for await (const part of response.stream) {
// Check if this part is a LanguageModelToolCallPart
if (part && typeof part === 'object' && 'callId' in part && 'name' in part && 'input' in part) {
const toolCallPart = part as vscode.LanguageModelToolCallPart;
const toolCall: OpenAIToolCall = {
id: toolCallPart.callId,
type: 'function',
function: {
name: toolCallPart.name,
arguments: JSON.stringify(toolCallPart.input)
}
};
toolCalls.push(toolCall);
// Send tool call in streaming format
const chunkResponse: OpenAIResponse = {
id: responseId,
object: 'chat.completion.chunk',
created,
model: modelName,
choices: [{
index: 0,
delta: {
tool_calls: [toolCall]
},
finish_reason: null
}]
};
res.write(`data: ${JSON.stringify(chunkResponse)}\n\n`);
} else if (typeof part === 'string' || (part && typeof part === 'object' && 'value' in part)) {
// Handle text content
const content = typeof part === 'string' ? part : (part as any).value || '';
if (content) {
const chunkResponse: OpenAIResponse = {
id: responseId,
object: 'chat.completion.chunk',
created,
model: modelName,
choices: [{
index: 0,
delta: { content },
finish_reason: null
}]
};
res.write(`data: ${JSON.stringify(chunkResponse)}\n\n`);
}
}
}
// Send final chunk
const finishReason: OpenAIChoice['finish_reason'] = toolCalls.length > 0 ? 'tool_calls' : 'stop';
const finalChunkResponse: OpenAIResponse = {
id: responseId,
object: 'chat.completion.chunk',
created,
model: modelName,
choices: [{
index: 0,
delta: {},
finish_reason: finishReason
}]
};
res.write(`data: ${JSON.stringify(finalChunkResponse)}\n\n`);
verbose(`SSE end id=${responseId}`);
res.write('data: [DONE]\n\n');
res.end();
return;
}
// Non-streaming response
let content = '';
let toolCalls: OpenAIToolCall[] = [];
for await (const part of response.stream) {
if (part && typeof part === 'object' && 'callId' in part && 'name' in part && 'input' in part) {
// Handle VS Code LanguageModelToolCallPart
const toolCallPart = part as vscode.LanguageModelToolCallPart;
const toolCall: OpenAIToolCall = {
id: toolCallPart.callId,
type: 'function',
function: {
name: toolCallPart.name,
arguments: JSON.stringify(toolCallPart.input)
}
};
toolCalls.push(toolCall);
} else if (typeof part === 'string' || (part && typeof part === 'object' && 'value' in part)) {
// Handle text content
content += typeof part === 'string' ? part : (part as any).value || '';
}
}
verbose(`Non-stream complete len=${content.length} tool_calls=${toolCalls.length}`);
const message: OpenAIMessage = {
role: 'assistant',
content: toolCalls.length > 0 ? null : content,
};
// Add tool_calls if present
if (toolCalls.length > 0) {
message.tool_calls = toolCalls;
// For backward compatibility, also add function_call if there's exactly one tool call
if (toolCalls.length === 1 && requestBody?.function_call !== undefined) {
message.function_call = {
name: toolCalls[0].function.name,
arguments: toolCalls[0].function.arguments
};
}
}
const responseObj: OpenAIResponse = {
id: responseId,
object: 'chat.completion',
created,
model: modelName,
choices: [{
index: 0,
message,
finish_reason: toolCalls.length > 0 ? 'tool_calls' : 'stop',
}],
usage: {
prompt_tokens: 0, // VS Code API doesn't provide token counts
completion_tokens: 0,
total_tokens: 0
}
};
writeJson(res, 200, responseObj);
};
/**
* Handles non-streaming response with complete data
*/
async function handleNonStreamingResponse(
res: ServerResponse,
response: vscode.LanguageModelChatResponse,
chatContext: ChatCompletionContext,
requestBody: ChatCompletionRequest
): Promise<void> {
const processedData = await processLanguageModelResponse(response);
sendCompletionResponse(res, chatContext, processedData, requestBody);
}

View file

@ -5,17 +5,42 @@ import { hasLMApi, getModel } from '../../models';
import { state } from '../../state';
import { verbose } from '../../log';
interface HealthResponse {
readonly ok: boolean;
readonly status: string;
readonly copilot: string;
readonly reason?: string;
readonly version: string;
readonly features: {
readonly chat_completions: boolean;
readonly streaming: boolean;
readonly tool_calling: boolean;
readonly function_calling: boolean;
readonly models_list: boolean;
};
readonly active_requests: number;
readonly model_attempted?: boolean;
}
export const handleHealthCheck = async (res: ServerResponse, v: boolean): Promise<void> => {
const hasLM = hasLMApi();
// Attempt model resolution if cache is empty and verbose logging is enabled
if (!state.modelCache && v) {
verbose(`Healthz: model=${state.modelCache ? 'present' : 'missing'} lmApi=${hasLM ? 'ok' : 'missing'}`);
await getModel();
try {
await getModel();
} catch (e) {
const msg = e instanceof Error ? e.message : String(e);
verbose(`Health check model resolution failed: ${msg}`);
}
}
const unavailableReason = state.modelCache
? undefined
: (!hasLM ? 'missing_language_model_api' : (state.lastReason || 'copilot_model_unavailable'));
writeJson(res, 200, {
const response: HealthResponse = {
ok: true,
status: 'operational',
copilot: state.modelCache ? 'ok' : 'unavailable',
@ -30,5 +55,7 @@ export const handleHealthCheck = async (res: ServerResponse, v: boolean): Promis
},
active_requests: state.activeRequests,
model_attempted: state.modelAttempted
});
};
writeJson(res, 200, response);
};

View file

@ -1,13 +1,31 @@
import { writeJson } from '../utils';
import { writeJson, writeErrorResponse } from '../utils';
import { listCopilotModels } from '../../models';
import { verbose } from '../../log';
import type { ServerResponse } from 'http';
interface ModelObject {
readonly id: string;
readonly object: 'model';
readonly created: number;
readonly owned_by: string;
readonly permission: readonly unknown[];
readonly root: string;
readonly parent: null;
}
interface ModelsListResponse {
readonly object: 'list';
readonly data: readonly ModelObject[];
}
export const handleModelsRequest = async (res: ServerResponse): Promise<void> => {
try {
const modelIds = await listCopilotModels();
const models = modelIds.map((id: string) => ({
verbose(`Models listed: ${modelIds.length} available`);
const models: ModelObject[] = modelIds.map((id: string) => ({
id,
object: 'model',
object: 'model' as const,
created: Math.floor(Date.now() / 1000),
owned_by: 'copilot',
permission: [],
@ -15,18 +33,15 @@ export const handleModelsRequest = async (res: ServerResponse): Promise<void> =>
parent: null,
}));
writeJson(res, 200, {
const response: ModelsListResponse = {
object: 'list',
data: models,
});
};
writeJson(res, 200, response);
} catch (e) {
const msg = e instanceof Error ? e.message : String(e);
writeJson(res, 500, {
error: {
message: msg || 'Failed to list models',
type: 'server_error',
code: 'internal_error'
}
});
verbose(`Models request failed: ${msg}`);
writeErrorResponse(res, 500, msg || 'Failed to list models', 'server_error', 'internal_error');
}
};

View file

@ -65,7 +65,8 @@ export const handleModelSelectionError = (error: unknown, family?: string): void
export const listCopilotModels = async (): Promise<string[]> => {
try {
const models = await selectChatModels();
// Filter for Copilot models only, consistent with getModel behavior
const models = await vscode.lm.selectChatModels({ vendor: 'copilot' });
const ids = models.map((m: vscode.LanguageModelChat) => {
const normalized = m.family || m.id || m.name || 'copilot';
return `${normalized}`;

View file

@ -0,0 +1,99 @@
import type * as vscode from 'vscode';
import type { ChatCompletionRequest } from '../messages';
import type {
ModelValidationResult,
RequestProcessingContext,
ChatCompletionContext
} from '../types/openai-types';
import {
extractAndMergeTools,
createLanguageModelRequestOptions
} from './request-processor';
import { getModel, hasLMApi } from '../models';
import { normalizeMessagesLM, convertOpenAIToolsToLM } from '../messages';
import { getBridgeConfig } from '../config';
/**
* Service for validating models and creating request processing context
*/
export class ModelService {
/**
* Validates the requested model and returns appropriate error details if invalid
* @param requestedModel - The model identifier from the request
* @returns Validation result with error details if model is unavailable
*/
public async validateModel(requestedModel?: string): Promise<ModelValidationResult> {
const model = await getModel(false, requestedModel);
if (!model) {
const hasLM = hasLMApi();
if (requestedModel && hasLM) {
return {
isValid: false,
statusCode: 404,
errorType: 'invalid_request_error',
errorCode: 'model_not_found',
reason: 'not_found'
};
}
const reason = !hasLM ? 'missing_language_model_api' : 'copilot_model_unavailable';
return {
isValid: false,
statusCode: 503,
errorType: 'server_error',
errorCode: 'copilot_unavailable',
reason
};
}
return { isValid: true };
}
/**
* Creates a complete request processing context from validated inputs
* @param body - The validated chat completion request
* @returns Processing context with all required elements for the Language Model API
*/
public async createProcessingContext(body: ChatCompletionRequest): Promise<RequestProcessingContext> {
const model = await getModel(false, body.model);
if (!model) {
throw new Error('Model validation should be performed before creating processing context');
}
const config = getBridgeConfig();
const mergedTools = extractAndMergeTools(body);
const lmMessages = normalizeMessagesLM(body.messages, config.historyWindow);
const lmTools = convertOpenAIToolsToLM(mergedTools);
const requestOptions = createLanguageModelRequestOptions(lmTools);
return {
model,
lmMessages: lmMessages as vscode.LanguageModelChatMessage[],
lmTools,
requestOptions,
mergedTools
};
}
/**
* Creates chat completion context for response formatting
* @param body - The chat completion request
* @param hasTools - Whether tools are present in the request
* @returns Context object for response handling
*/
public createChatCompletionContext(
body: ChatCompletionRequest,
hasTools: boolean
): ChatCompletionContext {
return {
requestId: `chatcmpl-${Math.random().toString(36).slice(2)}`,
modelName: body.model || 'copilot',
created: Math.floor(Date.now() / 1000),
hasTools,
isStreaming: body.stream !== false
};
}
}

View file

@ -0,0 +1,39 @@
import type { ChatCompletionRequest, Tool } from '../messages';
import type * as vscode from 'vscode';
/**
* Validates and extracts tool configurations from request body
* @param body - The parsed request body
* @returns Combined tools array including converted deprecated functions
*/
export function extractAndMergeTools(body: ChatCompletionRequest): Tool[] {
const tools = body.tools || [];
if (body.functions) {
// Convert deprecated functions to tools format
const convertedTools: Tool[] = body.functions.map(func => ({
type: 'function' as const,
function: func
}));
return [...tools, ...convertedTools];
}
return tools;
}
/**
* Creates VS Code Language Model request options from processed context
* @param lmTools - Array of Language Model compatible tools
* @returns Request options object for the Language Model API
*/
export function createLanguageModelRequestOptions(
lmTools: vscode.LanguageModelChatTool[]
): vscode.LanguageModelChatRequestOptions {
const options: vscode.LanguageModelChatRequestOptions = {};
if (lmTools.length > 0) {
options.tools = lmTools;
}
return options;
}

View file

@ -0,0 +1,158 @@
import type * as vscode from 'vscode';
import type { ServerResponse } from 'http';
import type {
OpenAIResponse,
OpenAIChoice,
OpenAIMessage,
OpenAIToolCall,
ChatCompletionContext,
ProcessedResponseData
} from '../types/openai-types';
import type { ChatCompletionRequest } from '../messages';
import { writeJson } from '../http/utils';
import { verbose } from '../log';
/**
* Processes VS Code Language Model stream parts into structured data
* @param response - The VS Code Language Model chat response
* @returns Promise resolving to processed content and tool calls
*/
export async function processLanguageModelResponse(
response: vscode.LanguageModelChatResponse
): Promise<ProcessedResponseData> {
let content = '';
const toolCalls: OpenAIToolCall[] = [];
for await (const part of response.stream) {
if (isToolCallPart(part)) {
const toolCall: OpenAIToolCall = {
id: part.callId,
type: 'function',
function: {
name: part.name,
arguments: JSON.stringify(part.input)
}
};
toolCalls.push(toolCall);
} else if (isTextPart(part)) {
content += extractTextContent(part);
}
}
const finishReason: OpenAIChoice['finish_reason'] = toolCalls.length > 0 ? 'tool_calls' : 'stop';
return {
content,
toolCalls,
finishReason
};
}
/**
* Creates an OpenAI-compatible response message
* @param data - The processed response data
* @param requestBody - Original request body for backward compatibility
* @returns OpenAI message object
*/
export function createOpenAIMessage(
data: ProcessedResponseData,
requestBody?: ChatCompletionRequest
): OpenAIMessage {
const baseMessage = {
role: 'assistant' as const,
content: data.toolCalls.length > 0 ? null : data.content,
};
// Add tool_calls if present
if (data.toolCalls.length > 0) {
const messageWithTools = {
...baseMessage,
tool_calls: data.toolCalls,
};
// For backward compatibility, also add function_call if there's exactly one tool call
if (data.toolCalls.length === 1 && requestBody?.function_call !== undefined) {
return {
...messageWithTools,
function_call: {
name: data.toolCalls[0].function.name,
arguments: data.toolCalls[0].function.arguments
}
};
}
return messageWithTools;
}
return baseMessage;
}
/**
* Sends a complete (non-streaming) OpenAI-compatible response
* @param res - HTTP response object
* @param context - Chat completion context
* @param data - Processed response data
* @param requestBody - Original request body
*/
export function sendCompletionResponse(
res: ServerResponse,
context: ChatCompletionContext,
data: ProcessedResponseData,
requestBody?: ChatCompletionRequest
): void {
const message = createOpenAIMessage(data, requestBody);
const responseObj: OpenAIResponse = {
id: context.requestId,
object: 'chat.completion',
created: context.created,
model: context.modelName,
choices: [{
index: 0,
message,
finish_reason: data.finishReason,
}],
usage: {
prompt_tokens: 0, // VS Code API doesn't provide token counts
completion_tokens: 0,
total_tokens: 0
}
};
verbose(`Non-stream complete len=${data.content.length} tool_calls=${data.toolCalls.length}`);
writeJson(res, 200, responseObj);
}
/**
* Type guard for VS Code LanguageModelToolCallPart
*/
function isToolCallPart(part: unknown): part is vscode.LanguageModelToolCallPart {
return part !== null &&
typeof part === 'object' &&
'callId' in part &&
'name' in part &&
'input' in part;
}
/**
* Type guard for text content parts
*/
function isTextPart(part: unknown): boolean {
return typeof part === 'string' ||
(part !== null && typeof part === 'object' && 'value' in part);
}
/**
* Extracts text content from various part types
*/
function extractTextContent(part: unknown): string {
if (typeof part === 'string') {
return part;
}
if (part !== null && typeof part === 'object' && 'value' in part) {
return String((part as { value: unknown }).value) || '';
}
return '';
}

View file

@ -0,0 +1,190 @@
import type * as vscode from 'vscode';
import type { ServerResponse } from 'http';
import type {
OpenAIResponse,
OpenAIToolCall,
ChatCompletionContext
} from '../types/openai-types';
import type { ChatCompletionRequest } from '../messages';
import { verbose } from '../log';
/**
* Handles Server-Sent Events streaming for OpenAI-compatible chat completions
*/
export class StreamingResponseHandler {
private readonly response: ServerResponse;
private readonly context: ChatCompletionContext;
private readonly requestBody?: ChatCompletionRequest;
constructor(
response: ServerResponse,
context: ChatCompletionContext,
requestBody?: ChatCompletionRequest
) {
this.response = response;
this.context = context;
this.requestBody = requestBody;
}
/**
* Initializes the SSE stream with proper headers
*/
public initializeStream(): void {
this.response.writeHead(200, {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
});
verbose(`SSE start id=${this.context.requestId}`);
}
/**
* Processes the Language Model response stream and sends SSE chunks
* @param languageModelResponse - VS Code Language Model response
*/
public async processAndStreamResponse(
languageModelResponse: vscode.LanguageModelChatResponse
): Promise<void> {
const toolCalls: OpenAIToolCall[] = [];
for await (const part of languageModelResponse.stream) {
if (this.isToolCallPart(part)) {
const toolCall = this.createToolCallFromPart(part);
toolCalls.push(toolCall);
this.sendToolCallChunk(toolCall);
} else if (this.isTextPart(part)) {
const content = this.extractTextContent(part);
if (content) {
this.sendContentChunk(content);
}
}
}
this.sendFinalChunk(toolCalls.length > 0 ? 'tool_calls' : 'stop');
this.endStream();
}
/**
* Sends a content delta chunk
*/
private sendContentChunk(content: string): void {
const chunkResponse: OpenAIResponse = {
id: this.context.requestId,
object: 'chat.completion.chunk',
created: this.context.created,
model: this.context.modelName,
choices: [{
index: 0,
delta: { content },
finish_reason: null
}]
};
this.writeSSEData(chunkResponse);
}
/**
* Sends a tool call chunk
*/
private sendToolCallChunk(toolCall: OpenAIToolCall): void {
const chunkResponse: OpenAIResponse = {
id: this.context.requestId,
object: 'chat.completion.chunk',
created: this.context.created,
model: this.context.modelName,
choices: [{
index: 0,
delta: {
tool_calls: [toolCall]
},
finish_reason: null
}]
};
this.writeSSEData(chunkResponse);
}
/**
* Sends the final completion chunk with finish reason
*/
private sendFinalChunk(finishReason: 'stop' | 'tool_calls'): void {
const finalChunkResponse: OpenAIResponse = {
id: this.context.requestId,
object: 'chat.completion.chunk',
created: this.context.created,
model: this.context.modelName,
choices: [{
index: 0,
delta: {},
finish_reason: finishReason
}]
};
this.writeSSEData(finalChunkResponse);
}
/**
* Ends the SSE stream
*/
private endStream(): void {
verbose(`SSE end id=${this.context.requestId}`);
this.response.write('data: [DONE]\n\n');
this.response.end();
}
/**
* Writes data to the SSE stream
*/
private writeSSEData(data: OpenAIResponse): void {
this.response.write(`data: ${JSON.stringify(data)}\n\n`);
}
/**
* Creates an OpenAI tool call from VS Code Language Model part
*/
private createToolCallFromPart(part: vscode.LanguageModelToolCallPart): OpenAIToolCall {
return {
id: part.callId,
type: 'function',
function: {
name: part.name,
arguments: JSON.stringify(part.input)
}
};
}
/**
* Type guard for VS Code LanguageModelToolCallPart
*/
private isToolCallPart(part: unknown): part is vscode.LanguageModelToolCallPart {
return part !== null &&
typeof part === 'object' &&
'callId' in part &&
'name' in part &&
'input' in part;
}
/**
* Type guard for text content parts
*/
private isTextPart(part: unknown): boolean {
return typeof part === 'string' ||
(part !== null && typeof part === 'object' && 'value' in part);
}
/**
* Extracts text content from various part types
*/
private extractTextContent(part: unknown): string {
if (typeof part === 'string') {
return part;
}
if (part !== null && typeof part === 'object' && 'value' in part) {
return String((part as { value: unknown }).value) || '';
}
return '';
}
}

81
src/types/openai-types.ts Normal file
View file

@ -0,0 +1,81 @@
import type * as vscode from 'vscode';
import type { Tool } from '../messages';
/**
* OpenAI API compatible types for request and response handling
*/
export interface OpenAIToolCall {
readonly id: string;
readonly type: 'function';
readonly function: {
readonly name: string;
readonly arguments: string;
};
}
export interface OpenAIMessage {
readonly role: 'assistant';
readonly content: string | null;
readonly tool_calls?: OpenAIToolCall[];
readonly function_call?: {
readonly name: string;
readonly arguments: string;
};
}
export interface OpenAIChoice {
readonly index: number;
readonly message?: OpenAIMessage;
readonly delta?: Partial<OpenAIMessage>;
readonly finish_reason: 'stop' | 'length' | 'tool_calls' | 'content_filter' | 'function_call' | null;
}
export interface OpenAIResponse {
readonly id: string;
readonly object: 'chat.completion' | 'chat.completion.chunk';
readonly created: number;
readonly model: string;
readonly choices: OpenAIChoice[];
readonly usage?: {
readonly prompt_tokens: number;
readonly completion_tokens: number;
readonly total_tokens: number;
};
}
export interface ChatCompletionContext {
readonly requestId: string;
readonly modelName: string;
readonly created: number;
readonly hasTools: boolean;
readonly isStreaming: boolean;
}
export interface ProcessedResponseData {
readonly content: string;
readonly toolCalls: OpenAIToolCall[];
readonly finishReason: OpenAIChoice['finish_reason'];
}
/**
* Validates that the request model is available and properly configured
*/
export interface ModelValidationResult {
readonly isValid: boolean;
readonly statusCode?: number;
readonly errorType?: string;
readonly errorCode?: string;
readonly reason?: string;
}
/**
* Consolidated request processing context for chat completions
*/
export interface RequestProcessingContext {
readonly model: vscode.LanguageModelChat;
readonly lmMessages: vscode.LanguageModelChatMessage[];
readonly lmTools: vscode.LanguageModelChatTool[];
readonly requestOptions: vscode.LanguageModelChatRequestOptions;
readonly mergedTools: Tool[];
}

View file

@ -9,6 +9,7 @@
"sourceMap": true,
"esModuleInterop": true,
"allowSyntheticDefaultImports": true,
"forceConsistentCasingInFileNames": true,
"types": ["node", "vscode"]
},
"include": ["src/**/*.ts"]