mirror of
https://github.com/larsbaunwall/vscode-copilot-bridge.git
synced 2025-10-05 22:22:59 +00:00
Refactor code to be more clean and modularized. Bump package version
This commit is contained in:
parent
ef1526c76a
commit
70a077ca51
11 changed files with 701 additions and 251 deletions
|
|
@ -4,7 +4,7 @@
|
||||||
"name": "copilot-bridge",
|
"name": "copilot-bridge",
|
||||||
"displayName": "Copilot Bridge",
|
"displayName": "Copilot Bridge",
|
||||||
"description": "Local OpenAI-compatible chat endpoint (inference) bridging to GitHub Copilot via the VS Code Language Model API.",
|
"description": "Local OpenAI-compatible chat endpoint (inference) bridging to GitHub Copilot via the VS Code Language Model API.",
|
||||||
"version": "0.2.2",
|
"version": "1.0.0",
|
||||||
"publisher": "thinkability",
|
"publisher": "thinkability",
|
||||||
"repository": {
|
"repository": {
|
||||||
"type": "git",
|
"type": "git",
|
||||||
|
|
|
||||||
|
|
@ -1,54 +1,20 @@
|
||||||
import * as vscode from 'vscode';
|
import * as vscode from 'vscode';
|
||||||
import type { IncomingMessage, ServerResponse } from 'http';
|
import type { IncomingMessage, ServerResponse } from 'http';
|
||||||
import { state } from '../../state';
|
import { state } from '../../state';
|
||||||
import { getBridgeConfig } from '../../config';
|
import { isChatCompletionRequest, type ChatCompletionRequest } from '../../messages';
|
||||||
import { isChatCompletionRequest, normalizeMessagesLM, convertOpenAIToolsToLM, convertFunctionsToTools } from '../../messages';
|
import { readJson, writeErrorResponse } from '../utils';
|
||||||
import { getModel, hasLMApi } from '../../models';
|
|
||||||
import { readJson, writeErrorResponse, writeJson } from '../utils';
|
|
||||||
import { verbose } from '../../log';
|
import { verbose } from '../../log';
|
||||||
|
import { ModelService } from '../../services/model-service';
|
||||||
|
import { StreamingResponseHandler } from '../../services/streaming-handler';
|
||||||
|
import { processLanguageModelResponse, sendCompletionResponse } from '../../services/response-formatter';
|
||||||
|
import type { ChatCompletionContext } from '../../types/openai-types';
|
||||||
|
|
||||||
// OpenAI response interfaces for better typing
|
/**
|
||||||
interface OpenAIToolCall {
|
* Handles OpenAI-compatible chat completion requests with support for streaming and tool calling
|
||||||
id: string;
|
* @param req - HTTP request object
|
||||||
type: 'function';
|
* @param res - HTTP response object
|
||||||
function: {
|
*/
|
||||||
name: string;
|
export async function handleChatCompletion(req: IncomingMessage, res: ServerResponse): Promise<void> {
|
||||||
arguments: string;
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
interface OpenAIMessage {
|
|
||||||
role: 'assistant';
|
|
||||||
content: string | null;
|
|
||||||
tool_calls?: OpenAIToolCall[];
|
|
||||||
function_call?: {
|
|
||||||
name: string;
|
|
||||||
arguments: string;
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
interface OpenAIChoice {
|
|
||||||
index: number;
|
|
||||||
message?: OpenAIMessage;
|
|
||||||
delta?: Partial<OpenAIMessage>;
|
|
||||||
finish_reason: 'stop' | 'length' | 'tool_calls' | 'content_filter' | 'function_call' | null;
|
|
||||||
}
|
|
||||||
|
|
||||||
interface OpenAIResponse {
|
|
||||||
id: string;
|
|
||||||
object: 'chat.completion' | 'chat.completion.chunk';
|
|
||||||
created: number;
|
|
||||||
model: string;
|
|
||||||
choices: OpenAIChoice[];
|
|
||||||
usage?: {
|
|
||||||
prompt_tokens: number;
|
|
||||||
completion_tokens: number;
|
|
||||||
total_tokens: number;
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
export const handleChatCompletion = async (req: IncomingMessage, res: ServerResponse): Promise<void> => {
|
|
||||||
const config = getBridgeConfig();
|
|
||||||
state.activeRequests++;
|
state.activeRequests++;
|
||||||
verbose(`Request started (active=${state.activeRequests})`);
|
verbose(`Request started (active=${state.activeRequests})`);
|
||||||
|
|
||||||
|
|
@ -58,202 +24,75 @@ export const handleChatCompletion = async (req: IncomingMessage, res: ServerResp
|
||||||
return writeErrorResponse(res, 400, 'invalid request', 'invalid_request_error', 'invalid_payload');
|
return writeErrorResponse(res, 400, 'invalid request', 'invalid_request_error', 'invalid_payload');
|
||||||
}
|
}
|
||||||
|
|
||||||
const requestedModel = body.model;
|
const modelService = new ModelService();
|
||||||
const stream = body.stream !== false; // default true
|
|
||||||
|
|
||||||
// Handle tools and deprecated functions
|
// Validate model availability
|
||||||
let tools = body.tools || [];
|
const modelValidation = await modelService.validateModel(body.model);
|
||||||
if (body.functions) {
|
if (!modelValidation.isValid) {
|
||||||
// Convert deprecated functions to tools format
|
const errorMessage = body.model ? 'model not found' : 'Copilot unavailable';
|
||||||
tools = [...tools, ...convertFunctionsToTools(body.functions)];
|
return writeErrorResponse(
|
||||||
}
|
res,
|
||||||
|
modelValidation.statusCode!,
|
||||||
const model = await getModel(false, requestedModel);
|
errorMessage,
|
||||||
|
modelValidation.errorType!,
|
||||||
if (!model) {
|
modelValidation.errorCode!,
|
||||||
const hasLM = hasLMApi();
|
modelValidation.reason || 'unknown_error'
|
||||||
if (requestedModel && hasLM) {
|
);
|
||||||
state.lastReason = 'not_found';
|
|
||||||
return writeErrorResponse(res, 404, 'model not found', 'invalid_request_error', 'model_not_found', 'not_found');
|
|
||||||
}
|
|
||||||
const reason = !hasLM ? 'missing_language_model_api' : (state.lastReason || 'copilot_model_unavailable');
|
|
||||||
return writeErrorResponse(res, 503, 'Copilot unavailable', 'server_error', 'copilot_unavailable', reason);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
const lmMessages = normalizeMessagesLM(body.messages, config.historyWindow) as vscode.LanguageModelChatMessage[];
|
// Create processing context
|
||||||
const lmTools = convertOpenAIToolsToLM(tools);
|
const context = await modelService.createProcessingContext(body);
|
||||||
|
const chatContext = modelService.createChatCompletionContext(body, context.lmTools.length > 0);
|
||||||
|
|
||||||
// Prepare request options for Language Model API
|
verbose(`LM request via API model=${context.model.family || context.model.id || context.model.name || 'unknown'} tools=${context.lmTools.length}`);
|
||||||
const requestOptions: any = {};
|
|
||||||
if (lmTools.length > 0) {
|
|
||||||
requestOptions.tools = lmTools;
|
|
||||||
}
|
|
||||||
|
|
||||||
verbose(`LM request via API model=${model.family || model.id || model.name || 'unknown'} tools=${lmTools.length}`);
|
|
||||||
|
|
||||||
const cts = new vscode.CancellationTokenSource();
|
// Execute the Language Model request
|
||||||
const response = await model.sendRequest(lmMessages, requestOptions, cts.token);
|
const cancellationToken = new vscode.CancellationTokenSource();
|
||||||
await sendResponse(res, response, stream, body, tools);
|
const response = await context.model.sendRequest(
|
||||||
} catch (e) {
|
context.lmMessages,
|
||||||
const msg = e instanceof Error ? e.message : String(e);
|
context.requestOptions,
|
||||||
writeErrorResponse(res, 500, msg || 'internal_error', 'server_error', 'internal_error');
|
cancellationToken.token
|
||||||
|
);
|
||||||
|
|
||||||
|
// Handle response based on streaming preference
|
||||||
|
if (chatContext.isStreaming) {
|
||||||
|
await handleStreamingResponse(res, response, chatContext, body);
|
||||||
|
} else {
|
||||||
|
await handleNonStreamingResponse(res, response, chatContext, body);
|
||||||
|
}
|
||||||
|
|
||||||
|
} catch (error) {
|
||||||
|
const errorMessage = error instanceof Error ? error.message : String(error);
|
||||||
|
writeErrorResponse(res, 500, errorMessage || 'internal_error', 'server_error', 'internal_error');
|
||||||
} finally {
|
} finally {
|
||||||
state.activeRequests--;
|
state.activeRequests--;
|
||||||
verbose(`Request complete (active=${state.activeRequests})`);
|
verbose(`Request complete (active=${state.activeRequests})`);
|
||||||
}
|
}
|
||||||
};
|
}
|
||||||
|
|
||||||
const sendResponse = async (
|
/**
|
||||||
res: ServerResponse,
|
* Handles streaming response using Server-Sent Events
|
||||||
response: vscode.LanguageModelChatResponse,
|
*/
|
||||||
stream: boolean,
|
async function handleStreamingResponse(
|
||||||
requestBody?: any,
|
res: ServerResponse,
|
||||||
tools?: any[]
|
response: vscode.LanguageModelChatResponse,
|
||||||
): Promise<void> => {
|
chatContext: ChatCompletionContext,
|
||||||
const modelName = requestBody?.model || 'copilot';
|
requestBody: ChatCompletionRequest
|
||||||
const responseId = `chatcmpl-${Math.random().toString(36).slice(2)}`;
|
): Promise<void> {
|
||||||
const created = Math.floor(Date.now() / 1000);
|
const streamHandler = new StreamingResponseHandler(res, chatContext, requestBody);
|
||||||
|
streamHandler.initializeStream();
|
||||||
|
await streamHandler.processAndStreamResponse(response);
|
||||||
|
}
|
||||||
|
|
||||||
if (stream) {
|
/**
|
||||||
res.writeHead(200, {
|
* Handles non-streaming response with complete data
|
||||||
'Content-Type': 'text/event-stream',
|
*/
|
||||||
'Cache-Control': 'no-cache',
|
async function handleNonStreamingResponse(
|
||||||
'Connection': 'keep-alive',
|
res: ServerResponse,
|
||||||
});
|
response: vscode.LanguageModelChatResponse,
|
||||||
|
chatContext: ChatCompletionContext,
|
||||||
verbose(`SSE start id=${responseId}`);
|
requestBody: ChatCompletionRequest
|
||||||
|
): Promise<void> {
|
||||||
let toolCalls: OpenAIToolCall[] = [];
|
const processedData = await processLanguageModelResponse(response);
|
||||||
|
sendCompletionResponse(res, chatContext, processedData, requestBody);
|
||||||
for await (const part of response.stream) {
|
}
|
||||||
// Check if this part is a LanguageModelToolCallPart
|
|
||||||
if (part && typeof part === 'object' && 'callId' in part && 'name' in part && 'input' in part) {
|
|
||||||
const toolCallPart = part as vscode.LanguageModelToolCallPart;
|
|
||||||
const toolCall: OpenAIToolCall = {
|
|
||||||
id: toolCallPart.callId,
|
|
||||||
type: 'function',
|
|
||||||
function: {
|
|
||||||
name: toolCallPart.name,
|
|
||||||
arguments: JSON.stringify(toolCallPart.input)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
toolCalls.push(toolCall);
|
|
||||||
|
|
||||||
// Send tool call in streaming format
|
|
||||||
const chunkResponse: OpenAIResponse = {
|
|
||||||
id: responseId,
|
|
||||||
object: 'chat.completion.chunk',
|
|
||||||
created,
|
|
||||||
model: modelName,
|
|
||||||
choices: [{
|
|
||||||
index: 0,
|
|
||||||
delta: {
|
|
||||||
tool_calls: [toolCall]
|
|
||||||
},
|
|
||||||
finish_reason: null
|
|
||||||
}]
|
|
||||||
};
|
|
||||||
res.write(`data: ${JSON.stringify(chunkResponse)}\n\n`);
|
|
||||||
} else if (typeof part === 'string' || (part && typeof part === 'object' && 'value' in part)) {
|
|
||||||
// Handle text content
|
|
||||||
const content = typeof part === 'string' ? part : (part as any).value || '';
|
|
||||||
if (content) {
|
|
||||||
const chunkResponse: OpenAIResponse = {
|
|
||||||
id: responseId,
|
|
||||||
object: 'chat.completion.chunk',
|
|
||||||
created,
|
|
||||||
model: modelName,
|
|
||||||
choices: [{
|
|
||||||
index: 0,
|
|
||||||
delta: { content },
|
|
||||||
finish_reason: null
|
|
||||||
}]
|
|
||||||
};
|
|
||||||
res.write(`data: ${JSON.stringify(chunkResponse)}\n\n`);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Send final chunk
|
|
||||||
const finishReason: OpenAIChoice['finish_reason'] = toolCalls.length > 0 ? 'tool_calls' : 'stop';
|
|
||||||
const finalChunkResponse: OpenAIResponse = {
|
|
||||||
id: responseId,
|
|
||||||
object: 'chat.completion.chunk',
|
|
||||||
created,
|
|
||||||
model: modelName,
|
|
||||||
choices: [{
|
|
||||||
index: 0,
|
|
||||||
delta: {},
|
|
||||||
finish_reason: finishReason
|
|
||||||
}]
|
|
||||||
};
|
|
||||||
res.write(`data: ${JSON.stringify(finalChunkResponse)}\n\n`);
|
|
||||||
|
|
||||||
verbose(`SSE end id=${responseId}`);
|
|
||||||
res.write('data: [DONE]\n\n');
|
|
||||||
res.end();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Non-streaming response
|
|
||||||
let content = '';
|
|
||||||
let toolCalls: OpenAIToolCall[] = [];
|
|
||||||
|
|
||||||
for await (const part of response.stream) {
|
|
||||||
if (part && typeof part === 'object' && 'callId' in part && 'name' in part && 'input' in part) {
|
|
||||||
// Handle VS Code LanguageModelToolCallPart
|
|
||||||
const toolCallPart = part as vscode.LanguageModelToolCallPart;
|
|
||||||
const toolCall: OpenAIToolCall = {
|
|
||||||
id: toolCallPart.callId,
|
|
||||||
type: 'function',
|
|
||||||
function: {
|
|
||||||
name: toolCallPart.name,
|
|
||||||
arguments: JSON.stringify(toolCallPart.input)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
toolCalls.push(toolCall);
|
|
||||||
} else if (typeof part === 'string' || (part && typeof part === 'object' && 'value' in part)) {
|
|
||||||
// Handle text content
|
|
||||||
content += typeof part === 'string' ? part : (part as any).value || '';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
verbose(`Non-stream complete len=${content.length} tool_calls=${toolCalls.length}`);
|
|
||||||
|
|
||||||
const message: OpenAIMessage = {
|
|
||||||
role: 'assistant',
|
|
||||||
content: toolCalls.length > 0 ? null : content,
|
|
||||||
};
|
|
||||||
|
|
||||||
// Add tool_calls if present
|
|
||||||
if (toolCalls.length > 0) {
|
|
||||||
message.tool_calls = toolCalls;
|
|
||||||
|
|
||||||
// For backward compatibility, also add function_call if there's exactly one tool call
|
|
||||||
if (toolCalls.length === 1 && requestBody?.function_call !== undefined) {
|
|
||||||
message.function_call = {
|
|
||||||
name: toolCalls[0].function.name,
|
|
||||||
arguments: toolCalls[0].function.arguments
|
|
||||||
};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const responseObj: OpenAIResponse = {
|
|
||||||
id: responseId,
|
|
||||||
object: 'chat.completion',
|
|
||||||
created,
|
|
||||||
model: modelName,
|
|
||||||
choices: [{
|
|
||||||
index: 0,
|
|
||||||
message,
|
|
||||||
finish_reason: toolCalls.length > 0 ? 'tool_calls' : 'stop',
|
|
||||||
}],
|
|
||||||
usage: {
|
|
||||||
prompt_tokens: 0, // VS Code API doesn't provide token counts
|
|
||||||
completion_tokens: 0,
|
|
||||||
total_tokens: 0
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
writeJson(res, 200, responseObj);
|
|
||||||
};
|
|
||||||
|
|
|
||||||
|
|
@ -5,17 +5,42 @@ import { hasLMApi, getModel } from '../../models';
|
||||||
import { state } from '../../state';
|
import { state } from '../../state';
|
||||||
import { verbose } from '../../log';
|
import { verbose } from '../../log';
|
||||||
|
|
||||||
|
interface HealthResponse {
|
||||||
|
readonly ok: boolean;
|
||||||
|
readonly status: string;
|
||||||
|
readonly copilot: string;
|
||||||
|
readonly reason?: string;
|
||||||
|
readonly version: string;
|
||||||
|
readonly features: {
|
||||||
|
readonly chat_completions: boolean;
|
||||||
|
readonly streaming: boolean;
|
||||||
|
readonly tool_calling: boolean;
|
||||||
|
readonly function_calling: boolean;
|
||||||
|
readonly models_list: boolean;
|
||||||
|
};
|
||||||
|
readonly active_requests: number;
|
||||||
|
readonly model_attempted?: boolean;
|
||||||
|
}
|
||||||
|
|
||||||
export const handleHealthCheck = async (res: ServerResponse, v: boolean): Promise<void> => {
|
export const handleHealthCheck = async (res: ServerResponse, v: boolean): Promise<void> => {
|
||||||
const hasLM = hasLMApi();
|
const hasLM = hasLMApi();
|
||||||
|
|
||||||
|
// Attempt model resolution if cache is empty and verbose logging is enabled
|
||||||
if (!state.modelCache && v) {
|
if (!state.modelCache && v) {
|
||||||
verbose(`Healthz: model=${state.modelCache ? 'present' : 'missing'} lmApi=${hasLM ? 'ok' : 'missing'}`);
|
verbose(`Healthz: model=${state.modelCache ? 'present' : 'missing'} lmApi=${hasLM ? 'ok' : 'missing'}`);
|
||||||
await getModel();
|
try {
|
||||||
|
await getModel();
|
||||||
|
} catch (e) {
|
||||||
|
const msg = e instanceof Error ? e.message : String(e);
|
||||||
|
verbose(`Health check model resolution failed: ${msg}`);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const unavailableReason = state.modelCache
|
const unavailableReason = state.modelCache
|
||||||
? undefined
|
? undefined
|
||||||
: (!hasLM ? 'missing_language_model_api' : (state.lastReason || 'copilot_model_unavailable'));
|
: (!hasLM ? 'missing_language_model_api' : (state.lastReason || 'copilot_model_unavailable'));
|
||||||
|
|
||||||
writeJson(res, 200, {
|
const response: HealthResponse = {
|
||||||
ok: true,
|
ok: true,
|
||||||
status: 'operational',
|
status: 'operational',
|
||||||
copilot: state.modelCache ? 'ok' : 'unavailable',
|
copilot: state.modelCache ? 'ok' : 'unavailable',
|
||||||
|
|
@ -30,5 +55,7 @@ export const handleHealthCheck = async (res: ServerResponse, v: boolean): Promis
|
||||||
},
|
},
|
||||||
active_requests: state.activeRequests,
|
active_requests: state.activeRequests,
|
||||||
model_attempted: state.modelAttempted
|
model_attempted: state.modelAttempted
|
||||||
});
|
};
|
||||||
|
|
||||||
|
writeJson(res, 200, response);
|
||||||
};
|
};
|
||||||
|
|
|
||||||
|
|
@ -1,13 +1,31 @@
|
||||||
import { writeJson } from '../utils';
|
import { writeJson, writeErrorResponse } from '../utils';
|
||||||
import { listCopilotModels } from '../../models';
|
import { listCopilotModels } from '../../models';
|
||||||
|
import { verbose } from '../../log';
|
||||||
import type { ServerResponse } from 'http';
|
import type { ServerResponse } from 'http';
|
||||||
|
|
||||||
|
interface ModelObject {
|
||||||
|
readonly id: string;
|
||||||
|
readonly object: 'model';
|
||||||
|
readonly created: number;
|
||||||
|
readonly owned_by: string;
|
||||||
|
readonly permission: readonly unknown[];
|
||||||
|
readonly root: string;
|
||||||
|
readonly parent: null;
|
||||||
|
}
|
||||||
|
|
||||||
|
interface ModelsListResponse {
|
||||||
|
readonly object: 'list';
|
||||||
|
readonly data: readonly ModelObject[];
|
||||||
|
}
|
||||||
|
|
||||||
export const handleModelsRequest = async (res: ServerResponse): Promise<void> => {
|
export const handleModelsRequest = async (res: ServerResponse): Promise<void> => {
|
||||||
try {
|
try {
|
||||||
const modelIds = await listCopilotModels();
|
const modelIds = await listCopilotModels();
|
||||||
const models = modelIds.map((id: string) => ({
|
verbose(`Models listed: ${modelIds.length} available`);
|
||||||
|
|
||||||
|
const models: ModelObject[] = modelIds.map((id: string) => ({
|
||||||
id,
|
id,
|
||||||
object: 'model',
|
object: 'model' as const,
|
||||||
created: Math.floor(Date.now() / 1000),
|
created: Math.floor(Date.now() / 1000),
|
||||||
owned_by: 'copilot',
|
owned_by: 'copilot',
|
||||||
permission: [],
|
permission: [],
|
||||||
|
|
@ -15,18 +33,15 @@ export const handleModelsRequest = async (res: ServerResponse): Promise<void> =>
|
||||||
parent: null,
|
parent: null,
|
||||||
}));
|
}));
|
||||||
|
|
||||||
writeJson(res, 200, {
|
const response: ModelsListResponse = {
|
||||||
object: 'list',
|
object: 'list',
|
||||||
data: models,
|
data: models,
|
||||||
});
|
};
|
||||||
|
|
||||||
|
writeJson(res, 200, response);
|
||||||
} catch (e) {
|
} catch (e) {
|
||||||
const msg = e instanceof Error ? e.message : String(e);
|
const msg = e instanceof Error ? e.message : String(e);
|
||||||
writeJson(res, 500, {
|
verbose(`Models request failed: ${msg}`);
|
||||||
error: {
|
writeErrorResponse(res, 500, msg || 'Failed to list models', 'server_error', 'internal_error');
|
||||||
message: msg || 'Failed to list models',
|
|
||||||
type: 'server_error',
|
|
||||||
code: 'internal_error'
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
|
||||||
|
|
@ -65,7 +65,8 @@ export const handleModelSelectionError = (error: unknown, family?: string): void
|
||||||
|
|
||||||
export const listCopilotModels = async (): Promise<string[]> => {
|
export const listCopilotModels = async (): Promise<string[]> => {
|
||||||
try {
|
try {
|
||||||
const models = await selectChatModels();
|
// Filter for Copilot models only, consistent with getModel behavior
|
||||||
|
const models = await vscode.lm.selectChatModels({ vendor: 'copilot' });
|
||||||
const ids = models.map((m: vscode.LanguageModelChat) => {
|
const ids = models.map((m: vscode.LanguageModelChat) => {
|
||||||
const normalized = m.family || m.id || m.name || 'copilot';
|
const normalized = m.family || m.id || m.name || 'copilot';
|
||||||
return `${normalized}`;
|
return `${normalized}`;
|
||||||
|
|
|
||||||
99
src/services/model-service.ts
Normal file
99
src/services/model-service.ts
Normal file
|
|
@ -0,0 +1,99 @@
|
||||||
|
import type * as vscode from 'vscode';
|
||||||
|
import type { ChatCompletionRequest } from '../messages';
|
||||||
|
import type {
|
||||||
|
ModelValidationResult,
|
||||||
|
RequestProcessingContext,
|
||||||
|
ChatCompletionContext
|
||||||
|
} from '../types/openai-types';
|
||||||
|
import {
|
||||||
|
extractAndMergeTools,
|
||||||
|
createLanguageModelRequestOptions
|
||||||
|
} from './request-processor';
|
||||||
|
import { getModel, hasLMApi } from '../models';
|
||||||
|
import { normalizeMessagesLM, convertOpenAIToolsToLM } from '../messages';
|
||||||
|
import { getBridgeConfig } from '../config';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Service for validating models and creating request processing context
|
||||||
|
*/
|
||||||
|
export class ModelService {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Validates the requested model and returns appropriate error details if invalid
|
||||||
|
* @param requestedModel - The model identifier from the request
|
||||||
|
* @returns Validation result with error details if model is unavailable
|
||||||
|
*/
|
||||||
|
public async validateModel(requestedModel?: string): Promise<ModelValidationResult> {
|
||||||
|
const model = await getModel(false, requestedModel);
|
||||||
|
|
||||||
|
if (!model) {
|
||||||
|
const hasLM = hasLMApi();
|
||||||
|
|
||||||
|
if (requestedModel && hasLM) {
|
||||||
|
return {
|
||||||
|
isValid: false,
|
||||||
|
statusCode: 404,
|
||||||
|
errorType: 'invalid_request_error',
|
||||||
|
errorCode: 'model_not_found',
|
||||||
|
reason: 'not_found'
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
const reason = !hasLM ? 'missing_language_model_api' : 'copilot_model_unavailable';
|
||||||
|
return {
|
||||||
|
isValid: false,
|
||||||
|
statusCode: 503,
|
||||||
|
errorType: 'server_error',
|
||||||
|
errorCode: 'copilot_unavailable',
|
||||||
|
reason
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
return { isValid: true };
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a complete request processing context from validated inputs
|
||||||
|
* @param body - The validated chat completion request
|
||||||
|
* @returns Processing context with all required elements for the Language Model API
|
||||||
|
*/
|
||||||
|
public async createProcessingContext(body: ChatCompletionRequest): Promise<RequestProcessingContext> {
|
||||||
|
const model = await getModel(false, body.model);
|
||||||
|
if (!model) {
|
||||||
|
throw new Error('Model validation should be performed before creating processing context');
|
||||||
|
}
|
||||||
|
|
||||||
|
const config = getBridgeConfig();
|
||||||
|
const mergedTools = extractAndMergeTools(body);
|
||||||
|
const lmMessages = normalizeMessagesLM(body.messages, config.historyWindow);
|
||||||
|
const lmTools = convertOpenAIToolsToLM(mergedTools);
|
||||||
|
const requestOptions = createLanguageModelRequestOptions(lmTools);
|
||||||
|
|
||||||
|
return {
|
||||||
|
model,
|
||||||
|
lmMessages: lmMessages as vscode.LanguageModelChatMessage[],
|
||||||
|
lmTools,
|
||||||
|
requestOptions,
|
||||||
|
mergedTools
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates chat completion context for response formatting
|
||||||
|
* @param body - The chat completion request
|
||||||
|
* @param hasTools - Whether tools are present in the request
|
||||||
|
* @returns Context object for response handling
|
||||||
|
*/
|
||||||
|
public createChatCompletionContext(
|
||||||
|
body: ChatCompletionRequest,
|
||||||
|
hasTools: boolean
|
||||||
|
): ChatCompletionContext {
|
||||||
|
return {
|
||||||
|
requestId: `chatcmpl-${Math.random().toString(36).slice(2)}`,
|
||||||
|
modelName: body.model || 'copilot',
|
||||||
|
created: Math.floor(Date.now() / 1000),
|
||||||
|
hasTools,
|
||||||
|
isStreaming: body.stream !== false
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
39
src/services/request-processor.ts
Normal file
39
src/services/request-processor.ts
Normal file
|
|
@ -0,0 +1,39 @@
|
||||||
|
import type { ChatCompletionRequest, Tool } from '../messages';
|
||||||
|
import type * as vscode from 'vscode';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Validates and extracts tool configurations from request body
|
||||||
|
* @param body - The parsed request body
|
||||||
|
* @returns Combined tools array including converted deprecated functions
|
||||||
|
*/
|
||||||
|
export function extractAndMergeTools(body: ChatCompletionRequest): Tool[] {
|
||||||
|
const tools = body.tools || [];
|
||||||
|
|
||||||
|
if (body.functions) {
|
||||||
|
// Convert deprecated functions to tools format
|
||||||
|
const convertedTools: Tool[] = body.functions.map(func => ({
|
||||||
|
type: 'function' as const,
|
||||||
|
function: func
|
||||||
|
}));
|
||||||
|
return [...tools, ...convertedTools];
|
||||||
|
}
|
||||||
|
|
||||||
|
return tools;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates VS Code Language Model request options from processed context
|
||||||
|
* @param lmTools - Array of Language Model compatible tools
|
||||||
|
* @returns Request options object for the Language Model API
|
||||||
|
*/
|
||||||
|
export function createLanguageModelRequestOptions(
|
||||||
|
lmTools: vscode.LanguageModelChatTool[]
|
||||||
|
): vscode.LanguageModelChatRequestOptions {
|
||||||
|
const options: vscode.LanguageModelChatRequestOptions = {};
|
||||||
|
|
||||||
|
if (lmTools.length > 0) {
|
||||||
|
options.tools = lmTools;
|
||||||
|
}
|
||||||
|
|
||||||
|
return options;
|
||||||
|
}
|
||||||
158
src/services/response-formatter.ts
Normal file
158
src/services/response-formatter.ts
Normal file
|
|
@ -0,0 +1,158 @@
|
||||||
|
import type * as vscode from 'vscode';
|
||||||
|
import type { ServerResponse } from 'http';
|
||||||
|
import type {
|
||||||
|
OpenAIResponse,
|
||||||
|
OpenAIChoice,
|
||||||
|
OpenAIMessage,
|
||||||
|
OpenAIToolCall,
|
||||||
|
ChatCompletionContext,
|
||||||
|
ProcessedResponseData
|
||||||
|
} from '../types/openai-types';
|
||||||
|
import type { ChatCompletionRequest } from '../messages';
|
||||||
|
import { writeJson } from '../http/utils';
|
||||||
|
import { verbose } from '../log';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Processes VS Code Language Model stream parts into structured data
|
||||||
|
* @param response - The VS Code Language Model chat response
|
||||||
|
* @returns Promise resolving to processed content and tool calls
|
||||||
|
*/
|
||||||
|
export async function processLanguageModelResponse(
|
||||||
|
response: vscode.LanguageModelChatResponse
|
||||||
|
): Promise<ProcessedResponseData> {
|
||||||
|
let content = '';
|
||||||
|
const toolCalls: OpenAIToolCall[] = [];
|
||||||
|
|
||||||
|
for await (const part of response.stream) {
|
||||||
|
if (isToolCallPart(part)) {
|
||||||
|
const toolCall: OpenAIToolCall = {
|
||||||
|
id: part.callId,
|
||||||
|
type: 'function',
|
||||||
|
function: {
|
||||||
|
name: part.name,
|
||||||
|
arguments: JSON.stringify(part.input)
|
||||||
|
}
|
||||||
|
};
|
||||||
|
toolCalls.push(toolCall);
|
||||||
|
} else if (isTextPart(part)) {
|
||||||
|
content += extractTextContent(part);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const finishReason: OpenAIChoice['finish_reason'] = toolCalls.length > 0 ? 'tool_calls' : 'stop';
|
||||||
|
|
||||||
|
return {
|
||||||
|
content,
|
||||||
|
toolCalls,
|
||||||
|
finishReason
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates an OpenAI-compatible response message
|
||||||
|
* @param data - The processed response data
|
||||||
|
* @param requestBody - Original request body for backward compatibility
|
||||||
|
* @returns OpenAI message object
|
||||||
|
*/
|
||||||
|
export function createOpenAIMessage(
|
||||||
|
data: ProcessedResponseData,
|
||||||
|
requestBody?: ChatCompletionRequest
|
||||||
|
): OpenAIMessage {
|
||||||
|
const baseMessage = {
|
||||||
|
role: 'assistant' as const,
|
||||||
|
content: data.toolCalls.length > 0 ? null : data.content,
|
||||||
|
};
|
||||||
|
|
||||||
|
// Add tool_calls if present
|
||||||
|
if (data.toolCalls.length > 0) {
|
||||||
|
const messageWithTools = {
|
||||||
|
...baseMessage,
|
||||||
|
tool_calls: data.toolCalls,
|
||||||
|
};
|
||||||
|
|
||||||
|
// For backward compatibility, also add function_call if there's exactly one tool call
|
||||||
|
if (data.toolCalls.length === 1 && requestBody?.function_call !== undefined) {
|
||||||
|
return {
|
||||||
|
...messageWithTools,
|
||||||
|
function_call: {
|
||||||
|
name: data.toolCalls[0].function.name,
|
||||||
|
arguments: data.toolCalls[0].function.arguments
|
||||||
|
}
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
return messageWithTools;
|
||||||
|
}
|
||||||
|
|
||||||
|
return baseMessage;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sends a complete (non-streaming) OpenAI-compatible response
|
||||||
|
* @param res - HTTP response object
|
||||||
|
* @param context - Chat completion context
|
||||||
|
* @param data - Processed response data
|
||||||
|
* @param requestBody - Original request body
|
||||||
|
*/
|
||||||
|
export function sendCompletionResponse(
|
||||||
|
res: ServerResponse,
|
||||||
|
context: ChatCompletionContext,
|
||||||
|
data: ProcessedResponseData,
|
||||||
|
requestBody?: ChatCompletionRequest
|
||||||
|
): void {
|
||||||
|
const message = createOpenAIMessage(data, requestBody);
|
||||||
|
|
||||||
|
const responseObj: OpenAIResponse = {
|
||||||
|
id: context.requestId,
|
||||||
|
object: 'chat.completion',
|
||||||
|
created: context.created,
|
||||||
|
model: context.modelName,
|
||||||
|
choices: [{
|
||||||
|
index: 0,
|
||||||
|
message,
|
||||||
|
finish_reason: data.finishReason,
|
||||||
|
}],
|
||||||
|
usage: {
|
||||||
|
prompt_tokens: 0, // VS Code API doesn't provide token counts
|
||||||
|
completion_tokens: 0,
|
||||||
|
total_tokens: 0
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
verbose(`Non-stream complete len=${data.content.length} tool_calls=${data.toolCalls.length}`);
|
||||||
|
writeJson(res, 200, responseObj);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Type guard for VS Code LanguageModelToolCallPart
|
||||||
|
*/
|
||||||
|
function isToolCallPart(part: unknown): part is vscode.LanguageModelToolCallPart {
|
||||||
|
return part !== null &&
|
||||||
|
typeof part === 'object' &&
|
||||||
|
'callId' in part &&
|
||||||
|
'name' in part &&
|
||||||
|
'input' in part;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Type guard for text content parts
|
||||||
|
*/
|
||||||
|
function isTextPart(part: unknown): boolean {
|
||||||
|
return typeof part === 'string' ||
|
||||||
|
(part !== null && typeof part === 'object' && 'value' in part);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extracts text content from various part types
|
||||||
|
*/
|
||||||
|
function extractTextContent(part: unknown): string {
|
||||||
|
if (typeof part === 'string') {
|
||||||
|
return part;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (part !== null && typeof part === 'object' && 'value' in part) {
|
||||||
|
return String((part as { value: unknown }).value) || '';
|
||||||
|
}
|
||||||
|
|
||||||
|
return '';
|
||||||
|
}
|
||||||
190
src/services/streaming-handler.ts
Normal file
190
src/services/streaming-handler.ts
Normal file
|
|
@ -0,0 +1,190 @@
|
||||||
|
import type * as vscode from 'vscode';
|
||||||
|
import type { ServerResponse } from 'http';
|
||||||
|
import type {
|
||||||
|
OpenAIResponse,
|
||||||
|
OpenAIToolCall,
|
||||||
|
ChatCompletionContext
|
||||||
|
} from '../types/openai-types';
|
||||||
|
import type { ChatCompletionRequest } from '../messages';
|
||||||
|
import { verbose } from '../log';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Handles Server-Sent Events streaming for OpenAI-compatible chat completions
|
||||||
|
*/
|
||||||
|
export class StreamingResponseHandler {
|
||||||
|
private readonly response: ServerResponse;
|
||||||
|
private readonly context: ChatCompletionContext;
|
||||||
|
private readonly requestBody?: ChatCompletionRequest;
|
||||||
|
|
||||||
|
constructor(
|
||||||
|
response: ServerResponse,
|
||||||
|
context: ChatCompletionContext,
|
||||||
|
requestBody?: ChatCompletionRequest
|
||||||
|
) {
|
||||||
|
this.response = response;
|
||||||
|
this.context = context;
|
||||||
|
this.requestBody = requestBody;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Initializes the SSE stream with proper headers
|
||||||
|
*/
|
||||||
|
public initializeStream(): void {
|
||||||
|
this.response.writeHead(200, {
|
||||||
|
'Content-Type': 'text/event-stream',
|
||||||
|
'Cache-Control': 'no-cache',
|
||||||
|
'Connection': 'keep-alive',
|
||||||
|
});
|
||||||
|
|
||||||
|
verbose(`SSE start id=${this.context.requestId}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Processes the Language Model response stream and sends SSE chunks
|
||||||
|
* @param languageModelResponse - VS Code Language Model response
|
||||||
|
*/
|
||||||
|
public async processAndStreamResponse(
|
||||||
|
languageModelResponse: vscode.LanguageModelChatResponse
|
||||||
|
): Promise<void> {
|
||||||
|
const toolCalls: OpenAIToolCall[] = [];
|
||||||
|
|
||||||
|
for await (const part of languageModelResponse.stream) {
|
||||||
|
if (this.isToolCallPart(part)) {
|
||||||
|
const toolCall = this.createToolCallFromPart(part);
|
||||||
|
toolCalls.push(toolCall);
|
||||||
|
this.sendToolCallChunk(toolCall);
|
||||||
|
} else if (this.isTextPart(part)) {
|
||||||
|
const content = this.extractTextContent(part);
|
||||||
|
if (content) {
|
||||||
|
this.sendContentChunk(content);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
this.sendFinalChunk(toolCalls.length > 0 ? 'tool_calls' : 'stop');
|
||||||
|
this.endStream();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sends a content delta chunk
|
||||||
|
*/
|
||||||
|
private sendContentChunk(content: string): void {
|
||||||
|
const chunkResponse: OpenAIResponse = {
|
||||||
|
id: this.context.requestId,
|
||||||
|
object: 'chat.completion.chunk',
|
||||||
|
created: this.context.created,
|
||||||
|
model: this.context.modelName,
|
||||||
|
choices: [{
|
||||||
|
index: 0,
|
||||||
|
delta: { content },
|
||||||
|
finish_reason: null
|
||||||
|
}]
|
||||||
|
};
|
||||||
|
|
||||||
|
this.writeSSEData(chunkResponse);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sends a tool call chunk
|
||||||
|
*/
|
||||||
|
private sendToolCallChunk(toolCall: OpenAIToolCall): void {
|
||||||
|
const chunkResponse: OpenAIResponse = {
|
||||||
|
id: this.context.requestId,
|
||||||
|
object: 'chat.completion.chunk',
|
||||||
|
created: this.context.created,
|
||||||
|
model: this.context.modelName,
|
||||||
|
choices: [{
|
||||||
|
index: 0,
|
||||||
|
delta: {
|
||||||
|
tool_calls: [toolCall]
|
||||||
|
},
|
||||||
|
finish_reason: null
|
||||||
|
}]
|
||||||
|
};
|
||||||
|
|
||||||
|
this.writeSSEData(chunkResponse);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sends the final completion chunk with finish reason
|
||||||
|
*/
|
||||||
|
private sendFinalChunk(finishReason: 'stop' | 'tool_calls'): void {
|
||||||
|
const finalChunkResponse: OpenAIResponse = {
|
||||||
|
id: this.context.requestId,
|
||||||
|
object: 'chat.completion.chunk',
|
||||||
|
created: this.context.created,
|
||||||
|
model: this.context.modelName,
|
||||||
|
choices: [{
|
||||||
|
index: 0,
|
||||||
|
delta: {},
|
||||||
|
finish_reason: finishReason
|
||||||
|
}]
|
||||||
|
};
|
||||||
|
|
||||||
|
this.writeSSEData(finalChunkResponse);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Ends the SSE stream
|
||||||
|
*/
|
||||||
|
private endStream(): void {
|
||||||
|
verbose(`SSE end id=${this.context.requestId}`);
|
||||||
|
this.response.write('data: [DONE]\n\n');
|
||||||
|
this.response.end();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Writes data to the SSE stream
|
||||||
|
*/
|
||||||
|
private writeSSEData(data: OpenAIResponse): void {
|
||||||
|
this.response.write(`data: ${JSON.stringify(data)}\n\n`);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates an OpenAI tool call from VS Code Language Model part
|
||||||
|
*/
|
||||||
|
private createToolCallFromPart(part: vscode.LanguageModelToolCallPart): OpenAIToolCall {
|
||||||
|
return {
|
||||||
|
id: part.callId,
|
||||||
|
type: 'function',
|
||||||
|
function: {
|
||||||
|
name: part.name,
|
||||||
|
arguments: JSON.stringify(part.input)
|
||||||
|
}
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Type guard for VS Code LanguageModelToolCallPart
|
||||||
|
*/
|
||||||
|
private isToolCallPart(part: unknown): part is vscode.LanguageModelToolCallPart {
|
||||||
|
return part !== null &&
|
||||||
|
typeof part === 'object' &&
|
||||||
|
'callId' in part &&
|
||||||
|
'name' in part &&
|
||||||
|
'input' in part;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Type guard for text content parts
|
||||||
|
*/
|
||||||
|
private isTextPart(part: unknown): boolean {
|
||||||
|
return typeof part === 'string' ||
|
||||||
|
(part !== null && typeof part === 'object' && 'value' in part);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Extracts text content from various part types
|
||||||
|
*/
|
||||||
|
private extractTextContent(part: unknown): string {
|
||||||
|
if (typeof part === 'string') {
|
||||||
|
return part;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (part !== null && typeof part === 'object' && 'value' in part) {
|
||||||
|
return String((part as { value: unknown }).value) || '';
|
||||||
|
}
|
||||||
|
|
||||||
|
return '';
|
||||||
|
}
|
||||||
|
}
|
||||||
81
src/types/openai-types.ts
Normal file
81
src/types/openai-types.ts
Normal file
|
|
@ -0,0 +1,81 @@
|
||||||
|
import type * as vscode from 'vscode';
|
||||||
|
import type { Tool } from '../messages';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* OpenAI API compatible types for request and response handling
|
||||||
|
*/
|
||||||
|
|
||||||
|
export interface OpenAIToolCall {
|
||||||
|
readonly id: string;
|
||||||
|
readonly type: 'function';
|
||||||
|
readonly function: {
|
||||||
|
readonly name: string;
|
||||||
|
readonly arguments: string;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface OpenAIMessage {
|
||||||
|
readonly role: 'assistant';
|
||||||
|
readonly content: string | null;
|
||||||
|
readonly tool_calls?: OpenAIToolCall[];
|
||||||
|
readonly function_call?: {
|
||||||
|
readonly name: string;
|
||||||
|
readonly arguments: string;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface OpenAIChoice {
|
||||||
|
readonly index: number;
|
||||||
|
readonly message?: OpenAIMessage;
|
||||||
|
readonly delta?: Partial<OpenAIMessage>;
|
||||||
|
readonly finish_reason: 'stop' | 'length' | 'tool_calls' | 'content_filter' | 'function_call' | null;
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface OpenAIResponse {
|
||||||
|
readonly id: string;
|
||||||
|
readonly object: 'chat.completion' | 'chat.completion.chunk';
|
||||||
|
readonly created: number;
|
||||||
|
readonly model: string;
|
||||||
|
readonly choices: OpenAIChoice[];
|
||||||
|
readonly usage?: {
|
||||||
|
readonly prompt_tokens: number;
|
||||||
|
readonly completion_tokens: number;
|
||||||
|
readonly total_tokens: number;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface ChatCompletionContext {
|
||||||
|
readonly requestId: string;
|
||||||
|
readonly modelName: string;
|
||||||
|
readonly created: number;
|
||||||
|
readonly hasTools: boolean;
|
||||||
|
readonly isStreaming: boolean;
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface ProcessedResponseData {
|
||||||
|
readonly content: string;
|
||||||
|
readonly toolCalls: OpenAIToolCall[];
|
||||||
|
readonly finishReason: OpenAIChoice['finish_reason'];
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Validates that the request model is available and properly configured
|
||||||
|
*/
|
||||||
|
export interface ModelValidationResult {
|
||||||
|
readonly isValid: boolean;
|
||||||
|
readonly statusCode?: number;
|
||||||
|
readonly errorType?: string;
|
||||||
|
readonly errorCode?: string;
|
||||||
|
readonly reason?: string;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Consolidated request processing context for chat completions
|
||||||
|
*/
|
||||||
|
export interface RequestProcessingContext {
|
||||||
|
readonly model: vscode.LanguageModelChat;
|
||||||
|
readonly lmMessages: vscode.LanguageModelChatMessage[];
|
||||||
|
readonly lmTools: vscode.LanguageModelChatTool[];
|
||||||
|
readonly requestOptions: vscode.LanguageModelChatRequestOptions;
|
||||||
|
readonly mergedTools: Tool[];
|
||||||
|
}
|
||||||
|
|
@ -9,6 +9,7 @@
|
||||||
"sourceMap": true,
|
"sourceMap": true,
|
||||||
"esModuleInterop": true,
|
"esModuleInterop": true,
|
||||||
"allowSyntheticDefaultImports": true,
|
"allowSyntheticDefaultImports": true,
|
||||||
|
"forceConsistentCasingInFileNames": true,
|
||||||
"types": ["node", "vscode"]
|
"types": ["node", "vscode"]
|
||||||
},
|
},
|
||||||
"include": ["src/**/*.ts"]
|
"include": ["src/**/*.ts"]
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue