mirror of
https://github.com/larsbaunwall/vscode-copilot-bridge.git
synced 2025-10-05 22:22:59 +00:00
Merge branch 'main' of github.com:larsbaunwall/vscode-copilot-bridge
This commit is contained in:
commit
c4c5032b90
14 changed files with 959 additions and 86 deletions
|
|
@ -1,14 +1,20 @@
|
|||
import * as vscode from 'vscode';
|
||||
import type { IncomingMessage, ServerResponse } from 'http';
|
||||
import { state } from '../../state';
|
||||
import { getBridgeConfig } from '../../config';
|
||||
import { isChatCompletionRequest, normalizeMessagesLM } from '../../messages';
|
||||
import { getModel, hasLMApi } from '../../models';
|
||||
import { readJson, writeErrorResponse, writeJson } from '../utils';
|
||||
import { isChatCompletionRequest, type ChatCompletionRequest } from '../../messages';
|
||||
import { readJson, writeErrorResponse } from '../utils';
|
||||
import { verbose } from '../../log';
|
||||
import { ModelService } from '../../services/model-service';
|
||||
import { StreamingResponseHandler } from '../../services/streaming-handler';
|
||||
import { processLanguageModelResponse, sendCompletionResponse } from '../../services/response-formatter';
|
||||
import type { ChatCompletionContext } from '../../types/openai-types';
|
||||
|
||||
export const handleChatCompletion = async (req: IncomingMessage, res: ServerResponse): Promise<void> => {
|
||||
const config = getBridgeConfig();
|
||||
/**
|
||||
* Handles OpenAI-compatible chat completion requests with support for streaming and tool calling
|
||||
* @param req - HTTP request object
|
||||
* @param res - HTTP response object
|
||||
*/
|
||||
export async function handleChatCompletion(req: IncomingMessage, res: ServerResponse): Promise<void> {
|
||||
state.activeRequests++;
|
||||
verbose(`Request started (active=${state.activeRequests})`);
|
||||
|
||||
|
|
@ -18,69 +24,75 @@ export const handleChatCompletion = async (req: IncomingMessage, res: ServerResp
|
|||
return writeErrorResponse(res, 400, 'invalid request', 'invalid_request_error', 'invalid_payload');
|
||||
}
|
||||
|
||||
const requestedModel = body.model;
|
||||
const stream = body.stream !== false; // default true
|
||||
const model = await getModel(false, requestedModel);
|
||||
|
||||
if (!model) {
|
||||
const hasLM = hasLMApi();
|
||||
if (requestedModel && hasLM) {
|
||||
state.lastReason = 'not_found';
|
||||
return writeErrorResponse(res, 404, 'model not found', 'invalid_request_error', 'model_not_found', 'not_found');
|
||||
}
|
||||
const reason = !hasLM ? 'missing_language_model_api' : (state.lastReason || 'copilot_model_unavailable');
|
||||
return writeErrorResponse(res, 503, 'Copilot unavailable', 'server_error', 'copilot_unavailable', reason);
|
||||
const modelService = new ModelService();
|
||||
|
||||
// Validate model availability
|
||||
const modelValidation = await modelService.validateModel(body.model);
|
||||
if (!modelValidation.isValid) {
|
||||
const errorMessage = body.model ? 'model not found' : 'Copilot unavailable';
|
||||
return writeErrorResponse(
|
||||
res,
|
||||
modelValidation.statusCode!,
|
||||
errorMessage,
|
||||
modelValidation.errorType!,
|
||||
modelValidation.errorCode!,
|
||||
modelValidation.reason || 'unknown_error'
|
||||
);
|
||||
}
|
||||
|
||||
const lmMessages = normalizeMessagesLM(body.messages, config.historyWindow) as vscode.LanguageModelChatMessage[];
|
||||
verbose(`LM request via API model=${model.family || model.id || model.name || 'unknown'}`);
|
||||
// Create processing context
|
||||
const context = await modelService.createProcessingContext(body);
|
||||
const chatContext = modelService.createChatCompletionContext(body, context.lmTools.length > 0);
|
||||
|
||||
verbose(`LM request via API model=${context.model.family || context.model.id || context.model.name || 'unknown'} tools=${context.lmTools.length}`);
|
||||
|
||||
const cts = new vscode.CancellationTokenSource();
|
||||
const response = await model.sendRequest(lmMessages, {}, cts.token);
|
||||
await sendResponse(res, response, stream);
|
||||
} catch (e) {
|
||||
const msg = e instanceof Error ? e.message : String(e);
|
||||
writeErrorResponse(res, 500, msg || 'internal_error', 'server_error', 'internal_error');
|
||||
// Execute the Language Model request
|
||||
const cancellationToken = new vscode.CancellationTokenSource();
|
||||
const response = await context.model.sendRequest(
|
||||
context.lmMessages,
|
||||
context.requestOptions,
|
||||
cancellationToken.token
|
||||
);
|
||||
|
||||
// Handle response based on streaming preference
|
||||
if (chatContext.isStreaming) {
|
||||
await handleStreamingResponse(res, response, chatContext, body);
|
||||
} else {
|
||||
await handleNonStreamingResponse(res, response, chatContext, body);
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
const errorMessage = error instanceof Error ? error.message : String(error);
|
||||
writeErrorResponse(res, 500, errorMessage || 'internal_error', 'server_error', 'internal_error');
|
||||
} finally {
|
||||
state.activeRequests--;
|
||||
verbose(`Request complete (active=${state.activeRequests})`);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
const sendResponse = async (res: ServerResponse, response: vscode.LanguageModelChatResponse, stream: boolean): Promise<void> => {
|
||||
if (stream) {
|
||||
res.writeHead(200, {
|
||||
'Content-Type': 'text/event-stream',
|
||||
'Cache-Control': 'no-cache',
|
||||
'Connection': 'keep-alive',
|
||||
});
|
||||
const id = `cmp_${Math.random().toString(36).slice(2)}`;
|
||||
verbose(`SSE start id=${id}`);
|
||||
for await (const fragment of response.text) {
|
||||
res.write(`data: ${JSON.stringify({
|
||||
id,
|
||||
object: 'chat.completion.chunk',
|
||||
choices: [{ index: 0, delta: { content: fragment } }],
|
||||
})}\n\n`);
|
||||
}
|
||||
verbose(`SSE end id=${id}`);
|
||||
res.write('data: [DONE]\n\n');
|
||||
res.end();
|
||||
return;
|
||||
}
|
||||
/**
|
||||
* Handles streaming response using Server-Sent Events
|
||||
*/
|
||||
async function handleStreamingResponse(
|
||||
res: ServerResponse,
|
||||
response: vscode.LanguageModelChatResponse,
|
||||
chatContext: ChatCompletionContext,
|
||||
requestBody: ChatCompletionRequest
|
||||
): Promise<void> {
|
||||
const streamHandler = new StreamingResponseHandler(res, chatContext, requestBody);
|
||||
streamHandler.initializeStream();
|
||||
await streamHandler.processAndStreamResponse(response);
|
||||
}
|
||||
|
||||
let content = '';
|
||||
for await (const fragment of response.text) content += fragment;
|
||||
verbose(`Non-stream complete len=${content.length}`);
|
||||
writeJson(res, 200, {
|
||||
id: `cmpl_${Math.random().toString(36).slice(2)}`,
|
||||
object: 'chat.completion',
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message: { role: 'assistant', content },
|
||||
finish_reason: 'stop',
|
||||
},
|
||||
],
|
||||
});
|
||||
};
|
||||
/**
|
||||
* Handles non-streaming response with complete data
|
||||
*/
|
||||
async function handleNonStreamingResponse(
|
||||
res: ServerResponse,
|
||||
response: vscode.LanguageModelChatResponse,
|
||||
chatContext: ChatCompletionContext,
|
||||
requestBody: ChatCompletionRequest
|
||||
): Promise<void> {
|
||||
const processedData = await processLanguageModelResponse(response);
|
||||
sendCompletionResponse(res, chatContext, processedData, requestBody);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,19 +5,57 @@ import { hasLMApi, getModel } from '../../models';
|
|||
import { state } from '../../state';
|
||||
import { verbose } from '../../log';
|
||||
|
||||
interface HealthResponse {
|
||||
readonly ok: boolean;
|
||||
readonly status: string;
|
||||
readonly copilot: string;
|
||||
readonly reason?: string;
|
||||
readonly version: string;
|
||||
readonly features: {
|
||||
readonly chat_completions: boolean;
|
||||
readonly streaming: boolean;
|
||||
readonly tool_calling: boolean;
|
||||
readonly function_calling: boolean;
|
||||
readonly models_list: boolean;
|
||||
};
|
||||
readonly active_requests: number;
|
||||
readonly model_attempted?: boolean;
|
||||
}
|
||||
|
||||
export const handleHealthCheck = async (res: ServerResponse, v: boolean): Promise<void> => {
|
||||
const hasLM = hasLMApi();
|
||||
|
||||
// Attempt model resolution if cache is empty and verbose logging is enabled
|
||||
if (!state.modelCache && v) {
|
||||
verbose(`Healthz: model=${state.modelCache ? 'present' : 'missing'} lmApi=${hasLM ? 'ok' : 'missing'}`);
|
||||
await getModel();
|
||||
try {
|
||||
await getModel();
|
||||
} catch (e) {
|
||||
const msg = e instanceof Error ? e.message : String(e);
|
||||
verbose(`Health check model resolution failed: ${msg}`);
|
||||
}
|
||||
}
|
||||
|
||||
const unavailableReason = state.modelCache
|
||||
? undefined
|
||||
: (!hasLM ? 'missing_language_model_api' : (state.lastReason || 'copilot_model_unavailable'));
|
||||
writeJson(res, 200, {
|
||||
|
||||
const response: HealthResponse = {
|
||||
ok: true,
|
||||
status: 'operational',
|
||||
copilot: state.modelCache ? 'ok' : 'unavailable',
|
||||
reason: unavailableReason,
|
||||
version: vscode.version,
|
||||
});
|
||||
features: {
|
||||
chat_completions: true,
|
||||
streaming: true,
|
||||
tool_calling: true,
|
||||
function_calling: true, // deprecated but supported
|
||||
models_list: true
|
||||
},
|
||||
active_requests: state.activeRequests,
|
||||
model_attempted: state.modelAttempted
|
||||
};
|
||||
|
||||
writeJson(res, 200, response);
|
||||
};
|
||||
|
|
|
|||
|
|
@ -1,20 +1,47 @@
|
|||
import { writeJson } from '../utils';
|
||||
import { writeJson, writeErrorResponse } from '../utils';
|
||||
import { listCopilotModels } from '../../models';
|
||||
import { verbose } from '../../log';
|
||||
import type { ServerResponse } from 'http';
|
||||
|
||||
interface ModelObject {
|
||||
readonly id: string;
|
||||
readonly object: 'model';
|
||||
readonly created: number;
|
||||
readonly owned_by: string;
|
||||
readonly permission: readonly unknown[];
|
||||
readonly root: string;
|
||||
readonly parent: null;
|
||||
}
|
||||
|
||||
interface ModelsListResponse {
|
||||
readonly object: 'list';
|
||||
readonly data: readonly ModelObject[];
|
||||
}
|
||||
|
||||
export const handleModelsRequest = async (res: ServerResponse): Promise<void> => {
|
||||
try {
|
||||
const models = await listCopilotModels();
|
||||
writeJson(res, 200, {
|
||||
data: models.map((id: string) => ({
|
||||
id,
|
||||
object: 'model',
|
||||
owned_by: 'vscode-bridge',
|
||||
})),
|
||||
});
|
||||
} catch {
|
||||
writeJson(res, 200, {
|
||||
data: [],
|
||||
});
|
||||
const modelIds = await listCopilotModels();
|
||||
verbose(`Models listed: ${modelIds.length} available`);
|
||||
|
||||
const models: ModelObject[] = modelIds.map((id: string) => ({
|
||||
id,
|
||||
object: 'model' as const,
|
||||
created: Math.floor(Date.now() / 1000),
|
||||
owned_by: 'copilot',
|
||||
permission: [],
|
||||
root: id,
|
||||
parent: null,
|
||||
}));
|
||||
|
||||
const response: ModelsListResponse = {
|
||||
object: 'list',
|
||||
data: models,
|
||||
};
|
||||
|
||||
writeJson(res, 200, response);
|
||||
} catch (e) {
|
||||
const msg = e instanceof Error ? e.message : String(e);
|
||||
verbose(`Models request failed: ${msg}`);
|
||||
writeErrorResponse(res, 500, msg || 'Failed to list models', 'server_error', 'internal_error');
|
||||
}
|
||||
};
|
||||
|
|
|
|||
|
|
@ -1,8 +1,12 @@
|
|||
import * as vscode from 'vscode';
|
||||
|
||||
export interface ChatMessage {
|
||||
readonly role: 'system' | 'user' | 'assistant';
|
||||
readonly content: string | MessageContent[];
|
||||
readonly role: 'system' | 'user' | 'assistant' | 'tool';
|
||||
readonly content?: string | MessageContent[] | null;
|
||||
readonly name?: string;
|
||||
readonly tool_calls?: ToolCall[];
|
||||
readonly tool_call_id?: string;
|
||||
readonly function_call?: FunctionCall;
|
||||
}
|
||||
|
||||
export interface MessageContent {
|
||||
|
|
@ -11,22 +15,87 @@ export interface MessageContent {
|
|||
readonly [key: string]: unknown;
|
||||
}
|
||||
|
||||
export interface ToolCall {
|
||||
readonly id: string;
|
||||
readonly type: 'function';
|
||||
readonly function: FunctionCall;
|
||||
}
|
||||
|
||||
export interface FunctionCall {
|
||||
readonly name: string;
|
||||
readonly arguments: string;
|
||||
}
|
||||
|
||||
export interface Tool {
|
||||
readonly type: 'function';
|
||||
readonly function: ToolFunction;
|
||||
}
|
||||
|
||||
export interface ToolFunction {
|
||||
readonly name: string;
|
||||
readonly description?: string;
|
||||
readonly parameters?: object;
|
||||
}
|
||||
|
||||
export interface ChatCompletionRequest {
|
||||
readonly model?: string;
|
||||
readonly messages: ChatMessage[];
|
||||
readonly stream?: boolean;
|
||||
readonly tools?: Tool[];
|
||||
readonly tool_choice?: 'none' | 'auto' | 'required' | { type: 'function'; function: { name: string } };
|
||||
readonly parallel_tool_calls?: boolean;
|
||||
readonly functions?: ToolFunction[]; // Deprecated, use tools instead
|
||||
readonly function_call?: 'none' | 'auto' | { name: string }; // Deprecated, use tool_choice instead
|
||||
readonly temperature?: number;
|
||||
readonly top_p?: number;
|
||||
readonly n?: number;
|
||||
readonly stop?: string | string[];
|
||||
readonly max_tokens?: number;
|
||||
readonly max_completion_tokens?: number;
|
||||
readonly presence_penalty?: number;
|
||||
readonly frequency_penalty?: number;
|
||||
readonly logit_bias?: Record<string, number>;
|
||||
readonly logprobs?: boolean;
|
||||
readonly top_logprobs?: number;
|
||||
readonly user?: string;
|
||||
readonly seed?: number;
|
||||
readonly response_format?: {
|
||||
readonly type: 'text' | 'json_object' | 'json_schema';
|
||||
readonly json_schema?: {
|
||||
readonly name: string;
|
||||
readonly schema: object;
|
||||
readonly strict?: boolean;
|
||||
};
|
||||
};
|
||||
readonly [key: string]: unknown;
|
||||
}
|
||||
|
||||
const VALID_ROLES = ['system', 'user', 'assistant'] as const;
|
||||
const VALID_ROLES = ['system', 'user', 'assistant', 'tool'] as const;
|
||||
type Role = typeof VALID_ROLES[number];
|
||||
const isValidRole = (role: unknown): role is Role => typeof role === 'string' && VALID_ROLES.includes(role as Role);
|
||||
|
||||
export const isChatMessage = (msg: unknown): msg is ChatMessage => {
|
||||
if (typeof msg !== 'object' || msg === null) return false;
|
||||
const candidate = msg as Record<string, unknown>;
|
||||
if (!('role' in candidate) || !('content' in candidate)) return false;
|
||||
return isValidRole(candidate.role) && candidate.content !== undefined && candidate.content !== null;
|
||||
if (!('role' in candidate)) return false;
|
||||
if (!isValidRole(candidate.role)) return false;
|
||||
|
||||
// Tool messages require tool_call_id and content
|
||||
if (candidate.role === 'tool') {
|
||||
return typeof candidate.tool_call_id === 'string' &&
|
||||
(typeof candidate.content === 'string' || candidate.content === null);
|
||||
}
|
||||
|
||||
// Assistant messages can have content and/or tool_calls/function_call
|
||||
if (candidate.role === 'assistant') {
|
||||
const hasContent = candidate.content !== undefined;
|
||||
const hasToolCalls = Array.isArray(candidate.tool_calls);
|
||||
const hasFunctionCall = typeof candidate.function_call === 'object' && candidate.function_call !== null;
|
||||
return hasContent || hasToolCalls || hasFunctionCall;
|
||||
}
|
||||
|
||||
// System and user messages must have content
|
||||
return candidate.content !== undefined && candidate.content !== null;
|
||||
};
|
||||
|
||||
export const isChatCompletionRequest = (body: unknown): body is ChatCompletionRequest => {
|
||||
|
|
@ -37,6 +106,25 @@ export const isChatCompletionRequest = (body: unknown): body is ChatCompletionRe
|
|||
return Array.isArray(messages) && messages.length > 0 && messages.every(isChatMessage);
|
||||
};
|
||||
|
||||
// Convert OpenAI tools to VS Code Language Model tools
|
||||
export const convertOpenAIToolsToLM = (tools?: Tool[]): vscode.LanguageModelChatTool[] => {
|
||||
if (!tools) return [];
|
||||
return tools.map(tool => ({
|
||||
name: tool.function.name,
|
||||
description: tool.function.description || '',
|
||||
inputSchema: tool.function.parameters
|
||||
}));
|
||||
};
|
||||
|
||||
// Convert deprecated functions to tools format
|
||||
export const convertFunctionsToTools = (functions?: ToolFunction[]): Tool[] => {
|
||||
if (!functions) return [];
|
||||
return functions.map(func => ({
|
||||
type: 'function' as const,
|
||||
function: func
|
||||
}));
|
||||
};
|
||||
|
||||
const toText = (content: unknown): string => {
|
||||
if (typeof content === 'string') return content;
|
||||
if (Array.isArray(content)) return content.map(toText).join('\n');
|
||||
|
|
|
|||
|
|
@ -65,7 +65,8 @@ export const handleModelSelectionError = (error: unknown, family?: string): void
|
|||
|
||||
export const listCopilotModels = async (): Promise<string[]> => {
|
||||
try {
|
||||
const models = await selectChatModels();
|
||||
// Filter for Copilot models only, consistent with getModel behavior
|
||||
const models = await vscode.lm.selectChatModels({ vendor: 'copilot' });
|
||||
const ids = models.map((m: vscode.LanguageModelChat) => {
|
||||
const normalized = m.family || m.id || m.name || 'copilot';
|
||||
return `${normalized}`;
|
||||
|
|
|
|||
99
src/services/model-service.ts
Normal file
99
src/services/model-service.ts
Normal file
|
|
@ -0,0 +1,99 @@
|
|||
import type * as vscode from 'vscode';
|
||||
import type { ChatCompletionRequest } from '../messages';
|
||||
import type {
|
||||
ModelValidationResult,
|
||||
RequestProcessingContext,
|
||||
ChatCompletionContext
|
||||
} from '../types/openai-types';
|
||||
import {
|
||||
extractAndMergeTools,
|
||||
createLanguageModelRequestOptions
|
||||
} from './request-processor';
|
||||
import { getModel, hasLMApi } from '../models';
|
||||
import { normalizeMessagesLM, convertOpenAIToolsToLM } from '../messages';
|
||||
import { getBridgeConfig } from '../config';
|
||||
|
||||
/**
|
||||
* Service for validating models and creating request processing context
|
||||
*/
|
||||
export class ModelService {
|
||||
|
||||
/**
|
||||
* Validates the requested model and returns appropriate error details if invalid
|
||||
* @param requestedModel - The model identifier from the request
|
||||
* @returns Validation result with error details if model is unavailable
|
||||
*/
|
||||
public async validateModel(requestedModel?: string): Promise<ModelValidationResult> {
|
||||
const model = await getModel(false, requestedModel);
|
||||
|
||||
if (!model) {
|
||||
const hasLM = hasLMApi();
|
||||
|
||||
if (requestedModel && hasLM) {
|
||||
return {
|
||||
isValid: false,
|
||||
statusCode: 404,
|
||||
errorType: 'invalid_request_error',
|
||||
errorCode: 'model_not_found',
|
||||
reason: 'not_found'
|
||||
};
|
||||
}
|
||||
|
||||
const reason = !hasLM ? 'missing_language_model_api' : 'copilot_model_unavailable';
|
||||
return {
|
||||
isValid: false,
|
||||
statusCode: 503,
|
||||
errorType: 'server_error',
|
||||
errorCode: 'copilot_unavailable',
|
||||
reason
|
||||
};
|
||||
}
|
||||
|
||||
return { isValid: true };
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a complete request processing context from validated inputs
|
||||
* @param body - The validated chat completion request
|
||||
* @returns Processing context with all required elements for the Language Model API
|
||||
*/
|
||||
public async createProcessingContext(body: ChatCompletionRequest): Promise<RequestProcessingContext> {
|
||||
const model = await getModel(false, body.model);
|
||||
if (!model) {
|
||||
throw new Error('Model validation should be performed before creating processing context');
|
||||
}
|
||||
|
||||
const config = getBridgeConfig();
|
||||
const mergedTools = extractAndMergeTools(body);
|
||||
const lmMessages = normalizeMessagesLM(body.messages, config.historyWindow);
|
||||
const lmTools = convertOpenAIToolsToLM(mergedTools);
|
||||
const requestOptions = createLanguageModelRequestOptions(lmTools);
|
||||
|
||||
return {
|
||||
model,
|
||||
lmMessages: lmMessages as vscode.LanguageModelChatMessage[],
|
||||
lmTools,
|
||||
requestOptions,
|
||||
mergedTools
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates chat completion context for response formatting
|
||||
* @param body - The chat completion request
|
||||
* @param hasTools - Whether tools are present in the request
|
||||
* @returns Context object for response handling
|
||||
*/
|
||||
public createChatCompletionContext(
|
||||
body: ChatCompletionRequest,
|
||||
hasTools: boolean
|
||||
): ChatCompletionContext {
|
||||
return {
|
||||
requestId: `chatcmpl-${Math.random().toString(36).slice(2)}`,
|
||||
modelName: body.model || 'copilot',
|
||||
created: Math.floor(Date.now() / 1000),
|
||||
hasTools,
|
||||
isStreaming: body.stream !== false
|
||||
};
|
||||
}
|
||||
}
|
||||
39
src/services/request-processor.ts
Normal file
39
src/services/request-processor.ts
Normal file
|
|
@ -0,0 +1,39 @@
|
|||
import type { ChatCompletionRequest, Tool } from '../messages';
|
||||
import type * as vscode from 'vscode';
|
||||
|
||||
/**
|
||||
* Validates and extracts tool configurations from request body
|
||||
* @param body - The parsed request body
|
||||
* @returns Combined tools array including converted deprecated functions
|
||||
*/
|
||||
export function extractAndMergeTools(body: ChatCompletionRequest): Tool[] {
|
||||
const tools = body.tools || [];
|
||||
|
||||
if (body.functions) {
|
||||
// Convert deprecated functions to tools format
|
||||
const convertedTools: Tool[] = body.functions.map(func => ({
|
||||
type: 'function' as const,
|
||||
function: func
|
||||
}));
|
||||
return [...tools, ...convertedTools];
|
||||
}
|
||||
|
||||
return tools;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates VS Code Language Model request options from processed context
|
||||
* @param lmTools - Array of Language Model compatible tools
|
||||
* @returns Request options object for the Language Model API
|
||||
*/
|
||||
export function createLanguageModelRequestOptions(
|
||||
lmTools: vscode.LanguageModelChatTool[]
|
||||
): vscode.LanguageModelChatRequestOptions {
|
||||
const options: vscode.LanguageModelChatRequestOptions = {};
|
||||
|
||||
if (lmTools.length > 0) {
|
||||
options.tools = lmTools;
|
||||
}
|
||||
|
||||
return options;
|
||||
}
|
||||
158
src/services/response-formatter.ts
Normal file
158
src/services/response-formatter.ts
Normal file
|
|
@ -0,0 +1,158 @@
|
|||
import type * as vscode from 'vscode';
|
||||
import type { ServerResponse } from 'http';
|
||||
import type {
|
||||
OpenAIResponse,
|
||||
OpenAIChoice,
|
||||
OpenAIMessage,
|
||||
OpenAIToolCall,
|
||||
ChatCompletionContext,
|
||||
ProcessedResponseData
|
||||
} from '../types/openai-types';
|
||||
import type { ChatCompletionRequest } from '../messages';
|
||||
import { writeJson } from '../http/utils';
|
||||
import { verbose } from '../log';
|
||||
|
||||
/**
|
||||
* Processes VS Code Language Model stream parts into structured data
|
||||
* @param response - The VS Code Language Model chat response
|
||||
* @returns Promise resolving to processed content and tool calls
|
||||
*/
|
||||
export async function processLanguageModelResponse(
|
||||
response: vscode.LanguageModelChatResponse
|
||||
): Promise<ProcessedResponseData> {
|
||||
let content = '';
|
||||
const toolCalls: OpenAIToolCall[] = [];
|
||||
|
||||
for await (const part of response.stream) {
|
||||
if (isToolCallPart(part)) {
|
||||
const toolCall: OpenAIToolCall = {
|
||||
id: part.callId,
|
||||
type: 'function',
|
||||
function: {
|
||||
name: part.name,
|
||||
arguments: JSON.stringify(part.input)
|
||||
}
|
||||
};
|
||||
toolCalls.push(toolCall);
|
||||
} else if (isTextPart(part)) {
|
||||
content += extractTextContent(part);
|
||||
}
|
||||
}
|
||||
|
||||
const finishReason: OpenAIChoice['finish_reason'] = toolCalls.length > 0 ? 'tool_calls' : 'stop';
|
||||
|
||||
return {
|
||||
content,
|
||||
toolCalls,
|
||||
finishReason
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates an OpenAI-compatible response message
|
||||
* @param data - The processed response data
|
||||
* @param requestBody - Original request body for backward compatibility
|
||||
* @returns OpenAI message object
|
||||
*/
|
||||
export function createOpenAIMessage(
|
||||
data: ProcessedResponseData,
|
||||
requestBody?: ChatCompletionRequest
|
||||
): OpenAIMessage {
|
||||
const baseMessage = {
|
||||
role: 'assistant' as const,
|
||||
content: data.toolCalls.length > 0 ? null : data.content,
|
||||
};
|
||||
|
||||
// Add tool_calls if present
|
||||
if (data.toolCalls.length > 0) {
|
||||
const messageWithTools = {
|
||||
...baseMessage,
|
||||
tool_calls: data.toolCalls,
|
||||
};
|
||||
|
||||
// For backward compatibility, also add function_call if there's exactly one tool call
|
||||
if (data.toolCalls.length === 1 && requestBody?.function_call !== undefined) {
|
||||
return {
|
||||
...messageWithTools,
|
||||
function_call: {
|
||||
name: data.toolCalls[0].function.name,
|
||||
arguments: data.toolCalls[0].function.arguments
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
return messageWithTools;
|
||||
}
|
||||
|
||||
return baseMessage;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends a complete (non-streaming) OpenAI-compatible response
|
||||
* @param res - HTTP response object
|
||||
* @param context - Chat completion context
|
||||
* @param data - Processed response data
|
||||
* @param requestBody - Original request body
|
||||
*/
|
||||
export function sendCompletionResponse(
|
||||
res: ServerResponse,
|
||||
context: ChatCompletionContext,
|
||||
data: ProcessedResponseData,
|
||||
requestBody?: ChatCompletionRequest
|
||||
): void {
|
||||
const message = createOpenAIMessage(data, requestBody);
|
||||
|
||||
const responseObj: OpenAIResponse = {
|
||||
id: context.requestId,
|
||||
object: 'chat.completion',
|
||||
created: context.created,
|
||||
model: context.modelName,
|
||||
choices: [{
|
||||
index: 0,
|
||||
message,
|
||||
finish_reason: data.finishReason,
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 0, // VS Code API doesn't provide token counts
|
||||
completion_tokens: 0,
|
||||
total_tokens: 0
|
||||
}
|
||||
};
|
||||
|
||||
verbose(`Non-stream complete len=${data.content.length} tool_calls=${data.toolCalls.length}`);
|
||||
writeJson(res, 200, responseObj);
|
||||
}
|
||||
|
||||
/**
|
||||
* Type guard for VS Code LanguageModelToolCallPart
|
||||
*/
|
||||
function isToolCallPart(part: unknown): part is vscode.LanguageModelToolCallPart {
|
||||
return part !== null &&
|
||||
typeof part === 'object' &&
|
||||
'callId' in part &&
|
||||
'name' in part &&
|
||||
'input' in part;
|
||||
}
|
||||
|
||||
/**
|
||||
* Type guard for text content parts
|
||||
*/
|
||||
function isTextPart(part: unknown): boolean {
|
||||
return typeof part === 'string' ||
|
||||
(part !== null && typeof part === 'object' && 'value' in part);
|
||||
}
|
||||
|
||||
/**
|
||||
* Extracts text content from various part types
|
||||
*/
|
||||
function extractTextContent(part: unknown): string {
|
||||
if (typeof part === 'string') {
|
||||
return part;
|
||||
}
|
||||
|
||||
if (part !== null && typeof part === 'object' && 'value' in part) {
|
||||
return String((part as { value: unknown }).value) || '';
|
||||
}
|
||||
|
||||
return '';
|
||||
}
|
||||
190
src/services/streaming-handler.ts
Normal file
190
src/services/streaming-handler.ts
Normal file
|
|
@ -0,0 +1,190 @@
|
|||
import type * as vscode from 'vscode';
|
||||
import type { ServerResponse } from 'http';
|
||||
import type {
|
||||
OpenAIResponse,
|
||||
OpenAIToolCall,
|
||||
ChatCompletionContext
|
||||
} from '../types/openai-types';
|
||||
import type { ChatCompletionRequest } from '../messages';
|
||||
import { verbose } from '../log';
|
||||
|
||||
/**
|
||||
* Handles Server-Sent Events streaming for OpenAI-compatible chat completions
|
||||
*/
|
||||
export class StreamingResponseHandler {
|
||||
private readonly response: ServerResponse;
|
||||
private readonly context: ChatCompletionContext;
|
||||
private readonly requestBody?: ChatCompletionRequest;
|
||||
|
||||
constructor(
|
||||
response: ServerResponse,
|
||||
context: ChatCompletionContext,
|
||||
requestBody?: ChatCompletionRequest
|
||||
) {
|
||||
this.response = response;
|
||||
this.context = context;
|
||||
this.requestBody = requestBody;
|
||||
}
|
||||
|
||||
/**
|
||||
* Initializes the SSE stream with proper headers
|
||||
*/
|
||||
public initializeStream(): void {
|
||||
this.response.writeHead(200, {
|
||||
'Content-Type': 'text/event-stream',
|
||||
'Cache-Control': 'no-cache',
|
||||
'Connection': 'keep-alive',
|
||||
});
|
||||
|
||||
verbose(`SSE start id=${this.context.requestId}`);
|
||||
}
|
||||
|
||||
/**
|
||||
* Processes the Language Model response stream and sends SSE chunks
|
||||
* @param languageModelResponse - VS Code Language Model response
|
||||
*/
|
||||
public async processAndStreamResponse(
|
||||
languageModelResponse: vscode.LanguageModelChatResponse
|
||||
): Promise<void> {
|
||||
const toolCalls: OpenAIToolCall[] = [];
|
||||
|
||||
for await (const part of languageModelResponse.stream) {
|
||||
if (this.isToolCallPart(part)) {
|
||||
const toolCall = this.createToolCallFromPart(part);
|
||||
toolCalls.push(toolCall);
|
||||
this.sendToolCallChunk(toolCall);
|
||||
} else if (this.isTextPart(part)) {
|
||||
const content = this.extractTextContent(part);
|
||||
if (content) {
|
||||
this.sendContentChunk(content);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
this.sendFinalChunk(toolCalls.length > 0 ? 'tool_calls' : 'stop');
|
||||
this.endStream();
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends a content delta chunk
|
||||
*/
|
||||
private sendContentChunk(content: string): void {
|
||||
const chunkResponse: OpenAIResponse = {
|
||||
id: this.context.requestId,
|
||||
object: 'chat.completion.chunk',
|
||||
created: this.context.created,
|
||||
model: this.context.modelName,
|
||||
choices: [{
|
||||
index: 0,
|
||||
delta: { content },
|
||||
finish_reason: null
|
||||
}]
|
||||
};
|
||||
|
||||
this.writeSSEData(chunkResponse);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends a tool call chunk
|
||||
*/
|
||||
private sendToolCallChunk(toolCall: OpenAIToolCall): void {
|
||||
const chunkResponse: OpenAIResponse = {
|
||||
id: this.context.requestId,
|
||||
object: 'chat.completion.chunk',
|
||||
created: this.context.created,
|
||||
model: this.context.modelName,
|
||||
choices: [{
|
||||
index: 0,
|
||||
delta: {
|
||||
tool_calls: [toolCall]
|
||||
},
|
||||
finish_reason: null
|
||||
}]
|
||||
};
|
||||
|
||||
this.writeSSEData(chunkResponse);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sends the final completion chunk with finish reason
|
||||
*/
|
||||
private sendFinalChunk(finishReason: 'stop' | 'tool_calls'): void {
|
||||
const finalChunkResponse: OpenAIResponse = {
|
||||
id: this.context.requestId,
|
||||
object: 'chat.completion.chunk',
|
||||
created: this.context.created,
|
||||
model: this.context.modelName,
|
||||
choices: [{
|
||||
index: 0,
|
||||
delta: {},
|
||||
finish_reason: finishReason
|
||||
}]
|
||||
};
|
||||
|
||||
this.writeSSEData(finalChunkResponse);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ends the SSE stream
|
||||
*/
|
||||
private endStream(): void {
|
||||
verbose(`SSE end id=${this.context.requestId}`);
|
||||
this.response.write('data: [DONE]\n\n');
|
||||
this.response.end();
|
||||
}
|
||||
|
||||
/**
|
||||
* Writes data to the SSE stream
|
||||
*/
|
||||
private writeSSEData(data: OpenAIResponse): void {
|
||||
this.response.write(`data: ${JSON.stringify(data)}\n\n`);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates an OpenAI tool call from VS Code Language Model part
|
||||
*/
|
||||
private createToolCallFromPart(part: vscode.LanguageModelToolCallPart): OpenAIToolCall {
|
||||
return {
|
||||
id: part.callId,
|
||||
type: 'function',
|
||||
function: {
|
||||
name: part.name,
|
||||
arguments: JSON.stringify(part.input)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Type guard for VS Code LanguageModelToolCallPart
|
||||
*/
|
||||
private isToolCallPart(part: unknown): part is vscode.LanguageModelToolCallPart {
|
||||
return part !== null &&
|
||||
typeof part === 'object' &&
|
||||
'callId' in part &&
|
||||
'name' in part &&
|
||||
'input' in part;
|
||||
}
|
||||
|
||||
/**
|
||||
* Type guard for text content parts
|
||||
*/
|
||||
private isTextPart(part: unknown): boolean {
|
||||
return typeof part === 'string' ||
|
||||
(part !== null && typeof part === 'object' && 'value' in part);
|
||||
}
|
||||
|
||||
/**
|
||||
* Extracts text content from various part types
|
||||
*/
|
||||
private extractTextContent(part: unknown): string {
|
||||
if (typeof part === 'string') {
|
||||
return part;
|
||||
}
|
||||
|
||||
if (part !== null && typeof part === 'object' && 'value' in part) {
|
||||
return String((part as { value: unknown }).value) || '';
|
||||
}
|
||||
|
||||
return '';
|
||||
}
|
||||
}
|
||||
81
src/types/openai-types.ts
Normal file
81
src/types/openai-types.ts
Normal file
|
|
@ -0,0 +1,81 @@
|
|||
import type * as vscode from 'vscode';
|
||||
import type { Tool } from '../messages';
|
||||
|
||||
/**
|
||||
* OpenAI API compatible types for request and response handling
|
||||
*/
|
||||
|
||||
export interface OpenAIToolCall {
|
||||
readonly id: string;
|
||||
readonly type: 'function';
|
||||
readonly function: {
|
||||
readonly name: string;
|
||||
readonly arguments: string;
|
||||
};
|
||||
}
|
||||
|
||||
export interface OpenAIMessage {
|
||||
readonly role: 'assistant';
|
||||
readonly content: string | null;
|
||||
readonly tool_calls?: OpenAIToolCall[];
|
||||
readonly function_call?: {
|
||||
readonly name: string;
|
||||
readonly arguments: string;
|
||||
};
|
||||
}
|
||||
|
||||
export interface OpenAIChoice {
|
||||
readonly index: number;
|
||||
readonly message?: OpenAIMessage;
|
||||
readonly delta?: Partial<OpenAIMessage>;
|
||||
readonly finish_reason: 'stop' | 'length' | 'tool_calls' | 'content_filter' | 'function_call' | null;
|
||||
}
|
||||
|
||||
export interface OpenAIResponse {
|
||||
readonly id: string;
|
||||
readonly object: 'chat.completion' | 'chat.completion.chunk';
|
||||
readonly created: number;
|
||||
readonly model: string;
|
||||
readonly choices: OpenAIChoice[];
|
||||
readonly usage?: {
|
||||
readonly prompt_tokens: number;
|
||||
readonly completion_tokens: number;
|
||||
readonly total_tokens: number;
|
||||
};
|
||||
}
|
||||
|
||||
export interface ChatCompletionContext {
|
||||
readonly requestId: string;
|
||||
readonly modelName: string;
|
||||
readonly created: number;
|
||||
readonly hasTools: boolean;
|
||||
readonly isStreaming: boolean;
|
||||
}
|
||||
|
||||
export interface ProcessedResponseData {
|
||||
readonly content: string;
|
||||
readonly toolCalls: OpenAIToolCall[];
|
||||
readonly finishReason: OpenAIChoice['finish_reason'];
|
||||
}
|
||||
|
||||
/**
|
||||
* Validates that the request model is available and properly configured
|
||||
*/
|
||||
export interface ModelValidationResult {
|
||||
readonly isValid: boolean;
|
||||
readonly statusCode?: number;
|
||||
readonly errorType?: string;
|
||||
readonly errorCode?: string;
|
||||
readonly reason?: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Consolidated request processing context for chat completions
|
||||
*/
|
||||
export interface RequestProcessingContext {
|
||||
readonly model: vscode.LanguageModelChat;
|
||||
readonly lmMessages: vscode.LanguageModelChatMessage[];
|
||||
readonly lmTools: vscode.LanguageModelChatTool[];
|
||||
readonly requestOptions: vscode.LanguageModelChatRequestOptions;
|
||||
readonly mergedTools: Tool[];
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue