mirror of
https://github.com/Ysurac/openmptcprouter-feeds.git
synced 2025-03-09 15:40:03 +00:00
765 lines
22 KiB
C
765 lines
22 KiB
C
/*
|
|
* sfe_ipv4_tcp.c
|
|
* Shortcut forwarding engine - IPv4 TCP implementation
|
|
*
|
|
* Copyright (c) 2013-2016, 2019-2020, The Linux Foundation. All rights reserved.
|
|
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/skbuff.h>
|
|
#include <net/tcp.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/lockdep.h>
|
|
|
|
#include "sfe_debug.h"
|
|
#include "sfe_api.h"
|
|
#include "sfe.h"
|
|
#include "sfe_flow_cookie.h"
|
|
#include "sfe_ipv4.h"
|
|
#include "sfe_pppoe.h"
|
|
#include "sfe_vlan.h"
|
|
|
|
/*
|
|
* sfe_ipv4_process_tcp_option_sack()
|
|
* Parse TCP SACK option and update ack according
|
|
*/
|
|
static bool sfe_ipv4_process_tcp_option_sack(const struct tcphdr *th, const u32 data_offs,
|
|
u32 *ack)
|
|
{
|
|
u32 length = sizeof(struct tcphdr);
|
|
u8 *ptr = (u8 *)th + length;
|
|
|
|
/*
|
|
* Ignore processing if TCP packet has only TIMESTAMP option.
|
|
*/
|
|
if (likely(data_offs == length + TCPOLEN_TIMESTAMP + 1 + 1)
|
|
&& likely(ptr[0] == TCPOPT_NOP)
|
|
&& likely(ptr[1] == TCPOPT_NOP)
|
|
&& likely(ptr[2] == TCPOPT_TIMESTAMP)
|
|
&& likely(ptr[3] == TCPOLEN_TIMESTAMP)) {
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* TCP options. Parse SACK option.
|
|
*/
|
|
while (length < data_offs) {
|
|
u8 size;
|
|
u8 kind;
|
|
|
|
ptr = (u8 *)th + length;
|
|
kind = *ptr;
|
|
|
|
/*
|
|
* NOP, for padding
|
|
* Not in the switch because to fast escape and to not calculate size
|
|
*/
|
|
if (kind == TCPOPT_NOP) {
|
|
length++;
|
|
continue;
|
|
}
|
|
|
|
if (kind == TCPOPT_SACK) {
|
|
u32 sack = 0;
|
|
u8 re = 1 + 1;
|
|
|
|
size = *(ptr + 1);
|
|
if ((size < (1 + 1 + TCPOLEN_SACK_PERBLOCK))
|
|
|| ((size - (1 + 1)) % (TCPOLEN_SACK_PERBLOCK))
|
|
|| (size > (data_offs - length))) {
|
|
return false;
|
|
}
|
|
|
|
re += 4;
|
|
while (re < size) {
|
|
u32 sack_re;
|
|
u8 *sptr = ptr + re;
|
|
sack_re = (sptr[0] << 24) | (sptr[1] << 16) | (sptr[2] << 8) | sptr[3];
|
|
if (sack_re > sack) {
|
|
sack = sack_re;
|
|
}
|
|
re += TCPOLEN_SACK_PERBLOCK;
|
|
}
|
|
if (sack > *ack) {
|
|
*ack = sack;
|
|
}
|
|
length += size;
|
|
continue;
|
|
}
|
|
if (kind == TCPOPT_EOL) {
|
|
return true;
|
|
}
|
|
size = *(ptr + 1);
|
|
if (size < 2) {
|
|
return false;
|
|
}
|
|
length += size;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* sfe_ipv4_recv_tcp()
|
|
* Handle TCP packet receives and forwarding.
|
|
*/
|
|
int sfe_ipv4_recv_tcp(struct sfe_ipv4 *si, struct sk_buff *skb, struct net_device *dev,
|
|
unsigned int len, struct iphdr *iph, unsigned int ihl, bool sync_on_find, struct sfe_l2_info *l2_info)
|
|
{
|
|
struct tcphdr *tcph;
|
|
__be32 src_ip;
|
|
__be32 dest_ip;
|
|
__be16 src_port;
|
|
__be16 dest_port;
|
|
struct sfe_ipv4_connection_match *cm;
|
|
struct sfe_ipv4_connection_match *counter_cm;
|
|
u8 ttl;
|
|
u32 flags;
|
|
u32 service_class_id;
|
|
struct net_device *xmit_dev;
|
|
bool ret;
|
|
bool hw_csum;
|
|
bool bridge_flow;
|
|
bool fast_xmit;
|
|
netdev_features_t features;
|
|
|
|
/*
|
|
* Is our packet too short to contain a valid TCP header?
|
|
*/
|
|
if (unlikely(!pskb_may_pull(skb, (sizeof(struct tcphdr) + ihl)))) {
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_HEADER_INCOMPLETE);
|
|
DEBUG_TRACE("packet too short for TCP header\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the IP address and port information. Read the IP header data first
|
|
* because we've almost certainly got that in the cache. We may not yet have
|
|
* the TCP header cached though so allow more time for any prefetching.
|
|
*/
|
|
src_ip = iph->saddr;
|
|
dest_ip = iph->daddr;
|
|
|
|
tcph = (struct tcphdr *)(skb->data + ihl);
|
|
src_port = tcph->source;
|
|
dest_port = tcph->dest;
|
|
flags = tcp_flag_word(tcph);
|
|
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
* Look for a connection match.
|
|
*/
|
|
#ifdef CONFIG_NF_FLOW_COOKIE
|
|
cm = si->sfe_flow_cookie_table[skb->flow_cookie & SFE_FLOW_COOKIE_MASK].match;
|
|
if (unlikely(!cm)) {
|
|
cm = sfe_ipv4_find_connection_match_rcu(si, dev, IPPROTO_TCP, src_ip, src_port, dest_ip, dest_port);
|
|
}
|
|
#else
|
|
/*
|
|
* 5-tuple lookup for TCP flow.
|
|
*/
|
|
cm = sfe_ipv4_find_connection_match_rcu(si, dev, IPPROTO_TCP, src_ip, src_port, dest_ip, dest_port);
|
|
#endif
|
|
if (unlikely(!cm)) {
|
|
/*
|
|
* We didn't get a connection but as TCP is connection-oriented that
|
|
* may be because this is a non-fast connection (not running established).
|
|
* For diagnostic purposes we differentiate this here.
|
|
*/
|
|
if (likely((flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)) == TCP_FLAG_ACK)) {
|
|
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_NO_CONNECTION_FAST_FLAGS);
|
|
DEBUG_TRACE("no connection found - fast flags\n");
|
|
return 0;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_NO_CONNECTION_SLOW_FLAGS);
|
|
DEBUG_TRACE("no connection found - slow flags: 0x%x\n",
|
|
flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Source interface validate.
|
|
*/
|
|
if (unlikely((cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_SRC_INTERFACE_CHECK) && (cm->match_dev != dev))) {
|
|
if (!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_SRC_INTERFACE_CHECK_NO_FLUSH)) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
DEBUG_TRACE("flush on source interface check failure\n");
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_INVALID_SRC_IFACE);
|
|
DEBUG_TRACE("exception the packet on source interface check failure\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If our packet has been marked as "sync on find" we can't actually
|
|
* forward it in the fast path, but now that we've found an associated
|
|
* connection we need sync its status before throw it slow path.
|
|
*/
|
|
if (unlikely(sync_on_find)) {
|
|
sfe_ipv4_sync_status(si, cm->connection, SFE_SYNC_REASON_STATS);
|
|
rcu_read_unlock();
|
|
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT);
|
|
DEBUG_TRACE("Sync on find\n");
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_XFRM
|
|
/*
|
|
* We can't accelerate the flow on this direction, just let it go
|
|
* through the slow path.
|
|
*/
|
|
if (unlikely(!cm->flow_accel)) {
|
|
rcu_read_unlock();
|
|
this_cpu_inc(si->stats_pcpu->packets_not_forwarded64);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Do we expect an ingress VLAN tag for this flow?
|
|
*/
|
|
if (unlikely(!sfe_vlan_validate_ingress_tag(skb, cm->ingress_vlan_hdr_cnt, cm->ingress_vlan_hdr, l2_info))) {
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_INGRESS_VLAN_TAG_MISMATCH);
|
|
DEBUG_TRACE("VLAN tag mismatch. skb=%px\n", skb);
|
|
return 0;
|
|
}
|
|
|
|
bridge_flow = !!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_BRIDGE_FLOW);
|
|
|
|
/*
|
|
* Does our TTL allow forwarding?
|
|
*/
|
|
if (likely(!bridge_flow)) {
|
|
ttl = iph->ttl;
|
|
if (unlikely(ttl < 2)) {
|
|
sfe_ipv4_sync_status(si, cm->connection, SFE_SYNC_REASON_STATS);
|
|
rcu_read_unlock();
|
|
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_SMALL_TTL);
|
|
DEBUG_TRACE("TTL too low\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If our packet is larger than the MTU of the transmit interface then
|
|
* we can't forward it easily.
|
|
*/
|
|
if (unlikely((len > cm->xmit_dev_mtu) && !skb_is_gso(skb))) {
|
|
sfe_ipv4_sync_status(si, cm->connection, SFE_SYNC_REASON_STATS);
|
|
rcu_read_unlock();
|
|
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT);
|
|
DEBUG_TRACE("Larger than MTU\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Look at our TCP flags. Anything missing an ACK or that has RST, SYN or FIN
|
|
* set is not a fast path packet.
|
|
*/
|
|
if (unlikely((flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)) != TCP_FLAG_ACK)) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
DEBUG_TRACE("TCP flags: %#x are not fast. %u->%u\n",
|
|
htonl(flags), htons(src_port), htons(dest_port));
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_FLAGS);
|
|
return 0;
|
|
}
|
|
|
|
counter_cm = cm->counter_match;
|
|
|
|
/*
|
|
* Are we doing sequence number checking?
|
|
*/
|
|
if (likely(!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK))) {
|
|
u32 seq;
|
|
u32 ack;
|
|
u32 sack;
|
|
u32 data_offs;
|
|
u32 end;
|
|
u32 left_edge;
|
|
u32 scaled_win;
|
|
u32 max_end;
|
|
|
|
/*
|
|
* Is our sequence fully past the right hand edge of the window?
|
|
*/
|
|
seq = ntohl(tcph->seq);
|
|
if (unlikely((s32)(seq - (cm->protocol_state.tcp.max_end + 1)) > 0)) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
DEBUG_TRACE("seq: %u exceeds right edge: %u\n",
|
|
seq, cm->protocol_state.tcp.max_end + 1);
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_SEQ_EXCEEDS_RIGHT_EDGE);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check that our TCP data offset isn't too short.
|
|
*/
|
|
data_offs = tcph->doff << 2;
|
|
if (unlikely(data_offs < sizeof(struct tcphdr))) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
DEBUG_TRACE("TCP data offset: %u, too small\n", data_offs);
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_SMALL_DATA_OFFS);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update ACK according to any SACK option.
|
|
*/
|
|
ack = ntohl(tcph->ack_seq);
|
|
sack = ack;
|
|
if (unlikely(!sfe_ipv4_process_tcp_option_sack(tcph, data_offs, &sack))) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
DEBUG_TRACE("TCP option SACK size is wrong\n");
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_BAD_SACK);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check that our TCP data offset isn't past the end of the packet.
|
|
*/
|
|
data_offs += sizeof(struct iphdr);
|
|
if (unlikely(len < data_offs)) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
DEBUG_TRACE("TCP data offset: %u, past end of packet: %u\n",
|
|
data_offs, len);
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_BIG_DATA_OFFS);
|
|
return 0;
|
|
}
|
|
|
|
end = seq + len - data_offs;
|
|
|
|
/*
|
|
* Is our sequence fully before the left hand edge of the window?
|
|
*/
|
|
if (unlikely((s32)(end - (cm->protocol_state.tcp.end
|
|
- counter_cm->protocol_state.tcp.max_win - 1)) < 0)) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
DEBUG_TRACE("seq: %u before left edge: %u\n",
|
|
end, cm->protocol_state.tcp.end - counter_cm->protocol_state.tcp.max_win - 1);
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_SEQ_BEFORE_LEFT_EDGE);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Are we acking data that is to the right of what has been sent?
|
|
*/
|
|
if (unlikely((s32)(sack - (counter_cm->protocol_state.tcp.end + 1)) > 0)) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
DEBUG_TRACE("ack: %u exceeds right edge: %u\n",
|
|
sack, counter_cm->protocol_state.tcp.end + 1);
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_ACK_EXCEEDS_RIGHT_EDGE);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Is our ack too far before the left hand edge of the window?
|
|
*/
|
|
left_edge = counter_cm->protocol_state.tcp.end
|
|
- cm->protocol_state.tcp.max_win
|
|
- SFE_IPV4_TCP_MAX_ACK_WINDOW
|
|
- 1;
|
|
if (unlikely((s32)(sack - left_edge) < 0)) {
|
|
struct sfe_ipv4_connection *c = cm->connection;
|
|
spin_lock_bh(&si->lock);
|
|
ret = sfe_ipv4_remove_connection(si, c);
|
|
spin_unlock_bh(&si->lock);
|
|
|
|
DEBUG_TRACE("ack: %u before left edge: %u\n", sack, left_edge);
|
|
if (ret) {
|
|
sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
|
|
}
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_ACK_BEFORE_LEFT_EDGE);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Have we just seen the largest window size yet for this connection? If yes
|
|
* then we need to record the new value.
|
|
*/
|
|
scaled_win = ntohs(tcph->window) << cm->protocol_state.tcp.win_scale;
|
|
scaled_win += (sack - ack);
|
|
if (unlikely(cm->protocol_state.tcp.max_win < scaled_win)) {
|
|
cm->protocol_state.tcp.max_win = scaled_win;
|
|
}
|
|
|
|
/*
|
|
* If our sequence and/or ack numbers have advanced then record the new state.
|
|
*/
|
|
if (likely((s32)(end - cm->protocol_state.tcp.end) >= 0)) {
|
|
cm->protocol_state.tcp.end = end;
|
|
}
|
|
|
|
max_end = sack + scaled_win;
|
|
if (likely((s32)(max_end - counter_cm->protocol_state.tcp.max_end) >= 0)) {
|
|
counter_cm->protocol_state.tcp.max_end = max_end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if skb was cloned. If it was, unshare it. Because
|
|
* the data area is going to be written in this path and we don't want to
|
|
* change the cloned skb's data section.
|
|
*/
|
|
if (unlikely(skb_cloned(skb))) {
|
|
DEBUG_TRACE("%px: skb is a cloned skb\n", skb);
|
|
skb = skb_unshare(skb, GFP_ATOMIC);
|
|
if (!skb) {
|
|
DEBUG_WARN("Failed to unshare the cloned skb\n");
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the iph and tcph pointers with the unshared skb's data area.
|
|
*/
|
|
iph = (struct iphdr *)skb->data;
|
|
tcph = (struct tcphdr *)(skb->data + ihl);
|
|
}
|
|
|
|
/*
|
|
* Check if skb has enough headroom to write L2 headers
|
|
*/
|
|
if (unlikely(skb_headroom(skb) < cm->l2_hdr_size)) {
|
|
rcu_read_unlock();
|
|
DEBUG_WARN("%px: Not enough headroom: %u\n", skb, skb_headroom(skb));
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_NO_HEADROOM);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For PPPoE packets, match server MAC and session id
|
|
*/
|
|
if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_PPPOE_DECAP)) {
|
|
struct ethhdr *eth;
|
|
bool pppoe_match;
|
|
|
|
if (unlikely(!sfe_l2_parse_flag_check(l2_info, SFE_L2_PARSE_FLAGS_PPPOE_INGRESS))) {
|
|
rcu_read_unlock();
|
|
DEBUG_TRACE("%px: PPPoE header not present in packet for PPPoE rule\n", skb);
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_INCORRECT_PPPOE_PARSING);
|
|
return 0;
|
|
}
|
|
|
|
eth = eth_hdr(skb);
|
|
|
|
pppoe_match = (cm->pppoe_session_id == sfe_l2_pppoe_session_id_get(l2_info)) &&
|
|
ether_addr_equal((u8*)cm->pppoe_remote_mac, (u8 *)eth->h_source);
|
|
|
|
if (unlikely(!pppoe_match)) {
|
|
DEBUG_TRACE("%px: PPPoE session ID %d and %d or MAC %pM and %pM did not match\n",
|
|
skb, cm->pppoe_session_id, sfe_l2_pppoe_session_id_get(l2_info),
|
|
cm->pppoe_remote_mac, eth->h_source);
|
|
rcu_read_unlock();
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_INVALID_PPPOE_SESSION);
|
|
return 0;
|
|
}
|
|
|
|
skb->protocol = htons(l2_info->protocol);
|
|
this_cpu_inc(si->stats_pcpu->pppoe_decap_packets_forwarded64);
|
|
} else if (unlikely(sfe_l2_parse_flag_check(l2_info, SFE_L2_PARSE_FLAGS_PPPOE_INGRESS))) {
|
|
|
|
/*
|
|
* If packet contains PPPoE header but CME doesn't contain PPPoE flag yet we are exceptioning
|
|
* the packet to linux
|
|
*/
|
|
if (unlikely(!bridge_flow)) {
|
|
rcu_read_unlock();
|
|
DEBUG_TRACE("%px: CME doesn't contain PPPoE flag but packet has PPPoE header\n", skb);
|
|
sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_PPPOE_NOT_SET_IN_CME);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For bridged flows when packet contains PPPoE header, restore the header back and forward
|
|
* to xmit interface
|
|
*/
|
|
__skb_push(skb, PPPOE_SES_HLEN);
|
|
this_cpu_inc(si->stats_pcpu->pppoe_bridge_packets_forwarded64);
|
|
}
|
|
|
|
/*
|
|
* From this point on we're good to modify the packet.
|
|
*/
|
|
|
|
/*
|
|
* For PPPoE flows, add PPPoE header before L2 header is added.
|
|
*/
|
|
if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_PPPOE_ENCAP)) {
|
|
sfe_pppoe_add_header(skb, cm->pppoe_session_id, PPP_IP);
|
|
this_cpu_inc(si->stats_pcpu->pppoe_encap_packets_forwarded64);
|
|
}
|
|
|
|
/*
|
|
* Update DSCP
|
|
*/
|
|
if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_DSCP_REMARK)) {
|
|
iph->tos = (iph->tos & SFE_IPV4_DSCP_MASK) | cm->dscp;
|
|
}
|
|
|
|
/*
|
|
* Decrement our TTL.
|
|
*/
|
|
if (likely(!bridge_flow)) {
|
|
iph->ttl = ttl - 1;
|
|
}
|
|
|
|
/*
|
|
* Enable HW csum if rx checksum is verified and xmit interface is CSUM offload capable.
|
|
* Note: If L4 csum at Rx was found to be incorrect, we (router) should use incremental L4 checksum here
|
|
* so that HW does not re-calculate/replace the L4 csum
|
|
*/
|
|
hw_csum = !!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_CSUM_OFFLOAD) && (skb->ip_summed == CHECKSUM_UNNECESSARY);
|
|
|
|
/*
|
|
* Do we have to perform translations of the source address/port?
|
|
*/
|
|
if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_XLATE_SRC)) {
|
|
u16 tcp_csum;
|
|
u32 sum;
|
|
|
|
iph->saddr = cm->xlate_src_ip;
|
|
tcph->source = cm->xlate_src_port;
|
|
|
|
if (unlikely(!hw_csum)) {
|
|
tcp_csum = tcph->check;
|
|
if (unlikely(skb->ip_summed == CHECKSUM_PARTIAL)) {
|
|
sum = tcp_csum + cm->xlate_src_partial_csum_adjustment;
|
|
} else {
|
|
sum = tcp_csum + cm->xlate_src_csum_adjustment;
|
|
}
|
|
|
|
sum = (sum & 0xffff) + (sum >> 16);
|
|
tcph->check = (u16)sum;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do we have to perform translations of the destination address/port?
|
|
*/
|
|
if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_XLATE_DEST)) {
|
|
u16 tcp_csum;
|
|
u32 sum;
|
|
|
|
iph->daddr = cm->xlate_dest_ip;
|
|
tcph->dest = cm->xlate_dest_port;
|
|
|
|
if (unlikely(!hw_csum)) {
|
|
tcp_csum = tcph->check;
|
|
if (unlikely(skb->ip_summed == CHECKSUM_PARTIAL)) {
|
|
sum = tcp_csum + cm->xlate_dest_partial_csum_adjustment;
|
|
} else {
|
|
sum = tcp_csum + cm->xlate_dest_csum_adjustment;
|
|
}
|
|
|
|
sum = (sum & 0xffff) + (sum >> 16);
|
|
tcph->check = (u16)sum;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If HW checksum offload is not possible, full L3 checksum and incremental L4 checksum
|
|
* are used to update the packet. Setting ip_summed to CHECKSUM_UNNECESSARY ensures checksum is
|
|
* not recalculated further in packet path.
|
|
*/
|
|
if (likely(hw_csum)) {
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
} else {
|
|
iph->check = sfe_ipv4_gen_ip_csum(iph);
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
|
|
/*
|
|
* Update traffic stats.
|
|
*/
|
|
atomic_inc(&cm->rx_packet_count);
|
|
atomic_add(len, &cm->rx_byte_count);
|
|
|
|
xmit_dev = cm->xmit_dev;
|
|
skb->dev = xmit_dev;
|
|
|
|
/*
|
|
* Check to see if we need to add VLAN tags
|
|
*/
|
|
if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_INSERT_EGRESS_VLAN_TAG)) {
|
|
sfe_vlan_add_tag(skb, cm->egress_vlan_hdr_cnt, cm->egress_vlan_hdr);
|
|
}
|
|
|
|
/*
|
|
* Check to see if we need to write an Ethernet header.
|
|
*/
|
|
if (likely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_WRITE_L2_HDR)) {
|
|
if (unlikely(!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR))) {
|
|
dev_hard_header(skb, xmit_dev, ntohs(skb->protocol),
|
|
cm->xmit_dest_mac, cm->xmit_src_mac, len);
|
|
} else {
|
|
/*
|
|
* For the simple case we write this really fast.
|
|
*/
|
|
struct ethhdr *eth = (struct ethhdr *)__skb_push(skb, ETH_HLEN);
|
|
|
|
eth->h_proto = skb->protocol;
|
|
|
|
ether_addr_copy((u8 *)eth->h_dest, (u8 *)cm->xmit_dest_mac);
|
|
ether_addr_copy((u8 *)eth->h_source, (u8 *)cm->xmit_src_mac);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update priority of skb.
|
|
*/
|
|
if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_PRIORITY_REMARK)) {
|
|
skb->priority = cm->priority;
|
|
}
|
|
|
|
/*
|
|
* Mark outgoing packet
|
|
*/
|
|
if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_MARK)) {
|
|
skb->mark = cm->mark;
|
|
/*
|
|
* Update service class stats if SAWF is valid.
|
|
*/
|
|
if (likely(cm->sawf_valid)) {
|
|
service_class_id = SFE_GET_SAWF_SERVICE_CLASS(cm->mark);
|
|
sfe_ipv4_service_class_stats_inc(si, service_class_id, len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For the first packets, check if it could got fast xmit.
|
|
*/
|
|
if (unlikely(!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT_FLOW_CHECKED)
|
|
&& (cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT_DEV_ADMISSION))){
|
|
cm->features = netif_skb_features(skb);
|
|
if (likely(sfe_fast_xmit_check(skb, cm->features))) {
|
|
cm->flags |= SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT;
|
|
}
|
|
cm->flags |= SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT_FLOW_CHECKED;
|
|
}
|
|
features = cm->features;
|
|
fast_xmit = !!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT);
|
|
|
|
rcu_read_unlock();
|
|
|
|
this_cpu_inc(si->stats_pcpu->packets_forwarded64);
|
|
|
|
/*
|
|
* We're going to check for GSO flags when we transmit the packet so
|
|
* start fetching the necessary cache line now.
|
|
*/
|
|
prefetch(skb_shinfo(skb));
|
|
|
|
/*
|
|
* We do per packet condition check before we could fast xmit the
|
|
* packet.
|
|
*/
|
|
if (likely(fast_xmit)) {
|
|
if (likely(!skb_is_gso(skb))) {
|
|
if (likely(dev_fast_xmit(skb, xmit_dev, features))) {
|
|
this_cpu_inc(si->stats_pcpu->packets_fast_xmited64);
|
|
return 1;
|
|
}
|
|
} else {
|
|
cm->flags &= ~SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT;
|
|
DEBUG_TRACE("%px: fast xmit disabled for xmit dev %s", skb, xmit_dev->name);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark that this packet has been fast forwarded.
|
|
*/
|
|
skb->fast_forwarded = 1;
|
|
|
|
/*
|
|
* Send the packet on its way.
|
|
*/
|
|
dev_queue_xmit(skb);
|
|
|
|
return 1;
|
|
}
|