1
0
Fork 0
mirror of https://github.com/Ysurac/openmptcprouter.git synced 2025-03-09 15:40:20 +00:00

Add a directory by kernel instead of a common root, add qnap-301w and rpi4 kernel 6.1 suppport

This commit is contained in:
Ycarus (Yannick Chabanois) 2023-04-22 08:07:24 +02:00
parent e910436a7a
commit 46837ec4c0
9459 changed files with 362648 additions and 116345 deletions

View file

@ -0,0 +1,50 @@
#
# Copyright (C) 2005-2007 Samsung Electronics.
# Kyungmin Park <kyungmin.park@samsung.com>
#
# See file CREDITS for list of people who contributed to this
# project.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
#
include $(TOPDIR)/config.mk
LIB := $(obj)libonenand.o
ifndef CONFIG_SPL_BUILD
COBJS-$(CONFIG_CMD_ONENAND) := onenand_uboot.o onenand_base.o onenand_bbt.o
COBJS-$(CONFIG_SAMSUNG_ONENAND) += samsung.o
else
COBJS-y := onenand_spl.o
endif
COBJS := $(COBJS-y)
SRCS := $(COBJS:.o=.c)
OBJS := $(addprefix $(obj),$(COBJS))
all: $(LIB)
$(LIB): $(obj).depend $(OBJS)
$(call cmd_link_o_target, $(OBJS))
#########################################################################
include $(SRCTREE)/rules.mk
sinclude $(obj).depend
#########################################################################

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,268 @@
/*
* linux/drivers/mtd/onenand/onenand_bbt.c
*
* Bad Block Table support for the OneNAND driver
*
* Copyright(c) 2005-2008 Samsung Electronics
* Kyungmin Park <kyungmin.park@samsung.com>
*
* TODO:
* Split BBT core and chip specific BBT.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <common.h>
#include <linux/compat.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <malloc.h>
#include <asm/errno.h>
/**
* check_short_pattern - [GENERIC] check if a pattern is in the buffer
* @param buf the buffer to search
* @param len the length of buffer to search
* @param paglen the pagelength
* @param td search pattern descriptor
*
* Check for a pattern at the given place. Used to search bad block
* tables and good / bad block identifiers. Same as check_pattern, but
* no optional empty check and the pattern is expected to start
* at offset 0.
*/
static int check_short_pattern(uint8_t * buf, int len, int paglen,
struct nand_bbt_descr *td)
{
int i;
uint8_t *p = buf;
/* Compare the pattern */
for (i = 0; i < td->len; i++) {
if (p[i] != td->pattern[i])
return -1;
}
return 0;
}
/**
* create_bbt - [GENERIC] Create a bad block table by scanning the device
* @param mtd MTD device structure
* @param buf temporary buffer
* @param bd descriptor for the good/bad block search pattern
* @param chip create the table for a specific chip, -1 read all chips.
* Applies only if NAND_BBT_PERCHIP option is set
*
* Create a bad block table by scanning the device
* for the given good/bad block identify pattern
*/
static int create_bbt(struct mtd_info *mtd, uint8_t * buf,
struct nand_bbt_descr *bd, int chip)
{
struct onenand_chip *this = mtd->priv;
struct bbm_info *bbm = this->bbm;
int i, j, numblocks, len, scanlen;
int startblock;
loff_t from;
size_t readlen, ooblen;
struct mtd_oob_ops ops;
int rgn;
printk(KERN_INFO "Scanning device for bad blocks\n");
len = 1;
/* We need only read few bytes from the OOB area */
scanlen = ooblen = 0;
readlen = bd->len;
/* chip == -1 case only */
/* Note that numblocks is 2 * (real numblocks) here;
* see i += 2 below as it makses shifting and masking less painful
*/
numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1);
startblock = 0;
from = 0;
ops.mode = MTD_OOB_PLACE;
ops.ooblen = readlen;
ops.oobbuf = buf;
ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
for (i = startblock; i < numblocks;) {
int ret;
for (j = 0; j < len; j++) {
/* No need to read pages fully,
* just read required OOB bytes */
ret = onenand_bbt_read_oob(mtd,
from + j * mtd->writesize +
bd->offs, &ops);
/* If it is a initial bad block, just ignore it */
if (ret == ONENAND_BBT_READ_FATAL_ERROR)
return -EIO;
if (ret || check_short_pattern
(&buf[j * scanlen], scanlen, mtd->writesize, bd)) {
bbm->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk(KERN_WARNING
"Bad eraseblock %d at 0x%08x\n", i >> 1,
(unsigned int)from);
break;
}
}
i += 2;
if (FLEXONENAND(this)) {
rgn = flexonenand_region(mtd, from);
from += mtd->eraseregions[rgn].erasesize;
} else
from += (1 << bbm->bbt_erase_shift);
}
return 0;
}
/**
* onenand_memory_bbt - [GENERIC] create a memory based bad block table
* @param mtd MTD device structure
* @param bd descriptor for the good/bad block search pattern
*
* The function creates a memory based bbt by scanning the device
* for manufacturer / software marked good / bad blocks
*/
static inline int onenand_memory_bbt(struct mtd_info *mtd,
struct nand_bbt_descr *bd)
{
unsigned char data_buf[MAX_ONENAND_PAGESIZE];
bd->options &= ~NAND_BBT_SCANEMPTY;
return create_bbt(mtd, data_buf, bd, -1);
}
/**
* onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad
* @param mtd MTD device structure
* @param offs offset in the device
* @param allowbbt allow access to bad block table region
*/
static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
{
struct onenand_chip *this = mtd->priv;
struct bbm_info *bbm = this->bbm;
int block;
uint8_t res;
/* Get block number * 2 */
block = (int) (onenand_block(this, offs) << 1);
res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03;
MTDDEBUG (MTD_DEBUG_LEVEL2,
"onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n",
(unsigned int)offs, block >> 1, res);
switch ((int)res) {
case 0x00:
return 0;
case 0x01:
return 1;
case 0x02:
return allowbbt ? 0 : 1;
}
return 1;
}
/**
* onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s)
* @param mtd MTD device structure
* @param bd descriptor for the good/bad block search pattern
*
* The function checks, if a bad block table(s) is/are already
* available. If not it scans the device for manufacturer
* marked good / bad blocks and writes the bad block table(s) to
* the selected place.
*
* The bad block table memory is allocated here. It must be freed
* by calling the onenand_free_bbt function.
*
*/
int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
struct onenand_chip *this = mtd->priv;
struct bbm_info *bbm = this->bbm;
int len, ret = 0;
len = this->chipsize >> (this->erase_shift + 2);
/* Allocate memory (2bit per block) */
bbm->bbt = malloc(len);
if (!bbm->bbt) {
printk(KERN_ERR "onenand_scan_bbt: Out of memory\n");
return -ENOMEM;
}
/* Clear the memory bad block table */
memset(bbm->bbt, 0x00, len);
/* Set the bad block position */
bbm->badblockpos = ONENAND_BADBLOCK_POS;
/* Set erase shift */
bbm->bbt_erase_shift = this->erase_shift;
if (!bbm->isbad_bbt)
bbm->isbad_bbt = onenand_isbad_bbt;
/* Scan the device to build a memory based bad block table */
if ((ret = onenand_memory_bbt(mtd, bd))) {
printk(KERN_ERR
"onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n");
free(bbm->bbt);
bbm->bbt = NULL;
}
return ret;
}
/*
* Define some generic bad / good block scan pattern which are used
* while scanning a device for factory marked good / bad blocks.
*/
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr largepage_memorybased = {
.options = 0,
.offs = 0,
.len = 2,
.pattern = scan_ff_pattern,
};
/**
* onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device
* @param mtd MTD device structure
*
* This function selects the default bad block table
* support for the device and calls the onenand_scan_bbt function
*/
int onenand_default_bbt(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
struct bbm_info *bbm;
this->bbm = malloc(sizeof(struct bbm_info));
if (!this->bbm)
return -ENOMEM;
bbm = this->bbm;
memset(bbm, 0, sizeof(struct bbm_info));
/* 1KB page has same configuration as 2KB page */
if (!bbm->badblock_pattern)
bbm->badblock_pattern = &largepage_memorybased;
return onenand_scan_bbt(mtd, bbm->badblock_pattern);
}

View file

@ -0,0 +1,146 @@
/*
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
*
* Based on code:
* Copyright (C) 2005-2009 Samsung Electronics
* Kyungmin Park <kyungmin.park@samsung.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <linux/mtd/onenand_regs.h>
#include <onenand_uboot.h>
/*
* Device geometry:
* - 2048b page, 128k erase block.
* - 4096b page, 256k erase block.
*/
enum onenand_spl_pagesize {
PAGE_2K = 2048,
PAGE_4K = 4096,
};
#define ONENAND_PAGES_PER_BLOCK 64
#define onenand_block_address(block) (block)
#define onenand_sector_address(page) (page << 2)
#define onenand_buffer_address() ((1 << 3) << 8)
#define onenand_bufferram_address(block) (0)
static inline uint16_t onenand_readw(uint32_t addr)
{
return readw(CONFIG_SYS_ONENAND_BASE + addr);
}
static inline void onenand_writew(uint16_t value, uint32_t addr)
{
writew(value, CONFIG_SYS_ONENAND_BASE + addr);
}
static enum onenand_spl_pagesize onenand_spl_get_geometry(void)
{
uint32_t dev_id, density;
if (!onenand_readw(ONENAND_REG_TECHNOLOGY)) {
dev_id = onenand_readw(ONENAND_REG_DEVICE_ID);
density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
density &= ONENAND_DEVICE_DENSITY_MASK;
if (density < ONENAND_DEVICE_DENSITY_4Gb)
return PAGE_2K;
if (dev_id & ONENAND_DEVICE_IS_DDP)
return PAGE_2K;
}
return PAGE_4K;
}
static int onenand_spl_read_page(uint32_t block, uint32_t page, uint32_t *buf,
enum onenand_spl_pagesize pagesize)
{
const uint32_t addr = CONFIG_SYS_ONENAND_BASE + ONENAND_DATARAM;
uint32_t offset;
onenand_writew(onenand_block_address(block),
ONENAND_REG_START_ADDRESS1);
onenand_writew(onenand_bufferram_address(block),
ONENAND_REG_START_ADDRESS2);
onenand_writew(onenand_sector_address(page),
ONENAND_REG_START_ADDRESS8);
onenand_writew(onenand_buffer_address(),
ONENAND_REG_START_BUFFER);
onenand_writew(ONENAND_INT_CLEAR, ONENAND_REG_INTERRUPT);
onenand_writew(ONENAND_CMD_READ, ONENAND_REG_COMMAND);
while (!(onenand_readw(ONENAND_REG_INTERRUPT) & ONENAND_INT_READ))
continue;
/* Check for invalid block mark */
if (page < 2 && (onenand_readw(ONENAND_SPARERAM) != 0xffff))
return 1;
for (offset = 0; offset < pagesize; offset += 4)
buf[offset / 4] = readl(addr + offset);
return 0;
}
void onenand_spl_load_image(uint32_t offs, uint32_t size, void *dst)
{
uint32_t *addr = (uint32_t *)dst;
uint32_t total_pages;
uint32_t block;
uint32_t page, rpage;
enum onenand_spl_pagesize pagesize;
int ret;
pagesize = onenand_spl_get_geometry();
/*
* The page can be either 2k or 4k, avoid using DIV_ROUND_UP to avoid
* pulling further unwanted functions into the SPL.
*/
if (pagesize == 2048) {
total_pages = DIV_ROUND_UP(size, 2048);
page = offs / 2048;
} else {
total_pages = DIV_ROUND_UP(size, 4096);
page = offs / 4096;
}
for (; page <= total_pages; page++) {
block = page / ONENAND_PAGES_PER_BLOCK;
rpage = page & (ONENAND_PAGES_PER_BLOCK - 1);
ret = onenand_spl_read_page(block, rpage, addr, pagesize);
if (ret) {
total_pages += ONENAND_PAGES_PER_BLOCK;
page += ONENAND_PAGES_PER_BLOCK - 1;
} else {
addr += pagesize / 4;
}
}
}

View file

@ -0,0 +1,56 @@
/*
* drivers/mtd/onenand/onenand_uboot.c
*
* Copyright (C) 2005-2008 Samsung Electronics
* Kyungmin Park <kyungmin.park@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* OneNAND initialization at U-Boot
*/
#include <common.h>
#include <linux/compat.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
struct mtd_info onenand_mtd;
struct onenand_chip onenand_chip;
static __attribute__((unused)) char dev_name[] = "onenand0";
void onenand_init(void)
{
memset(&onenand_mtd, 0, sizeof(struct mtd_info));
memset(&onenand_chip, 0, sizeof(struct onenand_chip));
onenand_mtd.priv = &onenand_chip;
#ifdef CONFIG_USE_ONENAND_BOARD_INIT
/*
* It's used for some board init required
*/
onenand_board_init(&onenand_mtd);
#else
onenand_chip.base = (void *) CONFIG_SYS_ONENAND_BASE;
#endif
onenand_scan(&onenand_mtd, 1);
if (onenand_chip.device_id & DEVICE_IS_FLEXONENAND)
puts("Flex-");
puts("OneNAND: ");
print_size(onenand_chip.chipsize, "\n");
#ifdef CONFIG_MTD_DEVICE
/*
* Add MTD device so that we can reference it later
* via the mtdcore infrastructure (e.g. ubi).
*/
onenand_mtd.name = dev_name;
add_mtd_device(&onenand_mtd);
#endif
}

View file

@ -0,0 +1,645 @@
/*
* S3C64XX/S5PC100 OneNAND driver at U-Boot
*
* Copyright (C) 2008-2009 Samsung Electronics
* Kyungmin Park <kyungmin.park@samsung.com>
*
* Implementation:
* Emulate the pseudo BufferRAM
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <linux/compat.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/samsung_onenand.h>
#include <asm/io.h>
#include <asm/errno.h>
#ifdef ONENAND_DEBUG
#define DPRINTK(format, args...) \
do { \
printf("%s[%d]: " format "\n", __func__, __LINE__, ##args); \
} while (0)
#else
#define DPRINTK(...) do { } while (0)
#endif
#define ONENAND_ERASE_STATUS 0x00
#define ONENAND_MULTI_ERASE_SET 0x01
#define ONENAND_ERASE_START 0x03
#define ONENAND_UNLOCK_START 0x08
#define ONENAND_UNLOCK_END 0x09
#define ONENAND_LOCK_START 0x0A
#define ONENAND_LOCK_END 0x0B
#define ONENAND_LOCK_TIGHT_START 0x0C
#define ONENAND_LOCK_TIGHT_END 0x0D
#define ONENAND_UNLOCK_ALL 0x0E
#define ONENAND_OTP_ACCESS 0x12
#define ONENAND_SPARE_ACCESS_ONLY 0x13
#define ONENAND_MAIN_ACCESS_ONLY 0x14
#define ONENAND_ERASE_VERIFY 0x15
#define ONENAND_MAIN_SPARE_ACCESS 0x16
#define ONENAND_PIPELINE_READ 0x4000
#if defined(CONFIG_S3C64XX)
#define MAP_00 (0x0 << 24)
#define MAP_01 (0x1 << 24)
#define MAP_10 (0x2 << 24)
#define MAP_11 (0x3 << 24)
#elif defined(CONFIG_S5P)
#define MAP_00 (0x0 << 26)
#define MAP_01 (0x1 << 26)
#define MAP_10 (0x2 << 26)
#define MAP_11 (0x3 << 26)
#endif
/* read/write of XIP buffer */
#define CMD_MAP_00(mem_addr) (MAP_00 | ((mem_addr) << 1))
/* read/write to the memory device */
#define CMD_MAP_01(mem_addr) (MAP_01 | (mem_addr))
/* control special functions of the memory device */
#define CMD_MAP_10(mem_addr) (MAP_10 | (mem_addr))
/* direct interface(direct access) with the memory device */
#define CMD_MAP_11(mem_addr) (MAP_11 | ((mem_addr) << 2))
struct s3c_onenand {
struct mtd_info *mtd;
void __iomem *base;
void __iomem *ahb_addr;
int bootram_command;
void __iomem *page_buf;
void __iomem *oob_buf;
unsigned int (*mem_addr)(int fba, int fpa, int fsa);
struct samsung_onenand *reg;
};
static struct s3c_onenand *onenand;
static int s3c_read_cmd(unsigned int cmd)
{
return readl(onenand->ahb_addr + cmd);
}
static void s3c_write_cmd(int value, unsigned int cmd)
{
writel(value, onenand->ahb_addr + cmd);
}
/*
* MEM_ADDR
*
* fba: flash block address
* fpa: flash page address
* fsa: flash sector address
*
* return the buffer address on the memory device
* It will be combined with CMD_MAP_XX
*/
#if defined(CONFIG_S3C64XX)
static unsigned int s3c_mem_addr(int fba, int fpa, int fsa)
{
return (fba << 12) | (fpa << 6) | (fsa << 4);
}
#elif defined(CONFIG_S5P)
static unsigned int s3c_mem_addr(int fba, int fpa, int fsa)
{
return (fba << 13) | (fpa << 7) | (fsa << 5);
}
#endif
static void s3c_onenand_reset(void)
{
unsigned long timeout = 0x10000;
int stat;
writel(ONENAND_MEM_RESET_COLD, &onenand->reg->mem_reset);
while (timeout--) {
stat = readl(&onenand->reg->int_err_stat);
if (stat & RST_CMP)
break;
}
stat = readl(&onenand->reg->int_err_stat);
writel(stat, &onenand->reg->int_err_ack);
/* Clear interrupt */
writel(0x0, &onenand->reg->int_err_ack);
/* Clear the ECC status */
writel(0x0, &onenand->reg->ecc_err_stat);
}
static unsigned short s3c_onenand_readw(void __iomem *addr)
{
struct onenand_chip *this = onenand->mtd->priv;
int reg = addr - this->base;
int word_addr = reg >> 1;
int value;
/* It's used for probing time */
switch (reg) {
case ONENAND_REG_MANUFACTURER_ID:
return readl(&onenand->reg->manufact_id);
case ONENAND_REG_DEVICE_ID:
return readl(&onenand->reg->device_id);
case ONENAND_REG_VERSION_ID:
return readl(&onenand->reg->flash_ver_id);
case ONENAND_REG_DATA_BUFFER_SIZE:
return readl(&onenand->reg->data_buf_size);
case ONENAND_REG_TECHNOLOGY:
return readl(&onenand->reg->tech);
case ONENAND_REG_SYS_CFG1:
return readl(&onenand->reg->mem_cfg);
/* Used at unlock all status */
case ONENAND_REG_CTRL_STATUS:
return 0;
case ONENAND_REG_WP_STATUS:
return ONENAND_WP_US;
default:
break;
}
/* BootRAM access control */
if (reg < ONENAND_DATARAM && onenand->bootram_command) {
if (word_addr == 0)
return readl(&onenand->reg->manufact_id);
if (word_addr == 1)
return readl(&onenand->reg->device_id);
if (word_addr == 2)
return readl(&onenand->reg->flash_ver_id);
}
value = s3c_read_cmd(CMD_MAP_11(word_addr)) & 0xffff;
printk(KERN_INFO "s3c_onenand_readw: Illegal access"
" at reg 0x%x, value 0x%x\n", word_addr, value);
return value;
}
static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
{
struct onenand_chip *this = onenand->mtd->priv;
int reg = addr - this->base;
int word_addr = reg >> 1;
/* It's used for probing time */
switch (reg) {
case ONENAND_REG_SYS_CFG1:
writel(value, &onenand->reg->mem_cfg);
return;
case ONENAND_REG_START_ADDRESS1:
case ONENAND_REG_START_ADDRESS2:
return;
/* Lock/lock-tight/unlock/unlock_all */
case ONENAND_REG_START_BLOCK_ADDRESS:
return;
default:
break;
}
/* BootRAM access control */
if (reg < ONENAND_DATARAM) {
if (value == ONENAND_CMD_READID) {
onenand->bootram_command = 1;
return;
}
if (value == ONENAND_CMD_RESET) {
writel(ONENAND_MEM_RESET_COLD,
&onenand->reg->mem_reset);
onenand->bootram_command = 0;
return;
}
}
printk(KERN_INFO "s3c_onenand_writew: Illegal access"
" at reg 0x%x, value 0x%x\n", word_addr, value);
s3c_write_cmd(value, CMD_MAP_11(word_addr));
}
static int s3c_onenand_wait(struct mtd_info *mtd, int state)
{
unsigned int flags = INT_ACT;
unsigned int stat, ecc;
unsigned long timeout = 0x100000;
switch (state) {
case FL_READING:
flags |= BLK_RW_CMP | LOAD_CMP;
break;
case FL_WRITING:
flags |= BLK_RW_CMP | PGM_CMP;
break;
case FL_ERASING:
flags |= BLK_RW_CMP | ERS_CMP;
break;
case FL_LOCKING:
flags |= BLK_RW_CMP;
break;
default:
break;
}
while (timeout--) {
stat = readl(&onenand->reg->int_err_stat);
if (stat & flags)
break;
}
/* To get correct interrupt status in timeout case */
stat = readl(&onenand->reg->int_err_stat);
writel(stat, &onenand->reg->int_err_ack);
/*
* In the Spec. it checks the controller status first
* However if you get the correct information in case of
* power off recovery (POR) test, it should read ECC status first
*/
if (stat & LOAD_CMP) {
ecc = readl(&onenand->reg->ecc_err_stat);
if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
printk(KERN_INFO "%s: ECC error = 0x%04x\n",
__func__, ecc);
mtd->ecc_stats.failed++;
return -EBADMSG;
}
}
if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
printk(KERN_INFO "%s: controller error = 0x%04x\n",
__func__, stat);
if (stat & LOCKED_BLK)
printk(KERN_INFO "%s: it's locked error = 0x%04x\n",
__func__, stat);
return -EIO;
}
return 0;
}
static int s3c_onenand_command(struct mtd_info *mtd, int cmd,
loff_t addr, size_t len)
{
struct onenand_chip *this = mtd->priv;
unsigned int *m, *s;
int fba, fpa, fsa = 0;
unsigned int mem_addr;
int i, mcount, scount;
int index;
fba = (int) (addr >> this->erase_shift);
fpa = (int) (addr >> this->page_shift);
fpa &= this->page_mask;
mem_addr = onenand->mem_addr(fba, fpa, fsa);
switch (cmd) {
case ONENAND_CMD_READ:
case ONENAND_CMD_READOOB:
case ONENAND_CMD_BUFFERRAM:
ONENAND_SET_NEXT_BUFFERRAM(this);
default:
break;
}
index = ONENAND_CURRENT_BUFFERRAM(this);
/*
* Emulate Two BufferRAMs and access with 4 bytes pointer
*/
m = (unsigned int *) onenand->page_buf;
s = (unsigned int *) onenand->oob_buf;
if (index) {
m += (this->writesize >> 2);
s += (mtd->oobsize >> 2);
}
mcount = mtd->writesize >> 2;
scount = mtd->oobsize >> 2;
switch (cmd) {
case ONENAND_CMD_READ:
/* Main */
for (i = 0; i < mcount; i++)
*m++ = s3c_read_cmd(CMD_MAP_01(mem_addr));
return 0;
case ONENAND_CMD_READOOB:
writel(TSRF, &onenand->reg->trans_spare);
/* Main */
for (i = 0; i < mcount; i++)
*m++ = s3c_read_cmd(CMD_MAP_01(mem_addr));
/* Spare */
for (i = 0; i < scount; i++)
*s++ = s3c_read_cmd(CMD_MAP_01(mem_addr));
writel(0, &onenand->reg->trans_spare);
return 0;
case ONENAND_CMD_PROG:
/* Main */
for (i = 0; i < mcount; i++)
s3c_write_cmd(*m++, CMD_MAP_01(mem_addr));
return 0;
case ONENAND_CMD_PROGOOB:
writel(TSRF, &onenand->reg->trans_spare);
/* Main - dummy write */
for (i = 0; i < mcount; i++)
s3c_write_cmd(0xffffffff, CMD_MAP_01(mem_addr));
/* Spare */
for (i = 0; i < scount; i++)
s3c_write_cmd(*s++, CMD_MAP_01(mem_addr));
writel(0, &onenand->reg->trans_spare);
return 0;
case ONENAND_CMD_UNLOCK_ALL:
s3c_write_cmd(ONENAND_UNLOCK_ALL, CMD_MAP_10(mem_addr));
return 0;
case ONENAND_CMD_ERASE:
s3c_write_cmd(ONENAND_ERASE_START, CMD_MAP_10(mem_addr));
return 0;
case ONENAND_CMD_MULTIBLOCK_ERASE:
s3c_write_cmd(ONENAND_MULTI_ERASE_SET, CMD_MAP_10(mem_addr));
return 0;
case ONENAND_CMD_ERASE_VERIFY:
s3c_write_cmd(ONENAND_ERASE_VERIFY, CMD_MAP_10(mem_addr));
return 0;
default:
break;
}
return 0;
}
static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
{
struct onenand_chip *this = mtd->priv;
int index = ONENAND_CURRENT_BUFFERRAM(this);
unsigned char *p;
if (area == ONENAND_DATARAM) {
p = (unsigned char *) onenand->page_buf;
if (index == 1)
p += this->writesize;
} else {
p = (unsigned char *) onenand->oob_buf;
if (index == 1)
p += mtd->oobsize;
}
return p;
}
static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
unsigned char *buffer, int offset,
size_t count)
{
unsigned char *p;
p = s3c_get_bufferram(mtd, area);
memcpy(buffer, p + offset, count);
return 0;
}
static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
const unsigned char *buffer, int offset,
size_t count)
{
unsigned char *p;
p = s3c_get_bufferram(mtd, area);
memcpy(p + offset, buffer, count);
return 0;
}
static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
{
struct samsung_onenand *reg = (struct samsung_onenand *)onenand->base;
unsigned int flags = INT_ACT | LOAD_CMP;
unsigned int stat;
unsigned long timeout = 0x10000;
while (timeout--) {
stat = readl(&reg->int_err_stat);
if (stat & flags)
break;
}
/* To get correct interrupt status in timeout case */
stat = readl(&onenand->reg->int_err_stat);
writel(stat, &onenand->reg->int_err_ack);
if (stat & LD_FAIL_ECC_ERR) {
s3c_onenand_reset();
return ONENAND_BBT_READ_ERROR;
}
if (stat & LOAD_CMP) {
int ecc = readl(&onenand->reg->ecc_err_stat);
if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
s3c_onenand_reset();
return ONENAND_BBT_READ_ERROR;
}
}
return 0;
}
static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
unsigned int block, end;
end = this->chipsize >> this->erase_shift;
for (block = 0; block < end; block++) {
s3c_read_cmd(CMD_MAP_01(onenand->mem_addr(block, 0, 0)));
if (readl(&onenand->reg->int_err_stat) & LOCKED_BLK) {
printf("block %d is write-protected!\n", block);
writel(LOCKED_BLK, &onenand->reg->int_err_ack);
}
}
}
static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
size_t len, int cmd)
{
struct onenand_chip *this = mtd->priv;
int start, end, start_mem_addr, end_mem_addr;
start = ofs >> this->erase_shift;
start_mem_addr = onenand->mem_addr(start, 0, 0);
end = start + (len >> this->erase_shift) - 1;
end_mem_addr = onenand->mem_addr(end, 0, 0);
if (cmd == ONENAND_CMD_LOCK) {
s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(start_mem_addr));
s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(end_mem_addr));
} else {
s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(start_mem_addr));
s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(end_mem_addr));
}
this->wait(mtd, FL_LOCKING);
}
static void s3c_onenand_unlock_all(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
loff_t ofs = 0;
size_t len = this->chipsize;
/* FIXME workaround */
this->subpagesize = mtd->writesize;
mtd->subpage_sft = 0;
if (this->options & ONENAND_HAS_UNLOCK_ALL) {
/* Write unlock command */
this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
/* No need to check return value */
this->wait(mtd, FL_LOCKING);
/* Workaround for all block unlock in DDP */
if (!ONENAND_IS_DDP(this)) {
s3c_onenand_check_lock_status(mtd);
return;
}
/* All blocks on another chip */
ofs = this->chipsize >> 1;
len = this->chipsize >> 1;
}
s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
s3c_onenand_check_lock_status(mtd);
}
#ifdef CONFIG_S3C64XX
static void s3c_set_width_regs(struct onenand_chip *this)
{
int dev_id, density;
int fba, fpa, fsa;
int dbs_dfs;
dev_id = DEVICE_ID0_REG;
density = (dev_id >> ONENAND_DEVICE_DENSITY_SHIFT) & 0xf;
dbs_dfs = !!(dev_id & ONENAND_DEVICE_IS_DDP);
fba = density + 7;
if (dbs_dfs)
fba--; /* Decrease the fba */
fpa = 6;
if (density >= ONENAND_DEVICE_DENSITY_512Mb)
fsa = 2;
else
fsa = 1;
DPRINTK("FBA %lu, FPA %lu, FSA %lu, DDP %lu",
FBA_WIDTH0_REG, FPA_WIDTH0_REG, FSA_WIDTH0_REG,
DDP_DEVICE_REG);
DPRINTK("mem_cfg0 0x%lx, sync mode %lu, "
"dev_page_size %lu, BURST LEN %lu",
MEM_CFG0_REG, SYNC_MODE_REG,
DEV_PAGE_SIZE_REG, BURST_LEN0_REG);
DEV_PAGE_SIZE_REG = 0x1;
FBA_WIDTH0_REG = fba;
FPA_WIDTH0_REG = fpa;
FSA_WIDTH0_REG = fsa;
DBS_DFS_WIDTH0_REG = dbs_dfs;
}
#endif
int s5pc110_chip_probe(struct mtd_info *mtd)
{
return 0;
}
int s5pc210_chip_probe(struct mtd_info *mtd)
{
return 0;
}
void s3c_onenand_init(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
u32 size = (4 << 10); /* 4 KiB */
onenand = malloc(sizeof(struct s3c_onenand));
if (!onenand)
return;
onenand->page_buf = malloc(size * sizeof(char));
if (!onenand->page_buf)
return;
memset(onenand->page_buf, 0xff, size);
onenand->oob_buf = malloc(128 * sizeof(char));
if (!onenand->oob_buf)
return;
memset(onenand->oob_buf, 0xff, 128);
onenand->mtd = mtd;
#if defined(CONFIG_S3C64XX)
onenand->base = (void *)0x70100000;
onenand->ahb_addr = (void *)0x20000000;
#elif defined(CONFIG_S5P)
onenand->base = (void *)0xE7100000;
onenand->ahb_addr = (void *)0xB0000000;
#endif
onenand->mem_addr = s3c_mem_addr;
onenand->reg = (struct samsung_onenand *)onenand->base;
this->read_word = s3c_onenand_readw;
this->write_word = s3c_onenand_writew;
this->wait = s3c_onenand_wait;
this->bbt_wait = s3c_onenand_bbt_wait;
this->unlock_all = s3c_onenand_unlock_all;
this->command = s3c_onenand_command;
this->read_bufferram = onenand_read_bufferram;
this->write_bufferram = onenand_write_bufferram;
this->options |= ONENAND_RUNTIME_BADBLOCK_CHECK;
}