mirror of
https://github.com/Ysurac/openmptcprouter.git
synced 2025-03-09 15:40:20 +00:00
Fix for RUTX platform
This commit is contained in:
parent
ccdb64ad45
commit
59bc57d5d5
7254 changed files with 1810270 additions and 7 deletions
236
root/package/utils/sysupgrade-helper/src/doc/README.usb
Normal file
236
root/package/utils/sysupgrade-helper/src/doc/README.usb
Normal file
|
@ -0,0 +1,236 @@
|
|||
/*
|
||||
* (C) Copyright 2001
|
||||
* Denis Peter, MPL AG Switzerland
|
||||
*
|
||||
* See file CREDITS for list of people who contributed to this
|
||||
* project.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License as
|
||||
* published by the Free Software Foundation; either version 2 of
|
||||
* the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
* MA 02111-1307 USA
|
||||
*
|
||||
*/
|
||||
|
||||
USB Support for PIP405 and MIP405 (UHCI)
|
||||
========================================
|
||||
|
||||
The USB support is implemented on the base of the UHCI Host
|
||||
controller.
|
||||
|
||||
Currently supported are USB Hubs, USB Keyboards, USB Floppys, USB
|
||||
flash sticks and USB network adaptors.
|
||||
Tested with a TEAC Floppy TEAC FD-05PUB and Chicony KU-8933 Keyboard.
|
||||
|
||||
How it works:
|
||||
-------------
|
||||
|
||||
The USB (at least the USB UHCI) needs a frame list (4k), transfer
|
||||
descripor and queue headers which are all located in the main memory.
|
||||
The UHCI allocates every milisecond the PCI bus and reads the current
|
||||
frame pointer. This may cause to crash the OS during boot. So the USB
|
||||
_MUST_ be stopped during OS boot. This is the reason, why the USB is
|
||||
NOT automatically started during start-up. If someone needs the USB
|
||||
he has to start it and should therefore be aware that he had to stop
|
||||
it before booting the OS.
|
||||
|
||||
For USB keyboards this can be done by a script which is automatically
|
||||
started after the U-Boot is up and running. To boot an OS with a an
|
||||
USB keyboard another script is necessary, which first disables the
|
||||
USB and then executes the boot command. If the boot command fails,
|
||||
the script can reenable the USB kbd.
|
||||
|
||||
Common USB Commands:
|
||||
- usb start:
|
||||
- usb reset: (re)starts the USB. All USB devices will be
|
||||
initialized and a device tree is build for them.
|
||||
- usb tree: shows all USB devices in a tree like display
|
||||
- usb info [dev]: shows all USB infos of the device dev, or of all
|
||||
the devices
|
||||
- usb stop [f]: stops the USB. If f==1 the USB will also stop if
|
||||
an USB keyboard is assigned as stdin. The stdin
|
||||
is then switched to serial input.
|
||||
Storage USB Commands:
|
||||
- usb scan: scans the USB for storage devices.The USB must be
|
||||
running for this command (usb start)
|
||||
- usb device [dev]: show or set current USB staorage device
|
||||
- usb part [dev]: print partition table of one or all USB storage
|
||||
devices
|
||||
- usb read addr blk# cnt:
|
||||
read `cnt' blocks starting at block `blk#'to
|
||||
memory address `addr'
|
||||
- usbboot addr dev:part:
|
||||
boot from USB device
|
||||
|
||||
Config Switches:
|
||||
----------------
|
||||
CONFIG_CMD_USB enables basic USB support and the usb command
|
||||
CONFIG_USB_UHCI defines the lowlevel part.A lowlevel part must be defined
|
||||
if using CONFIG_CMD_USB
|
||||
CONFIG_USB_KEYBOARD enables the USB Keyboard
|
||||
CONFIG_USB_STORAGE enables the USB storage devices
|
||||
CONFIG_USB_HOST_ETHER enables USB ethernet adapter support
|
||||
|
||||
|
||||
USB Host Networking
|
||||
===================
|
||||
|
||||
If you have a supported USB Ethernet adapter you can use it in U-Boot
|
||||
to obtain an IP address and load a kernel from a network server.
|
||||
|
||||
Note: USB Host Networking is not the same as making your board act as a USB
|
||||
client. In that case your board is pretending to be an Ethernet adapter
|
||||
and will appear as a network interface to an attached computer. In that
|
||||
case the connection is via a USB cable with the computer acting as the host.
|
||||
|
||||
With USB Host Networking, your board is the USB host. It controls the
|
||||
Ethernet adapter to which it is directly connected and the connection to
|
||||
the outside world is your adapter's Ethernet cable. Your board becomes an
|
||||
independent network device, able to connect and perform network operations
|
||||
independently of your computer.
|
||||
|
||||
|
||||
Device support
|
||||
--------------
|
||||
|
||||
Currently supported devices are listed in the drivers according to
|
||||
their vendor and product IDs. You can check your device by connecting it
|
||||
to a Linux machine and typing 'lsusb'. The drivers are in
|
||||
drivers/usb/eth.
|
||||
|
||||
For example this lsusb output line shows a device with Vendor ID 0x0x95
|
||||
and product ID 0x7720:
|
||||
|
||||
Bus 002 Device 010: ID 0b95:7720 ASIX Electronics Corp. AX88772
|
||||
|
||||
If you look at drivers/usb/eth/asix.c you will see this line within the
|
||||
supported device list, so we know this adapter is supported.
|
||||
|
||||
{ 0x0b95, 0x7720 }, /* Trendnet TU2-ET100 V3.0R */
|
||||
|
||||
If your adapter is not listed there is a still a chance that it will
|
||||
work. Try looking up the manufacturer of the chip inside your adapter.
|
||||
or take the adapter apart and look for chip markings. Then add a line
|
||||
for your vendor/product ID into the table of the appropriate driver,
|
||||
build U-Boot and see if it works. If not then there might be differences
|
||||
between the chip in your adapter and the driver. You could try to get a
|
||||
datasheet for your device and add support for it to U-Boot. This is not
|
||||
particularly difficult - you only need to provide support for four basic
|
||||
functions: init, halt, send and recv.
|
||||
|
||||
|
||||
Enabling USB Host Networking
|
||||
----------------------------
|
||||
|
||||
The normal U-Boot commands are used with USB networking, but you must
|
||||
start USB first. For example:
|
||||
|
||||
usb start
|
||||
setenv bootfile /tftpboot/uImage
|
||||
bootp
|
||||
|
||||
|
||||
To enable USB Host Ethernet in U-Boot, your platform must of course
|
||||
support USB with CONFIG_CMD_USB enabled and working. You will need to
|
||||
add some config settings to your board header file:
|
||||
|
||||
#define CONFIG_USB_HOST_ETHER /* Enable USB Ethernet adapters */
|
||||
#define CONFIG_USB_ETHER_ASIX /* Asix, or whatever driver(s) you want */
|
||||
|
||||
As with built-in networking, you will also want to enable some network
|
||||
commands, for example:
|
||||
|
||||
#define CONFIG_CMD_NET
|
||||
#define CONFIG_CMD_PING
|
||||
#define CONFIG_CMD_DHCP
|
||||
|
||||
and some bootp options, which tell your board to obtain its subnet,
|
||||
gateway IP, host name and boot path from the bootp/dhcp server. These
|
||||
settings should start you off:
|
||||
|
||||
#define CONFIG_BOOTP_SUBNETMASK
|
||||
#define CONFIG_BOOTP_GATEWAY
|
||||
#define CONFIG_BOOTP_HOSTNAME
|
||||
#define CONFIG_BOOTP_BOOTPATH
|
||||
|
||||
You can also set the default IP address of your board and the server
|
||||
as well as the default file to load when a 'bootp' command is issued.
|
||||
All of these can be obtained from the bootp server if not set.
|
||||
|
||||
#define CONFIG_IPADDR 10.0.0.2 (replace with your value)
|
||||
#define CONFIG_SERVERIP 10.0.0.1 (replace with your value)
|
||||
#define CONFIG_BOOTFILE "uImage"
|
||||
|
||||
|
||||
The 'usb start' command should identify the adapter something like this:
|
||||
|
||||
CrOS> usb start
|
||||
(Re)start USB...
|
||||
USB EHCI 1.00
|
||||
scanning bus for devices... 3 USB Device(s) found
|
||||
scanning bus for storage devices... 0 Storage Device(s) found
|
||||
scanning bus for ethernet devices... 1 Ethernet Device(s) found
|
||||
CrOS> print ethact
|
||||
ethact=asx0
|
||||
|
||||
You can see that it found an ethernet device and we can print out the
|
||||
device name (asx0 in this case).
|
||||
|
||||
Then 'bootp' or 'dhcp' should use it to obtain an IP address from DHCP,
|
||||
perhaps something like this:
|
||||
|
||||
CrOS> bootp
|
||||
Waiting for Ethernet connection... done.
|
||||
BOOTP broadcast 1
|
||||
BOOTP broadcast 2
|
||||
DHCP client bound to address 172.22.73.81
|
||||
Using asx0 device
|
||||
TFTP from server 172.22.72.144; our IP address is 172.22.73.81
|
||||
Filename '/tftpboot/uImage-sjg-seaboard-261347'.
|
||||
Load address: 0x40c000
|
||||
Loading: #################################################################
|
||||
#################################################################
|
||||
#################################################################
|
||||
################################################
|
||||
done
|
||||
Bytes transferred = 3557464 (364858 hex)
|
||||
CrOS>
|
||||
|
||||
|
||||
Another way of doing this is to issue a tftp command, which will cause the
|
||||
bootp to happen automatically.
|
||||
|
||||
|
||||
MAC Addresses
|
||||
-------------
|
||||
|
||||
Most Ethernet dongles have a built-in MAC address which is unique in the
|
||||
world. This is important so that devices on the network can be
|
||||
distinguised from each other. MAC address conflicts are evil and
|
||||
generally result in strange and eratic behaviour.
|
||||
|
||||
Some boards have USB Ethernet chips on-board, and these sometimes do not
|
||||
have an assigned MAC address. In this case it is up to you to assign
|
||||
one which is unique. You should obtain a valid MAC address from a range
|
||||
assigned to you before you ship the product.
|
||||
|
||||
Built-in Ethernet adapters support setting the MAC address by means of
|
||||
an ethaddr environment variable for each interface (ethaddr, eth1addr,
|
||||
eth2addr). There is similar support on the USB network side, using the
|
||||
names usbethaddr, usbeth1addr, etc. They are kept separate since we
|
||||
don't want a USB device taking the MAC address of a built-in device or
|
||||
vice versa.
|
||||
|
||||
So if your USB Ethernet chip doesn't have a MAC address available then
|
||||
you must set usbethaddr to a suitable MAC address. At the time of
|
||||
writing this functionality is only supported by the SMSC driver.
|
Loading…
Add table
Add a link
Reference in a new issue