mirror of
https://github.com/Ysurac/openmptcprouter.git
synced 2025-02-15 04:42:02 +00:00
1037 lines
38 KiB
Diff
1037 lines
38 KiB
Diff
--- a/net/ipv4/Makefile.anc 2019-11-23 23:01:47.069966970 +0100
|
|
+++ b/net/ipv4/Makefile 2019-11-23 23:03:01.416428035 +0100
|
|
@@ -48,6 +48,7 @@
|
|
obj-$(CONFIG_INET_UDP_DIAG) += udp_diag.o
|
|
obj-$(CONFIG_INET_RAW_DIAG) += raw_diag.o
|
|
obj-$(CONFIG_TCP_CONG_BBR) += tcp_bbr.o
|
|
+obj-$(CONFIG_TCP_CONG_NANQINLANG) += tcp_nanqinlang.o
|
|
obj-$(CONFIG_TCP_CONG_BIC) += tcp_bic.o
|
|
obj-$(CONFIG_TCP_CONG_CDG) += tcp_cdg.o
|
|
obj-$(CONFIG_TCP_CONG_CUBIC) += tcp_cubic.o
|
|
--- a/net/ipv4/Kconfig.anc 2019-11-23 23:01:52.649851417 +0100
|
|
+++ b/net/ipv4/Kconfig 2019-11-23 23:04:21.974762180 +0100
|
|
@@ -681,6 +681,21 @@
|
|
bufferbloat, policers, or AQM schemes that do not provide a delay
|
|
signal. It requires the fq ("Fair Queue") pacing packet scheduler.
|
|
|
|
+config TCP_CONG_NANQINLANG
|
|
+ tristate "NANGINLANG TCP"
|
|
+ default n
|
|
+ ---help---
|
|
+
|
|
+ BBR (Bottleneck Bandwidth and RTT) TCP congestion control aims to
|
|
+ maximize network utilization and minimize queues. It builds an explicit
|
|
+ model of the the bottleneck delivery rate and path round-trip
|
|
+ propagation delay. It tolerates packet loss and delay unrelated to
|
|
+ congestion. It can operate over LAN, WAN, cellular, wifi, or cable
|
|
+ modem links. It can coexist with flows that use loss-based congestion
|
|
+ control, and can operate with shallow buffers, deep buffers,
|
|
+ bufferbloat, policers, or AQM schemes that do not provide a delay
|
|
+ signal. It requires the fq ("Fair Queue") pacing packet scheduler.
|
|
+
|
|
config TCP_CONG_LIA
|
|
tristate "MPTCP Linked Increase"
|
|
depends on MPTCP
|
|
@@ -763,6 +778,9 @@
|
|
config DEFAULT_BBR
|
|
bool "BBR" if TCP_CONG_BBR=y
|
|
|
|
+ config DEFAULT_NANQINLANG
|
|
+ bool "BBR" if TCP_CONG_NANQINLANG=y
|
|
+
|
|
config DEFAULT_LIA
|
|
bool "Lia" if TCP_CONG_LIA=y
|
|
|
|
@@ -806,6 +824,7 @@
|
|
default "dctcp" if DEFAULT_DCTCP
|
|
default "cdg" if DEFAULT_CDG
|
|
default "bbr" if DEFAULT_BBR
|
|
+ default "nanqinlang" if DEFAULT_NANQINLANG
|
|
default "cubic"
|
|
|
|
config TCP_MD5SIG
|
|
--- /dev/null 2019-11-25 21:13:36.728349757 +0100
|
|
+++ b/net/ipv4/tcp_nanqinlang.c 2019-11-25 21:10:00.392068414 +0100
|
|
@@ -0,0 +1,982 @@
|
|
+/* Bottleneck Bandwidth and RTT (BBR) congestion control
|
|
+ *
|
|
+ * BBR congestion control computes the sending rate based on the delivery
|
|
+ * rate (throughput) estimated from ACKs. In a nutshell:
|
|
+ *
|
|
+ * On each ACK, update our model of the network path:
|
|
+ * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
|
|
+ * min_rtt = windowed_min(rtt, 10 seconds)
|
|
+ * pacing_rate = pacing_gain * bottleneck_bandwidth
|
|
+ * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
|
|
+ *
|
|
+ * The core algorithm does not react directly to packet losses or delays,
|
|
+ * although BBR may adjust the size of next send per ACK when loss is
|
|
+ * observed, or adjust the sending rate if it estimates there is a
|
|
+ * traffic policer, in order to keep the drop rate reasonable.
|
|
+ *
|
|
+ * Here is a state transition diagram for BBR:
|
|
+ *
|
|
+ * |
|
|
+ * V
|
|
+ * +---> STARTUP ----+
|
|
+ * | | |
|
|
+ * | V |
|
|
+ * | DRAIN ----+
|
|
+ * | | |
|
|
+ * | V |
|
|
+ * +---> PROBE_BW ----+
|
|
+ * | ^ | |
|
|
+ * | | | |
|
|
+ * | +----+ |
|
|
+ * | |
|
|
+ * +---- PROBE_RTT <--+
|
|
+ *
|
|
+ * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
|
|
+ * When it estimates the pipe is full, it enters DRAIN to drain the queue.
|
|
+ * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
|
|
+ * A long-lived BBR flow spends the vast majority of its time remaining
|
|
+ * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
|
|
+ * in a fair manner, with a small, bounded queue. *If* a flow has been
|
|
+ * continuously sending for the entire min_rtt window, and hasn't seen an RTT
|
|
+ * sample that matches or decreases its min_rtt estimate for 10 seconds, then
|
|
+ * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
|
|
+ * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
|
|
+ * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
|
|
+ * otherwise we enter STARTUP to try to fill the pipe.
|
|
+ *
|
|
+ * BBR is described in detail in:
|
|
+ * "BBR: Congestion-Based Congestion Control",
|
|
+ * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
|
|
+ * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
|
|
+ *
|
|
+ * There is a public e-mail list for discussing BBR development and testing:
|
|
+ * https://groups.google.com/forum/#!forum/bbr-dev
|
|
+ *
|
|
+ * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
|
|
+ * otherwise TCP stack falls back to an internal pacing using one high
|
|
+ * resolution timer per TCP socket and may use more resources.
|
|
+ */
|
|
+#include <linux/module.h>
|
|
+#include <net/tcp.h>
|
|
+#include <linux/inet_diag.h>
|
|
+#include <linux/inet.h>
|
|
+#include <linux/random.h>
|
|
+#include <linux/win_minmax.h>
|
|
+
|
|
+/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
|
|
+ * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
|
|
+ * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
|
|
+ * Since the minimum window is >=4 packets, the lower bound isn't
|
|
+ * an issue. The upper bound isn't an issue with existing technologies.
|
|
+ */
|
|
+#define BW_SCALE 24
|
|
+#define BW_UNIT (1 << BW_SCALE)
|
|
+
|
|
+#define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
|
|
+#define BBR_UNIT (1 << BBR_SCALE)
|
|
+
|
|
+/* BBR has the following modes for deciding how fast to send: */
|
|
+enum bbr_mode {
|
|
+ BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
|
|
+ BBR_DRAIN, /* drain any queue created during startup */
|
|
+ BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
|
|
+ BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
|
|
+};
|
|
+
|
|
+/* BBR congestion control block */
|
|
+struct bbr {
|
|
+ u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
|
|
+ u32 min_rtt_stamp; /* timestamp of min_rtt_us */
|
|
+ u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
|
|
+ struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
|
|
+ u32 rtt_cnt; /* count of packet-timed rounds elapsed */
|
|
+ u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
|
|
+ u64 cycle_mstamp; /* time of this cycle phase start */
|
|
+ u32 mode:3, /* current bbr_mode in state machine */
|
|
+ prev_ca_state:3, /* CA state on previous ACK */
|
|
+ packet_conservation:1, /* use packet conservation? */
|
|
+ round_start:1, /* start of packet-timed tx->ack round? */
|
|
+ idle_restart:1, /* restarting after idle? */
|
|
+ probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
|
|
+ unused:13,
|
|
+ lt_is_sampling:1, /* taking long-term ("LT") samples now? */
|
|
+ lt_rtt_cnt:7, /* round trips in long-term interval */
|
|
+ lt_use_bw:1; /* use lt_bw as our bw estimate? */
|
|
+ u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
|
|
+ u32 lt_last_delivered; /* LT intvl start: tp->delivered */
|
|
+ u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
|
|
+ u32 lt_last_lost; /* LT intvl start: tp->lost */
|
|
+ u32 pacing_gain:10, /* current gain for setting pacing rate */
|
|
+ cwnd_gain:10, /* current gain for setting cwnd */
|
|
+ full_bw_reached:1, /* reached full bw in Startup? */
|
|
+ full_bw_cnt:2, /* number of rounds without large bw gains */
|
|
+ cycle_idx:3, /* current index in pacing_gain cycle array */
|
|
+ has_seen_rtt:1, /* have we seen an RTT sample yet? */
|
|
+ unused_b:5;
|
|
+ u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
|
|
+ u32 full_bw; /* recent bw, to estimate if pipe is full */
|
|
+};
|
|
+
|
|
+#define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
|
|
+
|
|
+/* Window length of bw filter (in rounds): */
|
|
+static const int bbr_bw_rtts = CYCLE_LEN + 2;
|
|
+/* Window length of min_rtt filter (in sec): */
|
|
+static const u32 bbr_min_rtt_win_sec = 10;
|
|
+/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
|
|
+static const u32 bbr_probe_rtt_mode_ms = 100;
|
|
+/* Skip TSO below the following bandwidth (bits/sec): */
|
|
+static const int bbr_min_tso_rate = 1200000;
|
|
+
|
|
+/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
|
|
+ * that will allow a smoothly increasing pacing rate that will double each RTT
|
|
+ * and send the same number of packets per RTT that an un-paced, slow-starting
|
|
+ * Reno or CUBIC flow would:
|
|
+ */
|
|
+static const int bbr_high_gain = BBR_UNIT * 3000 / 1000 + 1;
|
|
+/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
|
|
+ * the queue created in BBR_STARTUP in a single round:
|
|
+ */
|
|
+static const int bbr_drain_gain = BBR_UNIT * 1000 / 3000;
|
|
+/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
|
|
+static const int bbr_cwnd_gain = BBR_UNIT * 2;
|
|
+/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
|
|
+static const int bbr_pacing_gain[] = {
|
|
+ BBR_UNIT * 6 / 4, /* probe for more available bw */
|
|
+ BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
|
|
+ BBR_UNIT * 5 / 4, BBR_UNIT * 5 / 4, BBR_UNIT * 5 / 4, /* cruise at 1.0*bw to utilize pipe, */
|
|
+ BBR_UNIT * 6 / 4, BBR_UNIT * 6 / 4, BBR_UNIT * 6 / 4 /* without creating excess queue... */
|
|
+};
|
|
+/* Randomize the starting gain cycling phase over N phases: */
|
|
+static const u32 bbr_cycle_rand = 7;
|
|
+
|
|
+/* Try to keep at least this many packets in flight, if things go smoothly. For
|
|
+ * smooth functioning, a sliding window protocol ACKing every other packet
|
|
+ * needs at least 4 packets in flight:
|
|
+ */
|
|
+static const u32 bbr_cwnd_min_target = 4;
|
|
+
|
|
+/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
|
|
+/* If bw has increased significantly (1.25x), there may be more bw available: */
|
|
+static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
|
|
+/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
|
|
+static const u32 bbr_full_bw_cnt = 3;
|
|
+
|
|
+/* "long-term" ("LT") bandwidth estimator parameters... */
|
|
+/* The minimum number of rounds in an LT bw sampling interval: */
|
|
+static const u32 bbr_lt_intvl_min_rtts = 4;
|
|
+/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
|
|
+static const u32 bbr_lt_loss_thresh = 50;
|
|
+/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
|
|
+static const u32 bbr_lt_bw_ratio = BBR_UNIT / 4;
|
|
+/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
|
|
+static const u32 bbr_lt_bw_diff = 4000 / 8;
|
|
+/* If we estimate we're policed, use lt_bw for this many round trips: */
|
|
+static const u32 bbr_lt_bw_max_rtts = 48;
|
|
+
|
|
+static void bbr_check_probe_rtt_done(struct sock *sk);
|
|
+
|
|
+/* Do we estimate that STARTUP filled the pipe? */
|
|
+static bool bbr_full_bw_reached(const struct sock *sk)
|
|
+{
|
|
+ const struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ return bbr->full_bw_reached;
|
|
+}
|
|
+
|
|
+/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
|
|
+static u32 bbr_max_bw(const struct sock *sk)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ return minmax_get(&bbr->bw);
|
|
+}
|
|
+
|
|
+/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
|
|
+static u32 bbr_bw(const struct sock *sk)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
|
|
+}
|
|
+
|
|
+/* Return rate in bytes per second, optionally with a gain.
|
|
+ * The order here is chosen carefully to avoid overflow of u64. This should
|
|
+ * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
|
|
+ */
|
|
+static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
|
|
+{
|
|
+ unsigned int mss = tcp_sk(sk)->mss_cache;
|
|
+
|
|
+ if (!tcp_needs_internal_pacing(sk))
|
|
+ mss = tcp_mss_to_mtu(sk, mss);
|
|
+ rate *= mss;
|
|
+ rate *= gain;
|
|
+ rate >>= BBR_SCALE;
|
|
+ rate *= USEC_PER_SEC;
|
|
+ return rate >> BW_SCALE;
|
|
+}
|
|
+
|
|
+/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
|
|
+static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
|
|
+{
|
|
+ u64 rate = bw;
|
|
+
|
|
+ rate = bbr_rate_bytes_per_sec(sk, rate, gain);
|
|
+ rate = min_t(u64, rate, sk->sk_max_pacing_rate);
|
|
+ return rate;
|
|
+}
|
|
+
|
|
+/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
|
|
+static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u64 bw;
|
|
+ u32 rtt_us;
|
|
+
|
|
+ if (tp->srtt_us) { /* any RTT sample yet? */
|
|
+ rtt_us = max(tp->srtt_us >> 3, 1U);
|
|
+ bbr->has_seen_rtt = 1;
|
|
+ } else { /* no RTT sample yet */
|
|
+ rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
|
|
+ }
|
|
+ bw = (u64)tp->snd_cwnd * BW_UNIT;
|
|
+ do_div(bw, rtt_us);
|
|
+ sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
|
|
+}
|
|
+
|
|
+/* Pace using current bw estimate and a gain factor. In order to help drive the
|
|
+ * network toward lower queues while maintaining high utilization and low
|
|
+ * latency, the average pacing rate aims to be slightly (~1%) lower than the
|
|
+ * estimated bandwidth. This is an important aspect of the design. In this
|
|
+ * implementation this slightly lower pacing rate is achieved implicitly by not
|
|
+ * including link-layer headers in the packet size used for the pacing rate.
|
|
+ */
|
|
+static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
|
|
+
|
|
+ if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
|
|
+ bbr_init_pacing_rate_from_rtt(sk);
|
|
+ if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
|
|
+ sk->sk_pacing_rate = rate;
|
|
+}
|
|
+
|
|
+/* override sysctl_tcp_min_tso_segs */
|
|
+static u32 bbr_min_tso_segs(struct sock *sk)
|
|
+{
|
|
+ return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
|
|
+}
|
|
+
|
|
+static u32 bbr_tso_segs_goal(struct sock *sk)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ u32 segs, bytes;
|
|
+
|
|
+ /* Sort of tcp_tso_autosize() but ignoring
|
|
+ * driver provided sk_gso_max_size.
|
|
+ */
|
|
+ bytes = min_t(u32, sk->sk_pacing_rate >> sk->sk_pacing_shift,
|
|
+ GSO_MAX_SIZE - 1 - MAX_TCP_HEADER);
|
|
+ segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
|
|
+
|
|
+ return min(segs, 0x7FU);
|
|
+}
|
|
+
|
|
+/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
|
|
+static void bbr_save_cwnd(struct sock *sk)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
|
|
+ bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
|
|
+ else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
|
|
+ bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
|
|
+}
|
|
+
|
|
+static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ if (event == CA_EVENT_TX_START && tp->app_limited) {
|
|
+ bbr->idle_restart = 1;
|
|
+ /* Avoid pointless buffer overflows: pace at est. bw if we don't
|
|
+ * need more speed (we're restarting from idle and app-limited).
|
|
+ */
|
|
+ if (bbr->mode == BBR_PROBE_BW)
|
|
+ bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
|
|
+ else if (bbr->mode == BBR_PROBE_RTT)
|
|
+ bbr_check_probe_rtt_done(sk);
|
|
+ }
|
|
+}
|
|
+
|
|
+/* Find target cwnd. Right-size the cwnd based on min RTT and the
|
|
+ * estimated bottleneck bandwidth:
|
|
+ *
|
|
+ * cwnd = bw * min_rtt * gain = BDP * gain
|
|
+ *
|
|
+ * The key factor, gain, controls the amount of queue. While a small gain
|
|
+ * builds a smaller queue, it becomes more vulnerable to noise in RTT
|
|
+ * measurements (e.g., delayed ACKs or other ACK compression effects). This
|
|
+ * noise may cause BBR to under-estimate the rate.
|
|
+ *
|
|
+ * To achieve full performance in high-speed paths, we budget enough cwnd to
|
|
+ * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
|
|
+ * - one skb in sending host Qdisc,
|
|
+ * - one skb in sending host TSO/GSO engine
|
|
+ * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
|
|
+ * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
|
|
+ * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
|
|
+ * which allows 2 outstanding 2-packet sequences, to try to keep pipe
|
|
+ * full even with ACK-every-other-packet delayed ACKs.
|
|
+ */
|
|
+static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u32 cwnd;
|
|
+ u64 w;
|
|
+
|
|
+ /* If we've never had a valid RTT sample, cap cwnd at the initial
|
|
+ * default. This should only happen when the connection is not using TCP
|
|
+ * timestamps and has retransmitted all of the SYN/SYNACK/data packets
|
|
+ * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
|
|
+ * case we need to slow-start up toward something safe: TCP_INIT_CWND.
|
|
+ */
|
|
+ if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
|
|
+ return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
|
|
+
|
|
+ w = (u64)bw * bbr->min_rtt_us;
|
|
+
|
|
+ /* Apply a gain to the given value, then remove the BW_SCALE shift. */
|
|
+ cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
|
|
+
|
|
+ /* Allow enough full-sized skbs in flight to utilize end systems. */
|
|
+ cwnd += 3 * bbr_tso_segs_goal(sk);
|
|
+
|
|
+ /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
|
|
+ cwnd = (cwnd + 1) & ~1U;
|
|
+
|
|
+ /* Ensure gain cycling gets inflight above BDP even for small BDPs. */
|
|
+ if (bbr->mode == BBR_PROBE_BW && gain > BBR_UNIT)
|
|
+ cwnd += 2;
|
|
+
|
|
+ return cwnd;
|
|
+}
|
|
+
|
|
+/* An optimization in BBR to reduce losses: On the first round of recovery, we
|
|
+ * follow the packet conservation principle: send P packets per P packets acked.
|
|
+ * After that, we slow-start and send at most 2*P packets per P packets acked.
|
|
+ * After recovery finishes, or upon undo, we restore the cwnd we had when
|
|
+ * recovery started (capped by the target cwnd based on estimated BDP).
|
|
+ *
|
|
+ * TODO(ycheng/ncardwell): implement a rate-based approach.
|
|
+ */
|
|
+static bool bbr_set_cwnd_to_recover_or_restore(
|
|
+ struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
|
|
+ u32 cwnd = tp->snd_cwnd;
|
|
+
|
|
+ /* An ACK for P pkts should release at most 2*P packets. We do this
|
|
+ * in two steps. First, here we deduct the number of lost packets.
|
|
+ * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
|
|
+ */
|
|
+ if (rs->losses > 0)
|
|
+ cwnd = max_t(s32, cwnd - rs->losses, 1);
|
|
+
|
|
+ if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
|
|
+ /* Starting 1st round of Recovery, so do packet conservation. */
|
|
+ bbr->packet_conservation = 1;
|
|
+ bbr->next_rtt_delivered = tp->delivered; /* start round now */
|
|
+ /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
|
|
+ cwnd = tcp_packets_in_flight(tp) + acked;
|
|
+ } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
|
|
+ /* Exiting loss recovery; restore cwnd saved before recovery. */
|
|
+ cwnd = max(cwnd, bbr->prior_cwnd);
|
|
+ bbr->packet_conservation = 0;
|
|
+ }
|
|
+ bbr->prev_ca_state = state;
|
|
+
|
|
+ if (bbr->packet_conservation) {
|
|
+ *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
|
|
+ return true; /* yes, using packet conservation */
|
|
+ }
|
|
+ *new_cwnd = cwnd;
|
|
+ return false;
|
|
+}
|
|
+
|
|
+/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
|
|
+ * has drawn us down below target), or snap down to target if we're above it.
|
|
+ */
|
|
+static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
|
|
+ u32 acked, u32 bw, int gain)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u32 cwnd = tp->snd_cwnd, target_cwnd = 0;
|
|
+
|
|
+ if (!acked)
|
|
+ goto done; /* no packet fully ACKed; just apply caps */
|
|
+
|
|
+ if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
|
|
+ goto done;
|
|
+
|
|
+ /* If we're below target cwnd, slow start cwnd toward target cwnd. */
|
|
+ target_cwnd = bbr_target_cwnd(sk, bw, gain);
|
|
+ if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
|
|
+ cwnd = min(cwnd + acked, target_cwnd);
|
|
+ else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
|
|
+ cwnd = cwnd + acked;
|
|
+ cwnd = max(cwnd, bbr_cwnd_min_target);
|
|
+
|
|
+done:
|
|
+ tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
|
|
+ if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
|
|
+ tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
|
|
+}
|
|
+
|
|
+/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
|
|
+static bool bbr_is_next_cycle_phase(struct sock *sk,
|
|
+ const struct rate_sample *rs)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ bool is_full_length =
|
|
+ tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
|
|
+ bbr->min_rtt_us;
|
|
+ u32 inflight, bw;
|
|
+
|
|
+ /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
|
|
+ * use the pipe without increasing the queue.
|
|
+ */
|
|
+ if (bbr->pacing_gain == BBR_UNIT)
|
|
+ return is_full_length; /* just use wall clock time */
|
|
+
|
|
+ inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
|
|
+ bw = bbr_max_bw(sk);
|
|
+
|
|
+ /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
|
|
+ * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
|
|
+ * small (e.g. on a LAN). We do not persist if packets are lost, since
|
|
+ * a path with small buffers may not hold that much.
|
|
+ */
|
|
+ if (bbr->pacing_gain > BBR_UNIT)
|
|
+ return is_full_length &&
|
|
+ (rs->losses || /* perhaps pacing_gain*BDP won't fit */
|
|
+ inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
|
|
+
|
|
+ /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
|
|
+ * probing didn't find more bw. If inflight falls to match BDP then we
|
|
+ * estimate queue is drained; persisting would underutilize the pipe.
|
|
+ */
|
|
+ return is_full_length ||
|
|
+ inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
|
|
+}
|
|
+
|
|
+static void bbr_advance_cycle_phase(struct sock *sk)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
|
|
+ bbr->cycle_mstamp = tp->delivered_mstamp;
|
|
+ bbr->pacing_gain = bbr->lt_use_bw ? BBR_UNIT :
|
|
+ bbr_pacing_gain[bbr->cycle_idx];
|
|
+}
|
|
+
|
|
+/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
|
|
+static void bbr_update_cycle_phase(struct sock *sk,
|
|
+ const struct rate_sample *rs)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
|
|
+ bbr_advance_cycle_phase(sk);
|
|
+}
|
|
+
|
|
+static void bbr_reset_startup_mode(struct sock *sk)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ bbr->mode = BBR_STARTUP;
|
|
+ bbr->pacing_gain = bbr_high_gain;
|
|
+ bbr->cwnd_gain = bbr_high_gain;
|
|
+}
|
|
+
|
|
+static void bbr_reset_probe_bw_mode(struct sock *sk)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ bbr->mode = BBR_PROBE_BW;
|
|
+ bbr->pacing_gain = BBR_UNIT;
|
|
+ bbr->cwnd_gain = bbr_cwnd_gain;
|
|
+ bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
|
|
+ bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
|
|
+}
|
|
+
|
|
+static void bbr_reset_mode(struct sock *sk)
|
|
+{
|
|
+ if (!bbr_full_bw_reached(sk))
|
|
+ bbr_reset_startup_mode(sk);
|
|
+ else
|
|
+ bbr_reset_probe_bw_mode(sk);
|
|
+}
|
|
+
|
|
+/* Start a new long-term sampling interval. */
|
|
+static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
|
|
+ bbr->lt_last_delivered = tp->delivered;
|
|
+ bbr->lt_last_lost = tp->lost;
|
|
+ bbr->lt_rtt_cnt = 0;
|
|
+}
|
|
+
|
|
+/* Completely reset long-term bandwidth sampling. */
|
|
+static void bbr_reset_lt_bw_sampling(struct sock *sk)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ bbr->lt_bw = 0;
|
|
+ bbr->lt_use_bw = 0;
|
|
+ bbr->lt_is_sampling = false;
|
|
+ bbr_reset_lt_bw_sampling_interval(sk);
|
|
+}
|
|
+
|
|
+/* Long-term bw sampling interval is done. Estimate whether we're policed. */
|
|
+static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u32 diff;
|
|
+
|
|
+ if (bbr->lt_bw) { /* do we have bw from a previous interval? */
|
|
+ /* Is new bw close to the lt_bw from the previous interval? */
|
|
+ diff = abs(bw - bbr->lt_bw);
|
|
+ if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
|
|
+ (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
|
|
+ bbr_lt_bw_diff)) {
|
|
+ /* All criteria are met; estimate we're policed. */
|
|
+ bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
|
|
+ bbr->lt_use_bw = 1;
|
|
+ bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
|
|
+ bbr->lt_rtt_cnt = 0;
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+ bbr->lt_bw = bw;
|
|
+ bbr_reset_lt_bw_sampling_interval(sk);
|
|
+}
|
|
+
|
|
+/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
|
|
+ * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
|
|
+ * explicitly models their policed rate, to reduce unnecessary losses. We
|
|
+ * estimate that we're policed if we see 2 consecutive sampling intervals with
|
|
+ * consistent throughput and high packet loss. If we think we're being policed,
|
|
+ * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
|
|
+ */
|
|
+static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u32 lost, delivered;
|
|
+ u64 bw;
|
|
+ u32 t;
|
|
+
|
|
+ if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
|
|
+ if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
|
|
+ ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
|
|
+ bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
|
|
+ bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
|
|
+ }
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ /* Wait for the first loss before sampling, to let the policer exhaust
|
|
+ * its tokens and estimate the steady-state rate allowed by the policer.
|
|
+ * Starting samples earlier includes bursts that over-estimate the bw.
|
|
+ */
|
|
+ if (!bbr->lt_is_sampling) {
|
|
+ if (!rs->losses)
|
|
+ return;
|
|
+ bbr_reset_lt_bw_sampling_interval(sk);
|
|
+ bbr->lt_is_sampling = true;
|
|
+ }
|
|
+
|
|
+ /* To avoid underestimates, reset sampling if we run out of data. */
|
|
+ if (rs->is_app_limited) {
|
|
+ bbr_reset_lt_bw_sampling(sk);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (bbr->round_start)
|
|
+ bbr->lt_rtt_cnt++; /* count round trips in this interval */
|
|
+ if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
|
|
+ return; /* sampling interval needs to be longer */
|
|
+ if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
|
|
+ bbr_reset_lt_bw_sampling(sk); /* interval is too long */
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ /* End sampling interval when a packet is lost, so we estimate the
|
|
+ * policer tokens were exhausted. Stopping the sampling before the
|
|
+ * tokens are exhausted under-estimates the policed rate.
|
|
+ */
|
|
+ if (!rs->losses)
|
|
+ return;
|
|
+
|
|
+ /* Calculate packets lost and delivered in sampling interval. */
|
|
+ lost = tp->lost - bbr->lt_last_lost;
|
|
+ delivered = tp->delivered - bbr->lt_last_delivered;
|
|
+ /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
|
|
+ if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
|
|
+ return;
|
|
+
|
|
+ /* Find average delivery rate in this sampling interval. */
|
|
+ t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
|
|
+ if ((s32)t < 1)
|
|
+ return; /* interval is less than one ms, so wait */
|
|
+ /* Check if can multiply without overflow */
|
|
+ if (t >= ~0U / USEC_PER_MSEC) {
|
|
+ bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
|
|
+ return;
|
|
+ }
|
|
+ t *= USEC_PER_MSEC;
|
|
+ bw = (u64)delivered * BW_UNIT;
|
|
+ do_div(bw, t);
|
|
+ bbr_lt_bw_interval_done(sk, bw);
|
|
+}
|
|
+
|
|
+/* Estimate the bandwidth based on how fast packets are delivered */
|
|
+static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u64 bw;
|
|
+
|
|
+ bbr->round_start = 0;
|
|
+ if (rs->delivered < 0 || rs->interval_us <= 0)
|
|
+ return; /* Not a valid observation */
|
|
+
|
|
+ /* See if we've reached the next RTT */
|
|
+ if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
|
|
+ bbr->next_rtt_delivered = tp->delivered;
|
|
+ bbr->rtt_cnt++;
|
|
+ bbr->round_start = 1;
|
|
+ bbr->packet_conservation = 0;
|
|
+ }
|
|
+
|
|
+ bbr_lt_bw_sampling(sk, rs);
|
|
+
|
|
+ /* Divide delivered by the interval to find a (lower bound) bottleneck
|
|
+ * bandwidth sample. Delivered is in packets and interval_us in uS and
|
|
+ * ratio will be <<1 for most connections. So delivered is first scaled.
|
|
+ */
|
|
+ bw = (u64)rs->delivered * BW_UNIT;
|
|
+ do_div(bw, rs->interval_us);
|
|
+
|
|
+ /* If this sample is application-limited, it is likely to have a very
|
|
+ * low delivered count that represents application behavior rather than
|
|
+ * the available network rate. Such a sample could drag down estimated
|
|
+ * bw, causing needless slow-down. Thus, to continue to send at the
|
|
+ * last measured network rate, we filter out app-limited samples unless
|
|
+ * they describe the path bw at least as well as our bw model.
|
|
+ *
|
|
+ * So the goal during app-limited phase is to proceed with the best
|
|
+ * network rate no matter how long. We automatically leave this
|
|
+ * phase when app writes faster than the network can deliver :)
|
|
+ */
|
|
+ if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
|
|
+ /* Incorporate new sample into our max bw filter. */
|
|
+ minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
|
|
+ }
|
|
+}
|
|
+
|
|
+/* Estimate when the pipe is full, using the change in delivery rate: BBR
|
|
+ * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
|
|
+ * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
|
|
+ * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
|
|
+ * higher rwin, 3: we get higher delivery rate samples. Or transient
|
|
+ * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
|
|
+ * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
|
|
+ */
|
|
+static void bbr_check_full_bw_reached(struct sock *sk,
|
|
+ const struct rate_sample *rs)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u32 bw_thresh;
|
|
+
|
|
+ if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
|
|
+ return;
|
|
+
|
|
+ bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
|
|
+ if (bbr_max_bw(sk) >= bw_thresh) {
|
|
+ bbr->full_bw = bbr_max_bw(sk);
|
|
+ bbr->full_bw_cnt = 0;
|
|
+ return;
|
|
+ }
|
|
+ ++bbr->full_bw_cnt;
|
|
+ bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
|
|
+}
|
|
+
|
|
+/* If pipe is probably full, drain the queue and then enter steady-state. */
|
|
+static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
|
|
+ bbr->mode = BBR_DRAIN; /* drain queue we created */
|
|
+ bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
|
|
+ bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
|
|
+ tcp_sk(sk)->snd_ssthresh =
|
|
+ bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT);
|
|
+ } /* fall through to check if in-flight is already small: */
|
|
+ if (bbr->mode == BBR_DRAIN &&
|
|
+ tcp_packets_in_flight(tcp_sk(sk)) <=
|
|
+ bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
|
|
+ bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
|
|
+}
|
|
+
|
|
+static void bbr_check_probe_rtt_done(struct sock *sk)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ if (!(bbr->probe_rtt_done_stamp &&
|
|
+ after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
|
|
+ return;
|
|
+
|
|
+ bbr->min_rtt_stamp = tcp_jiffies32; /* wait a while until PROBE_RTT */
|
|
+ tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
|
|
+ bbr_reset_mode(sk);
|
|
+}
|
|
+
|
|
+/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
|
|
+ * periodically drain the bottleneck queue, to converge to measure the true
|
|
+ * min_rtt (unloaded propagation delay). This allows the flows to keep queues
|
|
+ * small (reducing queuing delay and packet loss) and achieve fairness among
|
|
+ * BBR flows.
|
|
+ *
|
|
+ * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
|
|
+ * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
|
|
+ * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
|
|
+ * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
|
|
+ * re-enter the previous mode. BBR uses 200ms to approximately bound the
|
|
+ * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
|
|
+ *
|
|
+ * Note that flows need only pay 2% if they are busy sending over the last 10
|
|
+ * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
|
|
+ * natural silences or low-rate periods within 10 seconds where the rate is low
|
|
+ * enough for long enough to drain its queue in the bottleneck. We pick up
|
|
+ * these min RTT measurements opportunistically with our min_rtt filter. :-)
|
|
+ */
|
|
+static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ bool filter_expired;
|
|
+
|
|
+ /* Track min RTT seen in the min_rtt_win_sec filter window: */
|
|
+ filter_expired = after(tcp_jiffies32,
|
|
+ bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
|
|
+ if (rs->rtt_us >= 0 &&
|
|
+ (rs->rtt_us <= bbr->min_rtt_us ||
|
|
+ (filter_expired && !rs->is_ack_delayed))) {
|
|
+ bbr->min_rtt_us = rs->rtt_us;
|
|
+ bbr->min_rtt_stamp = tcp_jiffies32;
|
|
+ }
|
|
+
|
|
+ if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
|
|
+ !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
|
|
+ bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
|
|
+ bbr->pacing_gain = BBR_UNIT;
|
|
+ bbr->cwnd_gain = BBR_UNIT;
|
|
+ bbr_save_cwnd(sk); /* note cwnd so we can restore it */
|
|
+ bbr->probe_rtt_done_stamp = 0;
|
|
+ }
|
|
+
|
|
+ if (bbr->mode == BBR_PROBE_RTT) {
|
|
+ /* Ignore low rate samples during this mode. */
|
|
+ tp->app_limited =
|
|
+ (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
|
|
+ /* Maintain min packets in flight for max(200 ms, 1 round). */
|
|
+ if (!bbr->probe_rtt_done_stamp &&
|
|
+ tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
|
|
+ bbr->probe_rtt_done_stamp = tcp_jiffies32 +
|
|
+ msecs_to_jiffies(bbr_probe_rtt_mode_ms);
|
|
+ bbr->probe_rtt_round_done = 0;
|
|
+ bbr->next_rtt_delivered = tp->delivered;
|
|
+ } else if (bbr->probe_rtt_done_stamp) {
|
|
+ if (bbr->round_start)
|
|
+ bbr->probe_rtt_round_done = 1;
|
|
+ if (bbr->probe_rtt_round_done)
|
|
+ bbr_check_probe_rtt_done(sk);
|
|
+ }
|
|
+ }
|
|
+ /* Restart after idle ends only once we process a new S/ACK for data */
|
|
+ if (rs->delivered > 0)
|
|
+ bbr->idle_restart = 0;
|
|
+}
|
|
+
|
|
+static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
|
|
+{
|
|
+ bbr_update_bw(sk, rs);
|
|
+ bbr_update_cycle_phase(sk, rs);
|
|
+ bbr_check_full_bw_reached(sk, rs);
|
|
+ bbr_check_drain(sk, rs);
|
|
+ bbr_update_min_rtt(sk, rs);
|
|
+}
|
|
+
|
|
+static void bbr_main(struct sock *sk, const struct rate_sample *rs)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u32 bw;
|
|
+
|
|
+ bbr_update_model(sk, rs);
|
|
+
|
|
+ bw = bbr_bw(sk);
|
|
+ bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
|
|
+ bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
|
|
+}
|
|
+
|
|
+static void bbr_init(struct sock *sk)
|
|
+{
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ bbr->prior_cwnd = 0;
|
|
+ tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
|
|
+ bbr->rtt_cnt = 0;
|
|
+ bbr->next_rtt_delivered = 0;
|
|
+ bbr->prev_ca_state = TCP_CA_Open;
|
|
+ bbr->packet_conservation = 0;
|
|
+
|
|
+ bbr->probe_rtt_done_stamp = 0;
|
|
+ bbr->probe_rtt_round_done = 0;
|
|
+ bbr->min_rtt_us = tcp_min_rtt(tp);
|
|
+ bbr->min_rtt_stamp = tcp_jiffies32;
|
|
+
|
|
+ minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
|
|
+
|
|
+ bbr->has_seen_rtt = 0;
|
|
+ bbr_init_pacing_rate_from_rtt(sk);
|
|
+
|
|
+ bbr->round_start = 0;
|
|
+ bbr->idle_restart = 0;
|
|
+ bbr->full_bw_reached = 0;
|
|
+ bbr->full_bw = 0;
|
|
+ bbr->full_bw_cnt = 0;
|
|
+ bbr->cycle_mstamp = 0;
|
|
+ bbr->cycle_idx = 0;
|
|
+ bbr_reset_lt_bw_sampling(sk);
|
|
+ bbr_reset_startup_mode(sk);
|
|
+
|
|
+ cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
|
|
+}
|
|
+
|
|
+static u32 bbr_sndbuf_expand(struct sock *sk)
|
|
+{
|
|
+ /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
|
|
+ return 3;
|
|
+}
|
|
+
|
|
+/* In theory BBR does not need to undo the cwnd since it does not
|
|
+ * always reduce cwnd on losses (see bbr_main()). Keep it for now.
|
|
+ */
|
|
+static u32 bbr_undo_cwnd(struct sock *sk)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ bbr->full_bw = 0; /* spurious slow-down; reset full pipe detection */
|
|
+ bbr->full_bw_cnt = 0;
|
|
+ bbr_reset_lt_bw_sampling(sk);
|
|
+ return tcp_sk(sk)->snd_cwnd;
|
|
+}
|
|
+
|
|
+/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
|
|
+static u32 bbr_ssthresh(struct sock *sk)
|
|
+{
|
|
+ bbr_save_cwnd(sk);
|
|
+ return tcp_sk(sk)->snd_ssthresh;
|
|
+}
|
|
+
|
|
+static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
|
|
+ union tcp_cc_info *info)
|
|
+{
|
|
+ if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
|
|
+ ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
|
|
+ struct tcp_sock *tp = tcp_sk(sk);
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+ u64 bw = bbr_bw(sk);
|
|
+
|
|
+ bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
|
|
+ memset(&info->bbr, 0, sizeof(info->bbr));
|
|
+ info->bbr.bbr_bw_lo = (u32)bw;
|
|
+ info->bbr.bbr_bw_hi = (u32)(bw >> 32);
|
|
+ info->bbr.bbr_min_rtt = bbr->min_rtt_us;
|
|
+ info->bbr.bbr_pacing_gain = bbr->pacing_gain;
|
|
+ info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
|
|
+ *attr = INET_DIAG_BBRINFO;
|
|
+ return sizeof(info->bbr);
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static void bbr_set_state(struct sock *sk, u8 new_state)
|
|
+{
|
|
+ struct bbr *bbr = inet_csk_ca(sk);
|
|
+
|
|
+ if (new_state == TCP_CA_Loss) {
|
|
+ struct rate_sample rs = { .losses = 1 };
|
|
+
|
|
+ bbr->prev_ca_state = TCP_CA_Loss;
|
|
+ bbr->full_bw = 0;
|
|
+ bbr->round_start = 1; /* treat RTO like end of a round */
|
|
+ bbr_lt_bw_sampling(sk, &rs);
|
|
+ }
|
|
+}
|
|
+
|
|
+static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
|
|
+ .flags = TCP_CONG_NON_RESTRICTED,
|
|
+ .name = "nanqinlang",
|
|
+ .owner = THIS_MODULE,
|
|
+ .init = bbr_init,
|
|
+ .cong_control = bbr_main,
|
|
+ .sndbuf_expand = bbr_sndbuf_expand,
|
|
+ .undo_cwnd = bbr_undo_cwnd,
|
|
+ .cwnd_event = bbr_cwnd_event,
|
|
+ .ssthresh = bbr_ssthresh,
|
|
+ .min_tso_segs = bbr_min_tso_segs,
|
|
+ .get_info = bbr_get_info,
|
|
+ .set_state = bbr_set_state,
|
|
+};
|
|
+
|
|
+static int __init bbr_register(void)
|
|
+{
|
|
+ BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
|
|
+ return tcp_register_congestion_control(&tcp_bbr_cong_ops);
|
|
+}
|
|
+
|
|
+static void __exit bbr_unregister(void)
|
|
+{
|
|
+ tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
|
|
+}
|
|
+
|
|
+module_init(bbr_register);
|
|
+module_exit(bbr_unregister);
|
|
+
|
|
+MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
|
|
+MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
|
|
+MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
|
|
+MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
|
|
+MODULE_LICENSE("Dual BSD/GPL");
|
|
+MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
|
|
+MODULE_AUTHOR("Nanqinlang <https://sometimesnaive.org>");
|