1
0
Fork 0
mirror of https://github.com/ossrs/srs.git synced 2025-03-09 15:49:59 +00:00

UTest: Fix utest warnings.

This commit is contained in:
winlin 2022-10-05 22:33:12 +08:00
parent cfbbe3044f
commit 9c81a0e1bd
8 changed files with 603 additions and 560 deletions

View file

@ -7246,20 +7246,11 @@ string SrsConfig::get_https_api_listen()
{ {
SRS_OVERWRITE_BY_ENV_STRING("srs.http_api.https.listen"); SRS_OVERWRITE_BY_ENV_STRING("srs.http_api.https.listen");
#ifdef SRS_UTEST // We should not use static default, because we need to reset for different use scenarios.
// We should not use static default, because we need to reset for different testcase. string DEFAULT = "1990";
string DEFAULT = "";
#else
static string DEFAULT = "";
#endif
// Follow the HTTPS server if config HTTP API as the same of HTTP server. // Follow the HTTPS server if config HTTP API as the same of HTTP server.
if (DEFAULT.empty()) { if (get_http_api_listen() == get_http_stream_listen()) {
if (get_http_api_listen() == get_http_stream_listen()) { DEFAULT = get_https_stream_listen();
DEFAULT = get_https_stream_listen();
} else {
DEFAULT = "1990";
}
} }
SrsConfDirective* conf = get_https_api(); SrsConfDirective* conf = get_https_api();

View file

@ -172,7 +172,7 @@ private:
public: public:
SrsFastCoroutine(std::string n, ISrsCoroutineHandler* h); SrsFastCoroutine(std::string n, ISrsCoroutineHandler* h);
SrsFastCoroutine(std::string n, ISrsCoroutineHandler* h, SrsContextId cid); SrsFastCoroutine(std::string n, ISrsCoroutineHandler* h, SrsContextId cid);
~SrsFastCoroutine(); virtual ~SrsFastCoroutine();
public: public:
void set_stack_size(int v); void set_stack_size(int v);
public: public:

View file

@ -2047,7 +2047,7 @@ std::string SrsApmSpan::text_propagator()
// For text based propagation, for example, HTTP header "Traceparent: 00-bb8dedf16c53ab4b6ceb1f4ca6d985bb-29247096662468ab-01" // For text based propagation, for example, HTTP header "Traceparent: 00-bb8dedf16c53ab4b6ceb1f4ca6d985bb-29247096662468ab-01"
// About the "%.2x", please see https://www.quora.com/What-does-2x-do-in-C-code for detail. // About the "%.2x", please see https://www.quora.com/What-does-2x-do-in-C-code for detail.
int nn = snprintf(buf, sizeof(buf), "%.2x-%s-%s-%.2x", supportedVersion, ctx_->trace_id_.c_str(), ctx_->span_id_.c_str(), FlagsSampled); int nn = snprintf(buf, sizeof(buf), "%.2x-%s-%s-%.2x", supportedVersion, ctx_->trace_id_.c_str(), ctx_->span_id_.c_str(), FlagsSampled);
if (nn > 0 && nn < sizeof(buf)) { if (nn > 0 && nn < (int)sizeof(buf)) {
return string(buf, nn); return string(buf, nn);
} }

View file

@ -91,6 +91,11 @@ std::string SrsCplxError::summary() {
if (_summary.empty()) { if (_summary.empty()) {
stringstream ss; stringstream ss;
ss << "code=" << code;
string code_str = srs_error_code_str(this);
if (!code_str.empty()) ss << "(" << code_str << ")";
SrsCplxError* next = this; SrsCplxError* next = this;
while (next) { while (next) {
ss << " : " << next->msg; ss << " : " << next->msg;

File diff suppressed because it is too large Load diff

View file

@ -28,6 +28,7 @@ class SrsTsPayload;
class SrsTsMessage; class SrsTsMessage;
class SrsTsPacket; class SrsTsPacket;
class SrsTsContext; class SrsTsContext;
class SrsPsPacket;
// Transport Stream packets are 188 bytes in length. // Transport Stream packets are 188 bytes in length.
#define SRS_TS_PACKET_SIZE 188 #define SRS_TS_PACKET_SIZE 188
@ -90,14 +91,14 @@ enum SrsTsPidApply
{ {
SrsTsPidApplyReserved = 0, // TSPidTypeReserved, nothing parsed, used reserved. SrsTsPidApplyReserved = 0, // TSPidTypeReserved, nothing parsed, used reserved.
SrsTsPidApplyPAT, // Program associtate table SrsTsPidApplyPAT, // Program associtate table for TS.
SrsTsPidApplyPMT, // Program map table. SrsTsPidApplyPMT, // Program map table for TS.
SrsTsPidApplyVideo, // for video SrsTsPidApplyVideo, // for video
SrsTsPidApplyAudio, // vor audio SrsTsPidApplyAudio, // vor audio
}; };
// Table 2-29 - Stream type assignments // Table 2-29 - Stream type assignments, hls-mpeg-ts-iso13818-1.pdf, page 66
enum SrsTsStream enum SrsTsStream
{ {
// ITU-T | ISO/IEC Reserved // ITU-T | ISO/IEC Reserved
@ -215,9 +216,7 @@ enum SrsTsPESStreamId
class SrsTsMessage class SrsTsMessage
{ {
public: public:
// For decoder only, // For decoder only, the ts message does not use them, for user to get the channel and packet.
// the ts messgae does not use them,
// for user to get the channel and packet.
SrsTsChannel* channel; SrsTsChannel* channel;
SrsTsPacket* packet; SrsTsPacket* packet;
public: public:
@ -294,12 +293,10 @@ private:
// When PAT and PMT writen, the context is ready. // When PAT and PMT writen, the context is ready.
// @see https://github.com/ossrs/srs/issues/834 // @see https://github.com/ossrs/srs/issues/834
bool ready; bool ready;
// codec
private: private:
std::map<int, SrsTsChannel*> pids; std::map<int, SrsTsChannel*> pids;
bool pure_audio; bool pure_audio;
int8_t sync_byte; int8_t sync_byte;
// encoder
private: private:
// when any codec changed, write the PAT/PMT. // when any codec changed, write the PAT/PMT.
SrsVideoCodecId vcodec; SrsVideoCodecId vcodec;
@ -309,37 +306,33 @@ public:
virtual ~SrsTsContext(); virtual ~SrsTsContext();
public: public:
// Whether the hls stream is pure audio stream. // Whether the hls stream is pure audio stream.
// TODO: FIXME: merge with muxer codec detect. // TODO: FIXME: merge with muxer codec detect.
virtual bool is_pure_audio(); virtual bool is_pure_audio();
// When PMT table parsed, we know some info about stream. // When PMT table parsed, we know some info about stream.
virtual void on_pmt_parsed(); virtual void on_pmt_parsed();
// Reset the context for a new ts segment start. // Reset the context for a new ts segment start.
virtual void reset(); virtual void reset();
// codec
public: public:
// Get the pid apply, the parsed pid. // Get the pid apply, the parsed pid.
// @return the apply channel; NULL for invalid. // @return the apply channel; NULL for invalid.
virtual SrsTsChannel* get(int pid); virtual SrsTsChannel* get(int pid);
// Set the pid apply, the parsed pid. // Set the pid apply, the parsed pid.
virtual void set(int pid, SrsTsPidApply apply_pid, SrsTsStream stream = SrsTsStreamReserved); virtual void set(int pid, SrsTsPidApply apply_pid, SrsTsStream stream = SrsTsStreamReserved);
// decode methods
public: public:
// The stream contains only one ts packet. // Feed with ts packets, decode as ts message, callback handler if got one ts message.
// @param handler the ts message handler to process the msg. // A ts video message can be decoded to NALUs by SrsRawH264Stream::annexb_demux.
// @remark we will consume all bytes in stream. // A ts audio message can be decoded to RAW frame by SrsRawAacStream::adts_demux.
// @param handler The ts message handler to process the msg.
// @remark We will consume all bytes in stream.
virtual srs_error_t decode(SrsBuffer* stream, ISrsTsHandler* handler); virtual srs_error_t decode(SrsBuffer* stream, ISrsTsHandler* handler);
// encode methods
public: public:
// Write the PES packet, the video/audio stream. // Encode ts video/audio messages to the PES packets, as PES stream.
// @param msg the video/audio msg to write to ts. // @param msg The video/audio msg to write to ts.
// @param vc the video codec, write the PAT/PMT table when changed. // A ts video message is a frame with one or more NALUs, generally encoded by SrsTsMessageCache.cache_video.
// @param ac the audio codec, write the PAT/PMT table when changed. // A ts audio message is an audio packet, encoded by SrsTsMessageCache.cache_audio to ADTS for AAC.
// @param vc The video codec, write the PAT/PMT table when changed.
// @param ac The audio codec, write the PAT/PMT table when changed.
virtual srs_error_t encode(ISrsStreamWriter* writer, SrsTsMessage* msg, SrsVideoCodecId vc, SrsAudioCodecId ac); virtual srs_error_t encode(ISrsStreamWriter* writer, SrsTsMessage* msg, SrsVideoCodecId vc, SrsAudioCodecId ac);
// drm methods
public:
// Set sync byte of ts segment.
// replace the standard ts sync byte to bravo sync byte.
virtual void set_sync_byte(int8_t sb);
private: private:
virtual srs_error_t encode_pat_pmt(ISrsStreamWriter* writer, int16_t vpid, SrsTsStream vs, int16_t apid, SrsTsStream as); virtual srs_error_t encode_pat_pmt(ISrsStreamWriter* writer, int16_t vpid, SrsTsStream vs, int16_t apid, SrsTsStream as);
virtual srs_error_t encode_pes(ISrsStreamWriter* writer, SrsTsMessage* msg, int16_t pid, SrsTsStream sid, bool pure_audio); virtual srs_error_t encode_pes(ISrsStreamWriter* writer, SrsTsMessage* msg, int16_t pid, SrsTsStream sid, bool pure_audio);
@ -741,9 +734,8 @@ public:
virtual srs_error_t encode(SrsBuffer* stream) = 0; virtual srs_error_t encode(SrsBuffer* stream) = 0;
}; };
// The PES payload of ts packet. // Common MPEG PES packet for both TS and PS.
// 2.4.3.6 PES packet, hls-mpeg-ts-iso13818-1.pdf, page 49 class SrsMpegPES
class SrsTsPayloadPES : public SrsTsPayload
{ {
public: public:
// 3B // 3B
@ -763,7 +755,7 @@ public:
// field. A value of 0 indicates that the PES packet length is neither specified nor bounded and is allowed only in // field. A value of 0 indicates that the PES packet length is neither specified nor bounded and is allowed only in
// PES packets whose payload consists of bytes from a video elementary stream contained in Transport Stream packets. // PES packets whose payload consists of bytes from a video elementary stream contained in Transport Stream packets.
uint16_t PES_packet_length; //16bits uint16_t PES_packet_length; //16bits
// 1B // 1B
// 2bits const '10' // 2bits const '10'
int8_t const2bits; //2bits int8_t const2bits; //2bits
@ -790,7 +782,7 @@ public:
// This is a 1-bit field. When set to '1' the contents of the associated PES packet payload is an original. // This is a 1-bit field. When set to '1' the contents of the associated PES packet payload is an original.
// When set to '0' it indicates that the contents of the associated PES packet payload is a copy. // When set to '0' it indicates that the contents of the associated PES packet payload is a copy.
int8_t original_or_copy; //1bit int8_t original_or_copy; //1bit
// 1B // 1B
// This is a 2-bit field. When the PTS_DTS_flags field is set to '10', the PTS fields shall be present in // This is a 2-bit field. When the PTS_DTS_flags field is set to '10', the PTS fields shall be present in
// the PES packet header. When the PTS_DTS_flags field is set to '11', both the PTS fields and DTS fields shall be present // the PES packet header. When the PTS_DTS_flags field is set to '11', both the PTS fields and DTS fields shall be present
@ -815,13 +807,13 @@ public:
// A 1-bit flag, which when set to '1' indicates that an extension field exists in this PES packet // A 1-bit flag, which when set to '1' indicates that an extension field exists in this PES packet
// header. When set to '0' it indicates that this field is not present. // header. When set to '0' it indicates that this field is not present.
int8_t PES_extension_flag; //1bit int8_t PES_extension_flag; //1bit
// 1B // 1B
// An 8-bit field specifying the total number of bytes occupied by the optional fields and any // An 8-bit field specifying the total number of bytes occupied by the optional fields and any
// stuffing bytes contained in this PES packet header. The presence of optional fields is indicated in the byte that precedes // stuffing bytes contained in this PES packet header. The presence of optional fields is indicated in the byte that precedes
// the PES_header_data_length field. // the PES_header_data_length field.
uint8_t PES_header_data_length; //8bits uint8_t PES_header_data_length; //8bits
// 5B // 5B
// Presentation times shall be related to decoding times as follows: The PTS is a 33-bit // Presentation times shall be related to decoding times as follows: The PTS is a 33-bit
// number coded in three separate fields. It indicates the time of presentation, tp n (k), in the system target decoder of a // number coded in three separate fields. It indicates the time of presentation, tp n (k), in the system target decoder of a
@ -839,7 +831,7 @@ public:
// 15bits PTS [14..0] // 15bits PTS [14..0]
// 1bit const '1' // 1bit const '1'
int64_t pts; // 33bits int64_t pts; // 33bits
// 5B // 5B
// The DTS is a 33-bit number coded in three separate fields. It indicates the decoding time, // The DTS is a 33-bit number coded in three separate fields. It indicates the decoding time,
// td n (j), in the system target decoder of an access unit j of elementary stream n. The value of DTS is specified in units of // td n (j), in the system target decoder of an access unit j of elementary stream n. The value of DTS is specified in units of
@ -855,7 +847,7 @@ public:
// 15bits DTS [14..0] // 15bits DTS [14..0]
// 1bit const '1' // 1bit const '1'
int64_t dts; // 33bits int64_t dts; // 33bits
// 6B // 6B
// The elementary stream clock reference is a 42-bit field coded in two parts. The first // The elementary stream clock reference is a 42-bit field coded in two parts. The first
// part, ESCR_base, is a 33-bit field whose value is given by ESCR_base(i), as given in equation 2-14. The second part, // part, ESCR_base, is a 33-bit field whose value is given by ESCR_base(i), as given in equation 2-14. The second part,
@ -873,7 +865,7 @@ public:
// 1bit const '1' // 1bit const '1'
int64_t ESCR_base; //33bits int64_t ESCR_base; //33bits
int16_t ESCR_extension; //9bits int16_t ESCR_extension; //9bits
// 3B // 3B
// The ES_rate field is a 22-bit unsigned integer specifying the rate at which the // The ES_rate field is a 22-bit unsigned integer specifying the rate at which the
// system target decoder receives bytes of the PES packet in the case of a PES stream. The ES_rate is valid in the PES // system target decoder receives bytes of the PES packet in the case of a PES stream. The ES_rate is valid in the PES
@ -885,24 +877,24 @@ public:
// 22bits ES_rate // 22bits ES_rate
// 1bit const '1' // 1bit const '1'
int32_t ES_rate; //22bits int32_t ES_rate; //22bits
// 1B // 1B
// A 3-bit field that indicates which trick mode is applied to the associated video stream. In cases of // A 3-bit field that indicates which trick mode is applied to the associated video stream. In cases of
// other types of elementary streams, the meanings of this field and those defined by the following five bits are undefined. // other types of elementary streams, the meanings of this field and those defined by the following five bits are undefined.
// For the definition of trick_mode status, refer to the trick mode section of 2.4.2.3. // For the definition of trick_mode status, refer to the trick mode section of 2.4.2.3.
int8_t trick_mode_control; //3bits int8_t trick_mode_control; //3bits
int8_t trick_mode_value; //5bits int8_t trick_mode_value; //5bits
// 1B // 1B
// 1bit const '1' // 1bit const '1'
// This 7-bit field contains private data relating to copyright information. // This 7-bit field contains private data relating to copyright information.
int8_t additional_copy_info; //7bits int8_t additional_copy_info; //7bits
// 2B // 2B
// The previous_PES_packet_CRC is a 16-bit field that contains the CRC value that yields // The previous_PES_packet_CRC is a 16-bit field that contains the CRC value that yields
// a zero output of the 16 registers in the decoder similar to the one defined in Annex A, // a zero output of the 16 registers in the decoder similar to the one defined in Annex A,
int16_t previous_PES_packet_CRC; //16bits int16_t previous_PES_packet_CRC; //16bits
// 1B // 1B
// A 1-bit flag which when set to '1' indicates that the PES packet header contains private data. // A 1-bit flag which when set to '1' indicates that the PES packet header contains private data.
// When set to a value of '0' it indicates that private data is not present in the PES header. // When set to a value of '0' it indicates that private data is not present in the PES header.
@ -926,15 +918,15 @@ public:
// field and associated fields. When set to a value of '0' this indicates that the PES_extension_field_length field and any // field and associated fields. When set to a value of '0' this indicates that the PES_extension_field_length field and any
// associated fields are not present. // associated fields are not present.
int8_t PES_extension_flag_2; //1bit int8_t PES_extension_flag_2; //1bit
// 16B // 16B
// This is a 16-byte field which contains private data. This data, combined with the fields before and // This is a 16-byte field which contains private data. This data, combined with the fields before and
// after, shall not emulate the packet_start_code_prefix (0x000001). // after, shall not emulate the packet_start_code_prefix (0x000001).
std::vector<char> PES_private_data; //128bits std::vector<char> PES_private_data; //128bits
// (1+x)B // (1+x)B
std::vector<char> pack_field; //[pack_field_length] bytes std::vector<char> pack_field; //[pack_field_length] bytes
// 2B // 2B
// 1bit const '1' // 1bit const '1'
// The program_packet_sequence_counter field is a 7-bit field. It is an optional // The program_packet_sequence_counter field is a 7-bit field. It is an optional
@ -952,7 +944,7 @@ public:
// This 6-bit field specifies the number of stuffing bytes used in the original ITU-T // This 6-bit field specifies the number of stuffing bytes used in the original ITU-T
// Rec. H.222.0 | ISO/IEC 13818-1 PES packet header or in the original ISO/IEC 11172-1 packet header. // Rec. H.222.0 | ISO/IEC 13818-1 PES packet header or in the original ISO/IEC 11172-1 packet header.
int8_t original_stuff_length; //6bits int8_t original_stuff_length; //6bits
// 2B // 2B
// 2bits const '01' // 2bits const '01'
// The P-STD_buffer_scale is a 1-bit field, the meaning of which is only defined if this PES packet // The P-STD_buffer_scale is a 1-bit field, the meaning of which is only defined if this PES packet
@ -966,17 +958,17 @@ public:
// P-STD_buffer_scale has the value '0', then the P-STD_buffer_size measures the buffer size in units of 128 bytes. If // P-STD_buffer_scale has the value '0', then the P-STD_buffer_size measures the buffer size in units of 128 bytes. If
// P-STD_buffer_scale has the value '1', then the P-STD_buffer_size measures the buffer size in units of 1024 bytes. // P-STD_buffer_scale has the value '1', then the P-STD_buffer_size measures the buffer size in units of 1024 bytes.
int16_t P_STD_buffer_size; //13bits int16_t P_STD_buffer_size; //13bits
// (1+x)B // (1+x)B
// 1bit const '1' // 1bit const '1'
std::vector<char> PES_extension_field; //[PES_extension_field_length] bytes std::vector<char> PES_extension_field; //[PES_extension_field_length] bytes
// NB // NB
// This is a fixed 8-bit value equal to '1111 1111' that can be inserted by the encoder, for example to meet // This is a fixed 8-bit value equal to '1111 1111' that can be inserted by the encoder, for example to meet
// the requirements of the channel. It is discarded by the decoder. No more than 32 stuffing bytes shall be present in one // the requirements of the channel. It is discarded by the decoder. No more than 32 stuffing bytes shall be present in one
// PES packet header. // PES packet header.
int nb_stuffings; int nb_stuffings;
// NB // NB
// PES_packet_data_bytes shall be contiguous bytes of data from the elementary stream // PES_packet_data_bytes shall be contiguous bytes of data from the elementary stream
// indicated by the packet's stream_id or PID. When the elementary stream data conforms to ITU-T // indicated by the packet's stream_id or PID. When the elementary stream data conforms to ITU-T
@ -989,10 +981,33 @@ public:
// In the case of a private_stream_1, private_stream_2, ECM_stream, or EMM_stream, the contents of the // In the case of a private_stream_1, private_stream_2, ECM_stream, or EMM_stream, the contents of the
// PES_packet_data_byte field are user definable and will not be specified by ITU-T | ISO/IEC in the future. // PES_packet_data_byte field are user definable and will not be specified by ITU-T | ISO/IEC in the future.
int nb_bytes; int nb_bytes;
// NB // NB
// This is a fixed 8-bit value equal to '1111 1111'. It is discarded by the decoder. // This is a fixed 8-bit value equal to '1111 1111'. It is discarded by the decoder.
int nb_paddings; int nb_paddings;
public:
// Whether contains payload to dump to message.
bool has_payload_;
int nb_payload_;
public:
SrsMpegPES();
virtual ~SrsMpegPES();
public:
virtual srs_error_t decode(SrsBuffer* stream);
public:
virtual int size();
virtual srs_error_t encode(SrsBuffer* stream);
private:
virtual srs_error_t decode_33bits_dts_pts(SrsBuffer* stream, int64_t* pv);
virtual srs_error_t encode_33bits_dts_pts(SrsBuffer* stream, uint8_t fb, int64_t v);
};
// The PES payload of ts packet.
// 2.4.3.6 PES packet, hls-mpeg-ts-iso13818-1.pdf, page 49
class SrsTsPayloadPES : public SrsTsPayload
{
public:
SrsMpegPES pes;
public: public:
SrsTsPayloadPES(SrsTsPacket* p); SrsTsPayloadPES(SrsTsPacket* p);
virtual ~SrsTsPayloadPES(); virtual ~SrsTsPayloadPES();
@ -1001,9 +1016,6 @@ public:
public: public:
virtual int size(); virtual int size();
virtual srs_error_t encode(SrsBuffer* stream); virtual srs_error_t encode(SrsBuffer* stream);
private:
virtual srs_error_t decode_33bits_dts_pts(SrsBuffer* stream, int64_t* pv);
virtual srs_error_t encode_33bits_dts_pts(SrsBuffer* stream, uint8_t fb, int64_t v);
}; };
// The PSI payload of ts packet. // The PSI payload of ts packet.

View file

@ -765,7 +765,7 @@ VOID TEST(KernelRTCTest, NACKEncode)
vector<uint16_t> before = rtcp_nack_encode.get_lost_sns(); vector<uint16_t> before = rtcp_nack_encode.get_lost_sns();
vector<uint16_t> after = rtcp_nack_decode.get_lost_sns(); vector<uint16_t> after = rtcp_nack_decode.get_lost_sns();
EXPECT_TRUE(before.size() == after.size()); EXPECT_TRUE(before.size() == after.size());
for(int i = 0; i < before.size() && i < after.size(); ++i) { for(int i = 0; i < (int)before.size() && i < (int)after.size(); ++i) {
EXPECT_TRUE(before.at(i) == after.at(i)); EXPECT_TRUE(before.at(i) == after.at(i));
} }
} }
@ -932,11 +932,11 @@ VOID TEST(KernelRTCTest, Ntp)
// Cover systime to ntp // Cover systime to ntp
SrsNtp ntp = SrsNtp::from_time_ms(now_ms); SrsNtp ntp = SrsNtp::from_time_ms(now_ms);
ASSERT_EQ(ntp.system_ms_, now_ms); ASSERT_EQ((srs_utime_t)ntp.system_ms_, now_ms);
// Cover ntp to systime // Cover ntp to systime
SrsNtp ntp1 = SrsNtp::to_time_ms(ntp.ntp_); SrsNtp ntp1 = SrsNtp::to_time_ms(ntp.ntp_);
ASSERT_EQ(ntp1.system_ms_, now_ms); ASSERT_EQ((srs_utime_t)ntp1.system_ms_, now_ms);
} }
} }
@ -945,10 +945,10 @@ VOID TEST(KernelRTCTest, Ntp)
srs_utime_t now_ms = srs_get_system_time() / 1000; srs_utime_t now_ms = srs_get_system_time() / 1000;
SrsNtp ntp = SrsNtp::from_time_ms(now_ms); SrsNtp ntp = SrsNtp::from_time_ms(now_ms);
ASSERT_EQ(ntp.system_ms_, now_ms); ASSERT_EQ((srs_utime_t)ntp.system_ms_, now_ms);
SrsNtp ntp1 = SrsNtp::to_time_ms(ntp.ntp_); SrsNtp ntp1 = SrsNtp::to_time_ms(ntp.ntp_);
ASSERT_EQ(ntp1.system_ms_, now_ms); ASSERT_EQ((srs_utime_t)ntp1.system_ms_, now_ms);
} }
} }
@ -1279,46 +1279,46 @@ VOID TEST(KernelRTCTest, JitterTimestamp)
SrsRtcTsJitter jitter(1000); SrsRtcTsJitter jitter(1000);
// Starts from the base. // Starts from the base.
EXPECT_EQ(1000, jitter.correct(0)); EXPECT_EQ((uint32_t)1000, jitter.correct(0));
// Start from here. // Start from here.
EXPECT_EQ(1010, jitter.correct(10)); EXPECT_EQ((uint32_t)1010, jitter.correct(10));
EXPECT_EQ(1010, jitter.correct(10)); EXPECT_EQ((uint32_t)1010, jitter.correct(10));
EXPECT_EQ(1020, jitter.correct(20)); EXPECT_EQ((uint32_t)1020, jitter.correct(20));
// Reset the base for jitter detected. // Reset the base for jitter detected.
EXPECT_EQ(1020, jitter.correct(20 + 90*3*1000 + 1)); EXPECT_EQ((uint32_t)1020, jitter.correct(20 + 90*3*1000 + 1));
EXPECT_EQ(1019, jitter.correct(20 + 90*3*1000)); EXPECT_EQ((uint32_t)1019, jitter.correct(20 + 90*3*1000));
EXPECT_EQ(1021, jitter.correct(20 + 90*3*1000 + 2)); EXPECT_EQ((uint32_t)1021, jitter.correct(20 + 90*3*1000 + 2));
EXPECT_EQ(1019, jitter.correct(20 + 90*3*1000)); EXPECT_EQ((uint32_t)1019, jitter.correct(20 + 90*3*1000));
EXPECT_EQ(1020, jitter.correct(20 + 90*3*1000 + 1)); EXPECT_EQ((uint32_t)1020, jitter.correct(20 + 90*3*1000 + 1));
// Rollback the timestamp. // Rollback the timestamp.
EXPECT_EQ(1020, jitter.correct(20)); EXPECT_EQ((uint32_t)1020, jitter.correct(20));
EXPECT_EQ(1021, jitter.correct(20 + 1)); EXPECT_EQ((uint32_t)1021, jitter.correct(20 + 1));
EXPECT_EQ(1021, jitter.correct(21)); EXPECT_EQ((uint32_t)1021, jitter.correct(21));
// Reset for jitter again. // Reset for jitter again.
EXPECT_EQ(1021, jitter.correct(21 + 90*3*1000 + 1)); EXPECT_EQ((uint32_t)1021, jitter.correct(21 + 90*3*1000 + 1));
EXPECT_EQ(1021, jitter.correct(21)); EXPECT_EQ((uint32_t)1021, jitter.correct(21));
// No jitter at edge. // No jitter at edge.
EXPECT_EQ(1021 + 90*3*1000, jitter.correct(21 + 90*3*1000)); EXPECT_EQ((uint32_t)(1021 + 90*3*1000), jitter.correct(21 + 90*3*1000));
EXPECT_EQ(1021 + 90*3*1000 + 1, jitter.correct(21 + 90*3*1000 + 1)); EXPECT_EQ((uint32_t)(1021 + 90*3*1000 + 1), jitter.correct(21 + 90*3*1000 + 1));
EXPECT_EQ(1021 + 1, jitter.correct(21 + 1)); EXPECT_EQ((uint32_t)(1021 + 1), jitter.correct(21 + 1));
// Also safety to decrease the value. // Also safety to decrease the value.
EXPECT_EQ(1021, jitter.correct(21)); EXPECT_EQ((uint32_t)1021, jitter.correct(21));
EXPECT_EQ(1010, jitter.correct(10)); EXPECT_EQ((uint32_t)1010, jitter.correct(10));
// Try to reset to 0 base. // Try to reset to 0 base.
EXPECT_EQ(1010, jitter.correct(10 + 90*3*1000 + 1010)); EXPECT_EQ((uint32_t)1010, jitter.correct(10 + 90*3*1000 + 1010));
EXPECT_EQ(0, jitter.correct(10 + 90*3*1000)); EXPECT_EQ((uint32_t)0, jitter.correct(10 + 90*3*1000));
EXPECT_EQ(0, jitter.correct(0)); EXPECT_EQ((uint32_t)0, jitter.correct(0));
// Also safety to start from zero. // Also safety to start from zero.
EXPECT_EQ(10, jitter.correct(10)); EXPECT_EQ((uint32_t)10, jitter.correct(10));
EXPECT_EQ(11, jitter.correct(11)); EXPECT_EQ((uint32_t)11, jitter.correct(11));
} }
VOID TEST(KernelRTCTest, JitterSequence) VOID TEST(KernelRTCTest, JitterSequence)
@ -1326,45 +1326,45 @@ VOID TEST(KernelRTCTest, JitterSequence)
SrsRtcSeqJitter jitter(100); SrsRtcSeqJitter jitter(100);
// Starts from the base. // Starts from the base.
EXPECT_EQ(100, jitter.correct(0)); EXPECT_EQ((uint32_t)100, jitter.correct(0));
// Normal without jitter. // Normal without jitter.
EXPECT_EQ(101, jitter.correct(1)); EXPECT_EQ((uint32_t)101, jitter.correct(1));
EXPECT_EQ(102, jitter.correct(2)); EXPECT_EQ((uint32_t)102, jitter.correct(2));
EXPECT_EQ(101, jitter.correct(1)); EXPECT_EQ((uint32_t)101, jitter.correct(1));
EXPECT_EQ(103, jitter.correct(3)); EXPECT_EQ((uint32_t)103, jitter.correct(3));
EXPECT_EQ(110, jitter.correct(10)); EXPECT_EQ((uint32_t)110, jitter.correct(10));
// Reset the base for jitter detected. // Reset the base for jitter detected.
EXPECT_EQ(110, jitter.correct(10 + 128 + 1)); EXPECT_EQ((uint32_t)110, jitter.correct(10 + 128 + 1));
EXPECT_EQ(109, jitter.correct(10 + 128)); EXPECT_EQ((uint32_t)109, jitter.correct(10 + 128));
EXPECT_EQ(110, jitter.correct(10 + 128 + 1)); EXPECT_EQ((uint32_t)110, jitter.correct(10 + 128 + 1));
// Rollback the timestamp. // Rollback the timestamp.
EXPECT_EQ(110, jitter.correct(10)); EXPECT_EQ((uint32_t)110, jitter.correct(10));
EXPECT_EQ(111, jitter.correct(10 + 1)); EXPECT_EQ((uint32_t)111, jitter.correct(10 + 1));
EXPECT_EQ(111, jitter.correct(11)); EXPECT_EQ((uint32_t)111, jitter.correct(11));
// Reset for jitter again. // Reset for jitter again.
EXPECT_EQ(111, jitter.correct(11 + 128 + 1)); EXPECT_EQ((uint32_t)111, jitter.correct(11 + 128 + 1));
EXPECT_EQ(111, jitter.correct(11)); EXPECT_EQ((uint32_t)111, jitter.correct(11));
// No jitter at edge. // No jitter at edge.
EXPECT_EQ(111 + 128, jitter.correct(11 + 128)); EXPECT_EQ((uint32_t)(111 + 128), jitter.correct(11 + 128));
EXPECT_EQ(111 + 128 + 1, jitter.correct(11 + 128 + 1)); EXPECT_EQ((uint32_t)(111 + 128 + 1), jitter.correct(11 + 128 + 1));
EXPECT_EQ(111 + 1, jitter.correct(11 + 1)); EXPECT_EQ((uint32_t)(111 + 1), jitter.correct(11 + 1));
// Also safety to decrease the value. // Also safety to decrease the value.
EXPECT_EQ(111, jitter.correct(11)); EXPECT_EQ((uint32_t)111, jitter.correct(11));
EXPECT_EQ(110, jitter.correct(10)); EXPECT_EQ((uint32_t)110, jitter.correct(10));
// Try to reset to 0 base. // Try to reset to 0 base.
EXPECT_EQ(110, jitter.correct(10 + 128 + 110)); EXPECT_EQ((uint32_t)110, jitter.correct(10 + 128 + 110));
EXPECT_EQ(0, jitter.correct(10 + 128)); EXPECT_EQ((uint32_t)0, jitter.correct(10 + 128));
EXPECT_EQ(0, jitter.correct(0)); EXPECT_EQ((uint32_t)0, jitter.correct(0));
// Also safety to start from zero. // Also safety to start from zero.
EXPECT_EQ(10, jitter.correct(10)); EXPECT_EQ((uint32_t)10, jitter.correct(10));
EXPECT_EQ(11, jitter.correct(11)); EXPECT_EQ((uint32_t)11, jitter.correct(11));
} }

View file

@ -275,22 +275,22 @@ VOID TEST(ServiceStSRTTest, ReadWrite)
// Client send msg to server. // Client send msg to server.
ssize_t nb_write = 0; ssize_t nb_write = 0;
HELPER_EXPECT_SUCCESS(srt_client_socket->sendmsg((char*)content.data(), content.size(), &nb_write)); HELPER_EXPECT_SUCCESS(srt_client_socket->sendmsg((char*)content.data(), content.size(), &nb_write));
EXPECT_EQ(nb_write, content.size()); EXPECT_EQ((size_t)nb_write, content.size());
// Server recv msg from client // Server recv msg from client
char buf[1500]; char buf[1500];
ssize_t nb_read = 0; ssize_t nb_read = 0;
HELPER_EXPECT_SUCCESS(srt_server_accepted_socket->recvmsg(buf, sizeof(buf), &nb_read)); HELPER_EXPECT_SUCCESS(srt_server_accepted_socket->recvmsg(buf, sizeof(buf), &nb_read));
EXPECT_EQ(nb_read, content.size()); EXPECT_EQ((size_t)nb_read, content.size());
EXPECT_EQ(std::string(buf, nb_read), content); EXPECT_EQ(std::string(buf, nb_read), content);
// Server echo msg back to client. // Server echo msg back to client.
HELPER_EXPECT_SUCCESS(srt_server_accepted_socket->sendmsg(buf, nb_read, &nb_write)); HELPER_EXPECT_SUCCESS(srt_server_accepted_socket->sendmsg(buf, nb_read, &nb_write));
EXPECT_EQ(nb_write, content.size()); EXPECT_EQ((size_t)nb_write, content.size());
// Client recv echo msg from server. // Client recv echo msg from server.
HELPER_EXPECT_SUCCESS(srt_client_socket->recvmsg(buf, sizeof(buf), &nb_read)); HELPER_EXPECT_SUCCESS(srt_client_socket->recvmsg(buf, sizeof(buf), &nb_read));
EXPECT_EQ(nb_read, content.size()); EXPECT_EQ((size_t)nb_read, content.size());
EXPECT_EQ(std::string(buf, nb_read), content); EXPECT_EQ(std::string(buf, nb_read), content);
} }