1
0
Fork 0
mirror of https://github.com/ossrs/srs.git synced 2025-03-09 15:49:59 +00:00
srs/trunk/src/app/srs_app_threads.cpp
2023-01-01 08:56:20 +08:00

805 lines
22 KiB
C++

//
// Copyright (c) 2013-2023 The SRS Authors
//
// SPDX-License-Identifier: MIT or MulanPSL-2.0
//
#include <srs_app_threads.hpp>
#include <srs_app_config.hpp>
#include <srs_app_hybrid.hpp>
#include <srs_app_utility.hpp>
#include <srs_kernel_utility.hpp>
#include <srs_app_rtc_source.hpp>
#include <srs_app_source.hpp>
#include <srs_app_pithy_print.hpp>
#include <srs_app_rtc_server.hpp>
#include <srs_app_log.hpp>
#include <srs_app_async_call.hpp>
#include <srs_app_tencentcloud.hpp>
#include <srs_app_conn.hpp>
#ifdef SRS_RTC
#include <srs_app_rtc_dtls.hpp>
#include <srs_app_rtc_conn.hpp>
#endif
#ifdef SRS_SRT
#include <srs_app_srt_source.hpp>
#endif
#ifdef SRS_GB28181
#include <srs_app_gb28181.hpp>
#endif
#include <stdlib.h>
#include <string>
using namespace std;
#include <unistd.h>
#include <fcntl.h>
#if defined(SRS_OSX) || defined(SRS_CYGWIN64)
pid_t gettid() {
return 0;
}
#else
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 30
#include <sys/syscall.h>
#define gettid() syscall(SYS_gettid)
#endif
#endif
// These functions first appeared in glibc in version 2.12.
// See https://man7.org/linux/man-pages/man3/pthread_setname_np.3.html
#if defined(SRS_CYGWIN64) || (defined(SRS_CROSSBUILD) && ((__GLIBC__ < 2) || (__GLIBC__ == 2 && __GLIBC_MINOR__ < 12)))
void pthread_setname_np(pthread_t trd, const char* name) {
}
#endif
extern ISrsLog* _srs_log;
extern ISrsContext* _srs_context;
extern SrsConfig* _srs_config;
extern SrsStageManager* _srs_stages;
#ifdef SRS_RTC
extern SrsRtcBlackhole* _srs_blackhole;
extern SrsResourceManager* _srs_rtc_manager;
extern SrsResourceManager* _srs_rtc_manager;
extern SrsDtlsCertificate* _srs_rtc_dtls_certificate;
#endif
#include <srs_protocol_kbps.hpp>
extern SrsPps* _srs_pps_snack2;
extern SrsPps* _srs_pps_snack3;
extern SrsPps* _srs_pps_snack4;
SrsPps* _srs_pps_aloss2 = NULL;
extern SrsPps* _srs_pps_ids;
extern SrsPps* _srs_pps_fids;
extern SrsPps* _srs_pps_fids_level0;
extern SrsPps* _srs_pps_dispose;
extern SrsPps* _srs_pps_timer;
extern SrsPps* _srs_pps_snack;
extern SrsPps* _srs_pps_snack2;
extern SrsPps* _srs_pps_snack3;
extern SrsPps* _srs_pps_snack4;
extern SrsPps* _srs_pps_sanack;
extern SrsPps* _srs_pps_svnack;
extern SrsPps* _srs_pps_rnack;
extern SrsPps* _srs_pps_rnack2;
extern SrsPps* _srs_pps_rhnack;
extern SrsPps* _srs_pps_rmnack;
#if defined(SRS_DEBUG) && defined(SRS_DEBUG_STATS)
extern SrsPps* _srs_pps_recvfrom;
extern SrsPps* _srs_pps_recvfrom_eagain;
extern SrsPps* _srs_pps_sendto;
extern SrsPps* _srs_pps_sendto_eagain;
extern SrsPps* _srs_pps_read;
extern SrsPps* _srs_pps_read_eagain;
extern SrsPps* _srs_pps_readv;
extern SrsPps* _srs_pps_readv_eagain;
extern SrsPps* _srs_pps_writev;
extern SrsPps* _srs_pps_writev_eagain;
extern SrsPps* _srs_pps_recvmsg;
extern SrsPps* _srs_pps_recvmsg_eagain;
extern SrsPps* _srs_pps_sendmsg;
extern SrsPps* _srs_pps_sendmsg_eagain;
extern SrsPps* _srs_pps_epoll;
extern SrsPps* _srs_pps_epoll_zero;
extern SrsPps* _srs_pps_epoll_shake;
extern SrsPps* _srs_pps_epoll_spin;
extern SrsPps* _srs_pps_sched_15ms;
extern SrsPps* _srs_pps_sched_20ms;
extern SrsPps* _srs_pps_sched_25ms;
extern SrsPps* _srs_pps_sched_30ms;
extern SrsPps* _srs_pps_sched_35ms;
extern SrsPps* _srs_pps_sched_40ms;
extern SrsPps* _srs_pps_sched_80ms;
extern SrsPps* _srs_pps_sched_160ms;
extern SrsPps* _srs_pps_sched_s;
#endif
extern SrsPps* _srs_pps_clock_15ms;
extern SrsPps* _srs_pps_clock_20ms;
extern SrsPps* _srs_pps_clock_25ms;
extern SrsPps* _srs_pps_clock_30ms;
extern SrsPps* _srs_pps_clock_35ms;
extern SrsPps* _srs_pps_clock_40ms;
extern SrsPps* _srs_pps_clock_80ms;
extern SrsPps* _srs_pps_clock_160ms;
extern SrsPps* _srs_pps_timer_s;
#if defined(SRS_DEBUG) && defined(SRS_DEBUG_STATS)
extern SrsPps* _srs_pps_thread_run;
extern SrsPps* _srs_pps_thread_idle;
extern SrsPps* _srs_pps_thread_yield;
extern SrsPps* _srs_pps_thread_yield2;
#endif
extern SrsPps* _srs_pps_rpkts;
extern SrsPps* _srs_pps_addrs;
extern SrsPps* _srs_pps_fast_addrs;
extern SrsPps* _srs_pps_spkts;
extern SrsPps* _srs_pps_sstuns;
extern SrsPps* _srs_pps_srtcps;
extern SrsPps* _srs_pps_srtps;
extern SrsPps* _srs_pps_pli;
extern SrsPps* _srs_pps_twcc;
extern SrsPps* _srs_pps_rr;
extern SrsPps* _srs_pps_pub;
extern SrsPps* _srs_pps_conn;
extern SrsPps* _srs_pps_rstuns;
extern SrsPps* _srs_pps_rrtps;
extern SrsPps* _srs_pps_rrtcps;
extern SrsPps* _srs_pps_aloss2;
extern SrsPps* _srs_pps_cids_get;
extern SrsPps* _srs_pps_cids_set;
extern SrsPps* _srs_pps_objs_msgs;
extern SrsPps* _srs_pps_objs_rtps;
extern SrsPps* _srs_pps_objs_rraw;
extern SrsPps* _srs_pps_objs_rfua;
extern SrsPps* _srs_pps_objs_rbuf;
extern SrsPps* _srs_pps_objs_rothers;
SrsCircuitBreaker::SrsCircuitBreaker()
{
enabled_ = false;
high_threshold_ = 0;
high_pulse_ = 0;
critical_threshold_ = 0;
critical_pulse_ = 0;
dying_threshold_ = 0;
dying_pulse_ = 0;
hybrid_high_water_level_ = 0;
hybrid_critical_water_level_ = 0;
hybrid_dying_water_level_ = 0;
}
SrsCircuitBreaker::~SrsCircuitBreaker()
{
}
srs_error_t SrsCircuitBreaker::initialize()
{
srs_error_t err = srs_success;
enabled_ = _srs_config->get_circuit_breaker();
high_threshold_ = _srs_config->get_high_threshold();
high_pulse_ = _srs_config->get_high_pulse();
critical_threshold_ = _srs_config->get_critical_threshold();
critical_pulse_ = _srs_config->get_critical_pulse();
dying_threshold_ = _srs_config->get_dying_threshold();
dying_pulse_ = _srs_config->get_dying_pulse();
// Update the water level for circuit breaker.
// @see SrsCircuitBreaker::on_timer()
_srs_hybrid->timer1s()->subscribe(this);
srs_trace("CircuitBreaker: enabled=%d, high=%dx%d, critical=%dx%d, dying=%dx%d", enabled_,
high_pulse_, high_threshold_, critical_pulse_, critical_threshold_,
dying_pulse_, dying_threshold_);
return err;
}
bool SrsCircuitBreaker::hybrid_high_water_level()
{
return enabled_ && (hybrid_critical_water_level() || hybrid_high_water_level_);
}
bool SrsCircuitBreaker::hybrid_critical_water_level()
{
return enabled_ && (hybrid_dying_water_level() || hybrid_critical_water_level_);
}
bool SrsCircuitBreaker::hybrid_dying_water_level()
{
return enabled_ && dying_pulse_ && hybrid_dying_water_level_ >= dying_pulse_;
}
srs_error_t SrsCircuitBreaker::on_timer(srs_utime_t interval)
{
srs_error_t err = srs_success;
// Update the CPU usage.
srs_update_proc_stat();
SrsProcSelfStat* stat = srs_get_self_proc_stat();
// Reset the high water-level when CPU is low for N times.
if (stat->percent * 100 > high_threshold_) {
hybrid_high_water_level_ = high_pulse_;
} else if (hybrid_high_water_level_ > 0) {
hybrid_high_water_level_--;
}
// Reset the critical water-level when CPU is low for N times.
if (stat->percent * 100 > critical_threshold_) {
hybrid_critical_water_level_ = critical_pulse_;
} else if (hybrid_critical_water_level_ > 0) {
hybrid_critical_water_level_--;
}
// Reset the dying water-level when CPU is low for N times.
if (stat->percent * 100 > dying_threshold_) {
hybrid_dying_water_level_ = srs_min(dying_pulse_ + 1, hybrid_dying_water_level_ + 1);
} else if (hybrid_dying_water_level_ > 0) {
hybrid_dying_water_level_ = 0;
}
// Show statistics for RTC server.
SrsProcSelfStat* u = srs_get_self_proc_stat();
// Resident Set Size: number of pages the process has in real memory.
int memory = (int)(u->rss * 4 / 1024);
// The hybrid thread cpu and memory.
float thread_percent = stat->percent * 100;
static char buf[128];
string snk_desc;
#ifdef SRS_RTC
if (_srs_pps_snack2->r10s()) {
snprintf(buf, sizeof(buf), ", snk=%d,%d,%d",
_srs_pps_snack2->r10s(), _srs_pps_snack3->r10s(), _srs_pps_snack4->r10s() // NACK packet,seqs sent.
);
snk_desc = buf;
}
#endif
if (enabled_ && (hybrid_high_water_level() || hybrid_critical_water_level())) {
srs_trace("CircuitBreaker: cpu=%.2f%%,%dMB, break=%d,%d,%d, cond=%.2f%%%s",
u->percent * 100, memory,
hybrid_high_water_level(), hybrid_critical_water_level(), hybrid_dying_water_level(), // Whether Circuit-Break is enable.
thread_percent, // The conditions to enable Circuit-Breaker.
snk_desc.c_str()
);
}
return err;
}
SrsCircuitBreaker* _srs_circuit_breaker = NULL;
SrsAsyncCallWorker* _srs_dvr_async = NULL;
srs_error_t srs_global_initialize()
{
srs_error_t err = srs_success;
// Root global objects.
_srs_log = new SrsFileLog();
_srs_context = new SrsThreadContext();
_srs_config = new SrsConfig();
// The clock wall object.
_srs_clock = new SrsWallClock();
// The pps cids depends by st init.
_srs_pps_cids_get = new SrsPps();
_srs_pps_cids_set = new SrsPps();
// The global objects which depends on ST.
_srs_hybrid = new SrsHybridServer();
_srs_sources = new SrsLiveSourceManager();
_srs_stages = new SrsStageManager();
_srs_circuit_breaker = new SrsCircuitBreaker();
#ifdef SRS_SRT
_srs_srt_sources = new SrsSrtSourceManager();
#endif
#ifdef SRS_RTC
_srs_rtc_sources = new SrsRtcSourceManager();
_srs_blackhole = new SrsRtcBlackhole();
_srs_rtc_manager = new SrsResourceManager("RTC", true);
_srs_rtc_dtls_certificate = new SrsDtlsCertificate();
#endif
#ifdef SRS_GB28181
_srs_gb_manager = new SrsResourceManager("GB", true);
#endif
_srs_gc = new SrsLazySweepGc();
// Initialize global pps, which depends on _srs_clock
_srs_pps_ids = new SrsPps();
_srs_pps_fids = new SrsPps();
_srs_pps_fids_level0 = new SrsPps();
_srs_pps_dispose = new SrsPps();
_srs_pps_timer = new SrsPps();
_srs_pps_conn = new SrsPps();
_srs_pps_pub = new SrsPps();
#ifdef SRS_RTC
_srs_pps_snack = new SrsPps();
_srs_pps_snack2 = new SrsPps();
_srs_pps_snack3 = new SrsPps();
_srs_pps_snack4 = new SrsPps();
_srs_pps_sanack = new SrsPps();
_srs_pps_svnack = new SrsPps();
_srs_pps_rnack = new SrsPps();
_srs_pps_rnack2 = new SrsPps();
_srs_pps_rhnack = new SrsPps();
_srs_pps_rmnack = new SrsPps();
#endif
#if defined(SRS_DEBUG) && defined(SRS_DEBUG_STATS)
_srs_pps_recvfrom = new SrsPps();
_srs_pps_recvfrom_eagain = new SrsPps();
_srs_pps_sendto = new SrsPps();
_srs_pps_sendto_eagain = new SrsPps();
_srs_pps_read = new SrsPps();
_srs_pps_read_eagain = new SrsPps();
_srs_pps_readv = new SrsPps();
_srs_pps_readv_eagain = new SrsPps();
_srs_pps_writev = new SrsPps();
_srs_pps_writev_eagain = new SrsPps();
_srs_pps_recvmsg = new SrsPps();
_srs_pps_recvmsg_eagain = new SrsPps();
_srs_pps_sendmsg = new SrsPps();
_srs_pps_sendmsg_eagain = new SrsPps();
_srs_pps_epoll = new SrsPps();
_srs_pps_epoll_zero = new SrsPps();
_srs_pps_epoll_shake = new SrsPps();
_srs_pps_epoll_spin = new SrsPps();
_srs_pps_sched_15ms = new SrsPps();
_srs_pps_sched_20ms = new SrsPps();
_srs_pps_sched_25ms = new SrsPps();
_srs_pps_sched_30ms = new SrsPps();
_srs_pps_sched_35ms = new SrsPps();
_srs_pps_sched_40ms = new SrsPps();
_srs_pps_sched_80ms = new SrsPps();
_srs_pps_sched_160ms = new SrsPps();
_srs_pps_sched_s = new SrsPps();
#endif
_srs_pps_clock_15ms = new SrsPps();
_srs_pps_clock_20ms = new SrsPps();
_srs_pps_clock_25ms = new SrsPps();
_srs_pps_clock_30ms = new SrsPps();
_srs_pps_clock_35ms = new SrsPps();
_srs_pps_clock_40ms = new SrsPps();
_srs_pps_clock_80ms = new SrsPps();
_srs_pps_clock_160ms = new SrsPps();
_srs_pps_timer_s = new SrsPps();
#if defined(SRS_DEBUG) && defined(SRS_DEBUG_STATS)
_srs_pps_thread_run = new SrsPps();
_srs_pps_thread_idle = new SrsPps();
_srs_pps_thread_yield = new SrsPps();
_srs_pps_thread_yield2 = new SrsPps();
#endif
_srs_pps_rpkts = new SrsPps();
_srs_pps_addrs = new SrsPps();
_srs_pps_fast_addrs = new SrsPps();
_srs_pps_spkts = new SrsPps();
_srs_pps_objs_msgs = new SrsPps();
#ifdef SRS_RTC
_srs_pps_sstuns = new SrsPps();
_srs_pps_srtcps = new SrsPps();
_srs_pps_srtps = new SrsPps();
_srs_pps_rstuns = new SrsPps();
_srs_pps_rrtps = new SrsPps();
_srs_pps_rrtcps = new SrsPps();
_srs_pps_aloss2 = new SrsPps();
_srs_pps_pli = new SrsPps();
_srs_pps_twcc = new SrsPps();
_srs_pps_rr = new SrsPps();
_srs_pps_objs_rtps = new SrsPps();
_srs_pps_objs_rraw = new SrsPps();
_srs_pps_objs_rfua = new SrsPps();
_srs_pps_objs_rbuf = new SrsPps();
_srs_pps_objs_rothers = new SrsPps();
#endif
// Create global async worker for DVR.
_srs_dvr_async = new SrsAsyncCallWorker();
#ifdef SRS_APM
// Initialize global TencentCloud CLS object.
_srs_cls = new SrsClsClient();
_srs_apm = new SrsApmClient();
#endif
return err;
}
SrsThreadMutex::SrsThreadMutex()
{
// https://man7.org/linux/man-pages/man3/pthread_mutexattr_init.3.html
int r0 = pthread_mutexattr_init(&attr_);
srs_assert(!r0);
// https://man7.org/linux/man-pages/man3/pthread_mutexattr_gettype.3p.html
r0 = pthread_mutexattr_settype(&attr_, PTHREAD_MUTEX_ERRORCHECK);
srs_assert(!r0);
// https://michaelkerrisk.com/linux/man-pages/man3/pthread_mutex_init.3p.html
r0 = pthread_mutex_init(&lock_, &attr_);
srs_assert(!r0);
}
SrsThreadMutex::~SrsThreadMutex()
{
int r0 = pthread_mutex_destroy(&lock_);
srs_assert(!r0);
r0 = pthread_mutexattr_destroy(&attr_);
srs_assert(!r0);
}
void SrsThreadMutex::lock()
{
// https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
// EDEADLK
// The mutex type is PTHREAD_MUTEX_ERRORCHECK and the current
// thread already owns the mutex.
int r0 = pthread_mutex_lock(&lock_);
srs_assert(!r0);
}
void SrsThreadMutex::unlock()
{
int r0 = pthread_mutex_unlock(&lock_);
srs_assert(!r0);
}
SrsThreadEntry::SrsThreadEntry()
{
pool = NULL;
start = NULL;
arg = NULL;
num = 0;
tid = 0;
err = srs_success;
}
SrsThreadEntry::~SrsThreadEntry()
{
srs_freep(err);
// TODO: FIXME: Should dispose trd.
}
SrsThreadPool::SrsThreadPool()
{
entry_ = NULL;
lock_ = new SrsThreadMutex();
hybrid_ = NULL;
// Add primordial thread, current thread itself.
SrsThreadEntry* entry = new SrsThreadEntry();
threads_.push_back(entry);
entry_ = entry;
entry->pool = this;
entry->label = "primordial";
entry->start = NULL;
entry->arg = NULL;
entry->num = 1;
entry->trd = pthread_self();
entry->tid = gettid();
char buf[256];
snprintf(buf, sizeof(buf), "srs-master-%d", entry->num);
entry->name = buf;
pid_fd = -1;
}
// TODO: FIMXE: If free the pool, we should stop all threads.
SrsThreadPool::~SrsThreadPool()
{
srs_freep(lock_);
if (pid_fd > 0) {
::close(pid_fd);
pid_fd = -1;
}
}
// Setup the thread-local variables, MUST call when each thread starting.
srs_error_t SrsThreadPool::setup_thread_locals()
{
srs_error_t err = srs_success;
// Initialize ST, which depends on pps cids.
if ((err = srs_st_init()) != srs_success) {
return srs_error_wrap(err, "initialize st failed");
}
return err;
}
srs_error_t SrsThreadPool::initialize()
{
srs_error_t err = srs_success;
if ((err = acquire_pid_file()) != srs_success) {
return srs_error_wrap(err, "acquire pid file");
}
// Initialize the master primordial thread.
SrsThreadEntry* entry = (SrsThreadEntry*)entry_;
interval_ = _srs_config->get_threads_interval();
srs_trace("Thread #%d(%s): init name=%s, interval=%dms", entry->num, entry->label.c_str(), entry->name.c_str(), srsu2msi(interval_));
return err;
}
srs_error_t SrsThreadPool::acquire_pid_file()
{
std::string pid_file = _srs_config->get_pid_file();
// -rw-r--r--
// 644
int mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
int fd;
// open pid file
if ((fd = ::open(pid_file.c_str(), O_WRONLY | O_CREAT, mode)) == -1) {
return srs_error_new(ERROR_SYSTEM_PID_ACQUIRE, "open pid file=%s", pid_file.c_str());
}
// require write lock
struct flock lock;
lock.l_type = F_WRLCK; // F_RDLCK, F_WRLCK, F_UNLCK
lock.l_start = 0; // type offset, relative to l_whence
lock.l_whence = SEEK_SET; // SEEK_SET, SEEK_CUR, SEEK_END
lock.l_len = 0;
if (fcntl(fd, F_SETLK, &lock) == -1) {
if(errno == EACCES || errno == EAGAIN) {
::close(fd);
srs_error("srs is already running!");
return srs_error_new(ERROR_SYSTEM_PID_ALREADY_RUNNING, "srs is already running");
}
return srs_error_new(ERROR_SYSTEM_PID_LOCK, "access to pid=%s", pid_file.c_str());
}
// truncate file
if (ftruncate(fd, 0) != 0) {
return srs_error_new(ERROR_SYSTEM_PID_TRUNCATE_FILE, "truncate pid file=%s", pid_file.c_str());
}
// write the pid
string pid = srs_int2str(getpid());
if (write(fd, pid.c_str(), pid.length()) != (int)pid.length()) {
return srs_error_new(ERROR_SYSTEM_PID_WRITE_FILE, "write pid=%s to file=%s", pid.c_str(), pid_file.c_str());
}
// auto close when fork child process.
int val;
if ((val = fcntl(fd, F_GETFD, 0)) < 0) {
return srs_error_new(ERROR_SYSTEM_PID_GET_FILE_INFO, "fcntl fd=%d", fd);
}
val |= FD_CLOEXEC;
if (fcntl(fd, F_SETFD, val) < 0) {
return srs_error_new(ERROR_SYSTEM_PID_SET_FILE_INFO, "lock file=%s fd=%d", pid_file.c_str(), fd);
}
srs_trace("write pid=%s to %s success!", pid.c_str(), pid_file.c_str());
pid_fd = fd;
return srs_success;
}
srs_error_t SrsThreadPool::execute(string label, srs_error_t (*start)(void* arg), void* arg)
{
srs_error_t err = srs_success;
SrsThreadEntry* entry = new SrsThreadEntry();
// Update the hybrid thread entry for circuit breaker.
if (label == "hybrid") {
hybrid_ = entry;
hybrids_.push_back(entry);
}
// To protect the threads_ for executing thread-safe.
if (true) {
SrsThreadLocker(lock_);
threads_.push_back(entry);
}
entry->pool = this;
entry->label = label;
entry->start = start;
entry->arg = arg;
// The id of thread, should equal to the debugger thread id.
// For gdb, it's: info threads
// For lldb, it's: thread list
static int num = entry_->num + 1;
entry->num = num++;
char buf[256];
snprintf(buf, sizeof(buf), "srs-%s-%d", entry->label.c_str(), entry->num);
entry->name = buf;
// https://man7.org/linux/man-pages/man3/pthread_create.3.html
pthread_t trd;
int r0 = pthread_create(&trd, NULL, SrsThreadPool::start, entry);
if (r0 != 0) {
entry->err = srs_error_new(ERROR_THREAD_CREATE, "create thread %s, r0=%d", label.c_str(), r0);
return srs_error_copy(entry->err);
}
entry->trd = trd;
return err;
}
srs_error_t SrsThreadPool::run()
{
srs_error_t err = srs_success;
while (true) {
vector<SrsThreadEntry*> threads;
if (true) {
SrsThreadLocker(lock_);
threads = threads_;
}
// Check the threads status fastly.
int loops = (int)(interval_ / SRS_UTIME_SECONDS);
for (int i = 0; i < loops; i++) {
for (int i = 0; i < (int)threads.size(); i++) {
SrsThreadEntry* entry = threads.at(i);
if (entry->err != srs_success) {
// Quit with success.
if (srs_error_code(entry->err) == ERROR_THREAD_FINISHED) {
srs_trace("quit for thread #%d(%s) finished", entry->num, entry->label.c_str());
srs_freep(err);
return srs_success;
}
// Quit with specified error.
err = srs_error_copy(entry->err);
err = srs_error_wrap(err, "thread #%d(%s)", entry->num, entry->label.c_str());
return err;
}
}
srs_usleep(1 * SRS_UTIME_SECONDS);
}
// Show statistics for RTC server.
SrsProcSelfStat* u = srs_get_self_proc_stat();
// Resident Set Size: number of pages the process has in real memory.
int memory = (int)(u->rss * 4 / 1024);
srs_trace("Process: cpu=%.2f%%,%dMB, threads=%d", u->percent * 100, memory, (int)threads_.size());
}
return err;
}
void SrsThreadPool::stop()
{
// TODO: FIXME: Should notify other threads to do cleanup and quit.
}
SrsThreadEntry* SrsThreadPool::self()
{
std::vector<SrsThreadEntry*> threads;
if (true) {
SrsThreadLocker(lock_);
threads = threads_;
}
for (int i = 0; i < (int)threads.size(); i++) {
SrsThreadEntry* entry = threads.at(i);
if (entry->trd == pthread_self()) {
return entry;
}
}
return NULL;
}
SrsThreadEntry* SrsThreadPool::hybrid()
{
return hybrid_;
}
vector<SrsThreadEntry*> SrsThreadPool::hybrids()
{
return hybrids_;
}
void* SrsThreadPool::start(void* arg)
{
srs_error_t err = srs_success;
SrsThreadEntry* entry = (SrsThreadEntry*)arg;
// Initialize thread-local variables.
if ((err = SrsThreadPool::setup_thread_locals()) != srs_success) {
entry->err = err;
return NULL;
}
// Set the thread local fields.
entry->tid = gettid();
#ifndef SRS_OSX
// https://man7.org/linux/man-pages/man3/pthread_setname_np.3.html
pthread_setname_np(pthread_self(), entry->name.c_str());
#else
pthread_setname_np(entry->name.c_str());
#endif
srs_trace("Thread #%d: run with tid=%d, entry=%p, label=%s, name=%s", entry->num, (int)entry->tid, entry, entry->label.c_str(), entry->name.c_str());
if ((err = entry->start(entry->arg)) != srs_success) {
entry->err = err;
}
// We use a special error to indicates the normally done.
if (entry->err == srs_success) {
entry->err = srs_error_new(ERROR_THREAD_FINISHED, "finished normally");
}
// We do not use the return value, the err has been set to entry->err.
return NULL;
}
// It MUST be thread-safe, global and shared object.
SrsThreadPool* _srs_thread_pool = new SrsThreadPool();