This commit introduces nullable types `T?` that are
distinct from non-nullable `T`.
Example: `int?` (int or null) and `int` are different now.
Previously, `null` could be assigned to any primitive type.
Now, it can be assigned only to `T?`.
A non-null assertion operator `!` was also introduced,
similar to `!` in TypeScript and `!!` in Kotlin.
If `int?` still occupies 1 stack slot, `(int,int)?` and
other nullable tensors occupy N+1 slots, the last for
"null precedence". `v == null` actually compares that slot.
Assigning `(int,int)` to `(int,int)?` implicitly creates
a null presence slot. Assigning `null` to `(int,int)?` widens
this null value to 3 slots. This is called "type transitioning".
All stdlib functions prototypes have been updated to reflect
whether they return/accept a nullable or a strict value.
This commit also contains refactoring from `const FunctionData*`
to `FunctionPtr` and similar.
It works both for reading and writing:
> var t = (1, 2);
> t.0; // 1
> t.0 = 5;
> t; // (5, 2)
It also works for typed/untyped tuples, producing INDEX and SETINDEX.
Global tensors and tuples works. Nesting `t.0.1.2` works. `mutate` works.
Even mixing tuples inside tensors inside a global for writing works.
Totally, v0.7 will include:
- AST-level semantic kernel, transform AST to Ops directly
- fully rewritten type system, drop Hindley-Milner
- `bool` type support
Comparison operators `== / >= /...` return `bool`.
Logical operators `&& ||` return bool.
Constants `true` and `false` have the `bool` type.
Lots of stdlib functions return `bool`, not `int`.
Operator `!x` supports both `int` and `bool`.
Condition of `if` accepts both `int` and `bool`.
Arithmetic operators are restricted to integers.
Logical `&&` and `||` accept both `bool` and `int`.
No arithmetic operations with bools allowed (only bitwise and logical).
FunC's (and Tolk's before this PR) type system is based on Hindley-Milner.
This is a common approach for functional languages, where
types are inferred from usage through unification.
As a result, type declarations are not necessary:
() f(a,b) { return a+b; } // a and b now int, since `+` (int, int)
While this approach works for now, problems arise with the introduction
of new types like bool, where `!x` must handle both int and bool.
It will also become incompatible with int32 and other strict integers.
This will clash with structure methods, struggle with proper generics,
and become entirely impractical for union types.
This PR completely rewrites the type system targeting the future.
1) type of any expression is inferred and never changed
2) this is available because dependent expressions already inferred
3) forall completely removed, generic functions introduced
(they work like template functions actually, instantiated while inferring)
4) instantiation `<...>` syntax, example: `t.tupleAt<int>(0)`
5) `as` keyword, for example `t.tupleAt(0) as int`
6) methods binding is done along with type inferring, not before
("before", as worked previously, was always a wrong approach)
* Accelerator: partial fullnodes
1) Node can monitor a subset of shards
2) New archive slice format (sharded)
3) Validators are still required to have all shards
4) Support partial liteservers in lite-client, blockchain explorer, tonlib
5) Proxy liteserver
* Fix compilation error
1) Remove config 41, move "full collated data" to capabilities
2) Whitelist on collator nodes
3) "Ping" request for collator nodes
4) More customizable collators list for validators
5) CollationManager