It works both for reading and writing:
> var t = (1, 2);
> t.0; // 1
> t.0 = 5;
> t; // (5, 2)
It also works for typed/untyped tuples, producing INDEX and SETINDEX.
Global tensors and tuples works. Nesting `t.0.1.2` works. `mutate` works.
Even mixing tuples inside tensors inside a global for writing works.
Totally, v0.7 will include:
- AST-level semantic kernel, transform AST to Ops directly
- fully rewritten type system, drop Hindley-Milner
- `bool` type support
Comparison operators `== / >= /...` return `bool`.
Logical operators `&& ||` return bool.
Constants `true` and `false` have the `bool` type.
Lots of stdlib functions return `bool`, not `int`.
Operator `!x` supports both `int` and `bool`.
Condition of `if` accepts both `int` and `bool`.
Arithmetic operators are restricted to integers.
Logical `&&` and `||` accept both `bool` and `int`.
No arithmetic operations with bools allowed (only bitwise and logical).
FunC's (and Tolk's before this PR) type system is based on Hindley-Milner.
This is a common approach for functional languages, where
types are inferred from usage through unification.
As a result, type declarations are not necessary:
() f(a,b) { return a+b; } // a and b now int, since `+` (int, int)
While this approach works for now, problems arise with the introduction
of new types like bool, where `!x` must handle both int and bool.
It will also become incompatible with int32 and other strict integers.
This will clash with structure methods, struggle with proper generics,
and become entirely impractical for union types.
This PR completely rewrites the type system targeting the future.
1) type of any expression is inferred and never changed
2) this is available because dependent expressions already inferred
3) forall completely removed, generic functions introduced
(they work like template functions actually, instantiated while inferring)
4) instantiation `<...>` syntax, example: `t.tupleAt<int>(0)`
5) `as` keyword, for example `t.tupleAt(0) as int`
6) methods binding is done along with type inferring, not before
("before", as worked previously, was always a wrong approach)
* Accelerator: partial fullnodes
1) Node can monitor a subset of shards
2) New archive slice format (sharded)
3) Validators are still required to have all shards
4) Support partial liteservers in lite-client, blockchain explorer, tonlib
5) Proxy liteserver
* Fix compilation error
1) Remove config 41, move "full collated data" to capabilities
2) Whitelist on collator nodes
3) "Ping" request for collator nodes
4) More customizable collators list for validators
5) CollationManager
This is a very big change.
If FunC has `.methods()` and `~methods()`, Tolk has only dot,
one and only way to call a `.method()`.
A method may mutate an object, or may not.
It's a behavioral and semantic difference from FunC.
- `cs.loadInt(32)` modifies a slice and returns an integer
- `b.storeInt(x, 32)` modifies a builder
- `b = b.storeInt()` also works, since it not only modifies, but returns
- chained methods also work, they return `self`
- everything works exactly as expected, similar to JS
- no runtime overhead, exactly same Fift instructions
- custom methods are created with ease
- tilda `~` does not exist in Tolk at all
- split stdlib.tolk into multiple files (tolk-stdlib/ folder)
(the "core" common.tolk is auto-imported, the rest are
needed to be explicitly imported like "@stdlib/tvm-dicts.tolk")
- all functions were renamed to long and clear names
- new naming is camelCase
Lots of changes, actually. Most noticeable are:
- traditional //comments
- #include -> import
- a rule "import what you use"
- ~ found -> !found (for -1/0)
- null() -> null
- is_null?(v) -> v == null
- throw is a keyword
- catch with swapped arguments
- throw_if, throw_unless -> assert
- do until -> do while
- elseif -> else if
- drop ifnot, elseifnot
- drop rarely used operators
A testing framework also appears here. All tests existed earlier,
but due to significant syntax changes, their history is useless.
Since I've implemented AST, now I can drop forward declarations.
Instead, I traverse AST of all files and register global symbols
(functions, constants, global vars) as a separate step, in advance.
That's why, while converting AST to Expr/Op, all available symbols are
already registered.
This greatly simplifies "intermediate state" of yet unknown functions
and checking them afterward.
Redeclaration of local variables (inside the same scope)
is now also prohibited.
Several related changes:
- stdlib.tolk is embedded into a distribution (deb package or tolk-js),
the user won't have to download it and store as a project file;
it's an important step to maintain correct language versioning
- stdlib.tolk is auto-included, that's why all its functions are
available out of the box
- strict includes: you can't use symbol `f` from another file
unless you've #include'd this file
- drop all C++ global variables holding compilation state,
merge them into a single struct CompilerState located at
compiler-state.h; for instance, stdlib filename is also there